摘" " 要:【目的】探索不同植物生長(zhǎng)調(diào)節(jié)劑處理對(duì)獼猴桃果實(shí)生長(zhǎng)發(fā)育及采后品質(zhì)的影響?!痉椒ā恳越鹌G為研究對(duì)象,授粉后25~30 d分別用不同質(zhì)量濃度的赤霉素(GA3)、氯吡脲(CPPU)、三十烷醇(Tri)、萘乙酸(NAA)、吲哚乙酸(IAA)、6-芐氨基腺嘌呤(6-BA)、褪黑素(MT)和色氨酸(Trp)進(jìn)行噴施處理,測(cè)定果實(shí)外觀和品質(zhì)指標(biāo)。【結(jié)果】所有處理均顯著提高了果實(shí)單果質(zhì)量,降低了果形指數(shù)。CPPU可促進(jìn)果實(shí)成熟和淀粉積累,Tri和NAA分別抑制淀粉積累和延緩果實(shí)成熟。MT、Trp和NAA處理顯著提高了果實(shí)硬度,CPPU和NAA分別促進(jìn)與抑制果實(shí)軟化和可溶性固形物含量。CPPU、Tri和Trp處理降低了抗壞血酸含量,MT處理提高了抗壞血酸含量。適宜濃度的GA3、NAA、MT、CPPU、IAA、Tri和Trp對(duì)不同糖組分的積累和有機(jī)酸組分的降解具促進(jìn)作用。【結(jié)論】不同的植物生長(zhǎng)調(diào)節(jié)劑對(duì)獼猴桃果實(shí)的外觀和品質(zhì)指標(biāo)具有不同促進(jìn)或抑制作用,適宜濃度的CPPU、NAA和MT復(fù)合處理有望提高金艷獼猴桃果實(shí)的綜合品質(zhì)。
關(guān)鍵詞:獼猴桃;植物生長(zhǎng)調(diào)節(jié)劑;果實(shí)發(fā)育;果實(shí)品質(zhì)
中圖分類(lèi)號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2272-13
Effects of different plant growth regulators on fruit quality in Jinyan kiwifruit
MAO Jipeng1, 2, YAO Dongliang1, 2, GONG Xuchen1, 2, CHEN Lu3, GAO Zhu1, 2, 3, WANG Xiaoling1, 2*
(1Institute of Biological Resources, Jiangxi Academy of Sciences/Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330096, Jiangxi, China; 2Institute of Biological Resources, Jiangxi Academy of Sciences/Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, Jiangxi, China; 3Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an 343016, Jiangxi, China)
Abstract: 【Objective】 Kiwifruit (Actinidia spp.) originated in China, is an important part of China’s fruit food in the “Big Food View” perspective. Kiwifruit has become one of the most popular fruits because of its unique flavor and rich nutrients such as vitamin C, amino acids, organic acids, soluble sugars and minerals. Plant growth regulators have many physiological effects, such as enhancing plant resistance, regulating fruit size, pigment accumulation level, saccharic acid component content, and maturation and senescence process. Improper use of plant growth regulators can easily lead to high malformed fruit rate, dark skin color, early physiological ripening, large inventory loss and low fruit quality, which leads to the decline of comprehensive quality of postharvest kiwifruit. The present experiment was undertaken to explore the effects of different plant growth regulators on the growth and postharvest quality of kiwifruit. 【Methods】 Jinyan kiwifruit was treated with different concentrations of GA3 (50, 100 and 200 mg·L-1), CPPU (5, 10 and 20 mg·L-1), triacotanol (5, 10 and 20 mg·L-1), NAA (50, 100 and 200 mg·L-1), IAA (20, 40 and 80 mg·L-1), 6-BA (25, 50 and 100 mg·L-1), melatonin (10, 20 and 40 mg·L-1) and tryptophan (100, 200 and 400 mg·L-1) after 25-30 d of pollination. The water treatment served as control (CK), and three plants were treated with each concentration of every plant growth regulator as three biological replicates. After 140 d of pollination, 20 fruits were selected every 2 d for the determination of soluble solid content. When the SSC content was higher than 6.5%, it was recorded as the physiological maturity stage of the treatment. At the physiological maturity stage of corresponding treatment, 120 healthy fruits were randomly selected from each plant for index determination. They were placed at room temperature until soft ripeness (80% of the fruits were less than 1.2 kg·cm-2 in hardness), and 9 fruits were randomly selected every 2 d for hardness index determination. After soft ripening, soluble solid content and titrable acid content were determined. The remaining fruits were crushed and mixed with liquid nitrogen and stored at -80 ℃ for the subsequent determination of physiological indexes. The fruit weight, fruit shape index, fruit hardness and starch content were measured at the physiological maturity stage of Jinyan kiwifruit. The soluble solid content, titrable acid content, ascorbic acid content, sucrose, fructose, glucose, citric acid, quinic acid, malic acid, total phenol and total flavone contents were measured at the soft ripening stage of the fruit. The effects of different plant growth regulators and concentrations on the above indexes were compared and analyzed. 【Results】 Different plant growth regulator treatments could significantly increase the single fruit weight, NAA treatment had the best effect, and compared with CK single fruit weight increased by 43.07%-55.78%. Tri and CPPU treatments were followed by 34.56%-43.07% and 24.07%-31.62% respectively. Compared with CK, CPPU treatment could advance the physiological maturity by 18-20 d, and NAA treatment could delay the physiological maturity by 6-8 d. Compared with CK, CPPU treatment could increase starch content by 8.53%-17.32%. Different concentrations of MT, Trp and NAA, 5 mg·L-1 of Tri, 25 mg·L-1 and 50 mg·L-1 of 6-BA treatment could significantly improve fruit hardness. Different concentrations of NAA, 200 mg·L-1 of GA3 and 25 mg·L-1 of 6-BA could significantly reduce the softening rate of fruit. NAA treatment had the best effect, the softening rate was reduced by 10.96%-16.44% compared with CK, and the softening period was extended by 3-5 d. CPPU treatment could promote the softening of fruit, and the softening rate increased by 13.69%-26.03% compared with CK, and the softening period was advanced by 4-6 d. Different concentrations of NAA, 100 mg·L-1 of 6-BA, 5 mg·L-1 of CPPU, 50 mg·L-1 and 100 mg·L-1 of IAA, 20 mg·L-1 of Tri, 100 mg·L-1 and 400 mg·L-1 of Trp could significantly increase the contents of titrable acid in fruit at soft ripening stage. Different concentrations of CPPU, NAA and Trp significantly reduced the ascorbic acid content at the soft ripening stage, and the treatment effect of CPPU was the best, which decreased the ascorbic acid content by 10.53%-14.47% compared with CK. Trp and NAA treatments decreased by 9.21%-11.84% and 6.24%-8.34%, respectively. 200 mg·L-1 of GA3, 200 mg·L-1 of NAA, 10 mg·L-1 and 20 mg·L-1 of MT treatments significantly increased the fructose content at soft ripening stage. The most significant effect was 10 mg·L-1 of MT, the fructose content increased by 17.43%, followed by 200 mg·L-1 of GA3, 20 mg·L-1 of MT and 200 mg·L-1 of NAA, and the fructose contents increased by 13.47%, 11.82% and 10.64%. Different concentrations of CPPU, 40 mg·L-1 of MT, 5 mg·L-1 of Tri and 400 mg·L-1 of Trp could significantly increase sucrose content at soft ripening stage. Compared with CK, CPPU treatment could increase the sucrose contents by 34.23%-41.23%. Different concentrations of MT, 20 mg·L-1 and 40 mg·L-1 of IAA treatments could significantly increase the glucose contents at soft ripening stage, and 20 mg·L-1 of IAA treatment had the best effect, followed by 10 mg·L-1 of MT treatment, which could increase the glucose contents by 28.39% and 26.59%, respectively. Different concentrations of CPPU and MT significantly reduced the contents of citric acid, quinic acid and malic acid at soft ripening fruits. Compared with CK, the contents of citric acid decreased by 8.75%-10.63% and 8.75%-15.01%, the contents of quinic acid decreased by 10.77%-15.38% and 9.23%-12.30%, and the contents of malic acid decreased by 14.29%-20.01% and 23.8%-24.76%, respectively. Different concentrations of NAA, MT, 20 mg·L-1 of Tri and 80 mg·L-1 of IAA increased the total phenol contents. Different concentrations of CPPU and MT increased the accumulation levels of total flavonoids by 22.56%-28.75% and 8.75%-15.00%, respectively, compared with CK. 【Conclusion】 Different concentrations of 6-BA, CPPU, GA3, IAA, MT, NAA, Tri and Trp could significantly increase fruit weight, but decrease fruit shape index. The contents of soluble solid, ascorbic acid, soluble sugar, organic acid, total phenol and total flavone were promoted or inhibited by different plant growth regulators or concentrations. CPPU treatment of 10 mg·L-1 had the best effect on the accumulation of starch and soluble solids, NAA treatment of 100 mg·L-1 had the best effect on the appearance and storage performance of fruits, and MT treatment had the best effect on the improvement of fruit flavor quality. The suitable concentrations of CPPU, NAA and MT combined treatments were expected to improve the comprehensive quality of kiwifruit.
Key words: Kiwifruit; Plant growth regulator; Fruit development; Fruit quality
獼猴桃(Actinidia spp.)原產(chǎn)于中國(guó),在“大食物觀”背景下是中國(guó)水果食物的重要組成部分,因其獨(dú)特的風(fēng)味及富含維生素C、氨基酸、有機(jī)酸、可溶性糖和礦物質(zhì)等營(yíng)養(yǎng)物質(zhì)而成為備受大眾喜愛(ài)的水果之一[1-2]。據(jù)不完全統(tǒng)計(jì),中國(guó)已經(jīng)累計(jì)選育獼猴桃新品種近400個(gè),栽培總面積20萬(wàn)hm2,年產(chǎn)量超過(guò)250萬(wàn)t(布瑞克農(nóng)業(yè)大數(shù)據(jù),2024)。中國(guó)雖是獼猴桃生產(chǎn)大國(guó),卻非生產(chǎn)強(qiáng)國(guó),主要表現(xiàn)為價(jià)格低廉、高品質(zhì)果率低等[3]。金艷是由中國(guó)科學(xué)院武漢植物園獼猴桃學(xué)科組人員利用毛花獼猴桃和中華獼猴桃進(jìn)行種間雜交選育而成,為江西地區(qū)的主栽品種之一[4]。生產(chǎn)上常用氯吡脲(CPPU)進(jìn)行幼果期膨大處理,但因使用不當(dāng)出現(xiàn)畸形果率高[5]、果皮色澤暗淡[6]、生理成熟期提前[7]、庫(kù)存損耗高等問(wèn)題[8-9],從而導(dǎo)致采后獼猴桃果實(shí)綜合品質(zhì)下降。
植物生長(zhǎng)調(diào)節(jié)劑是一類(lèi)由人工合成或天然提取,具有和植物體內(nèi)激素相似生長(zhǎng)發(fā)育調(diào)節(jié)作用的有機(jī)化合物的統(tǒng)稱(chēng)。在果樹(shù)上常用的有CPPU[10-11]、6-芐氨基腺嘌呤(6-BA)[12-14]、赤霉素(GA3)[15-18]、吲哚乙酸(IAA)[15,19-20]、褪黑素(MT)[21-22]、萘乙酸(NAA)[23-25]、色氨酸(Trp)[26-27]和三十烷醇(Tri)[28]等,具有增強(qiáng)植物抗性及調(diào)控果實(shí)大小、色素積累水平、糖酸組分含量和成熟衰老進(jìn)程等多種生理作用。筆者在本研究中以金艷獼猴桃為材料,開(kāi)展不同植物生長(zhǎng)調(diào)劑及質(zhì)量濃度對(duì)果實(shí)生長(zhǎng)發(fā)育和果實(shí)品質(zhì)的影響研究,以期為綠色高效植物生長(zhǎng)調(diào)節(jié)的開(kāi)發(fā)利用提供理論基礎(chǔ),從而促進(jìn)獼猴桃產(chǎn)業(yè)的健康發(fā)展。
1 材料和方法
1.1 試驗(yàn)材料與處理
以種植于宜春市奉新縣博士獼猴桃基地(E 114°45', N 28°34')的8年生金艷獼猴桃為試驗(yàn)材料,于2023年5月底(授粉后25~30 d),根據(jù)文獻(xiàn)[11,13,16,19,22-23,26,28]報(bào)道分別采用不同質(zhì)量濃度的植物生長(zhǎng)調(diào)節(jié)劑[MT、CPPU、Tri、GA3、IAA、NAA、6-BA和Trp(北京索萊寶)]進(jìn)行噴施處理,具體處理質(zhì)量濃度如表1所示,以清水處理為對(duì)照。每種植物生長(zhǎng)調(diào)節(jié)劑的每個(gè)質(zhì)量濃度分別處理3株(計(jì)3個(gè)生物學(xué)重復(fù)),每株獼猴桃樹(shù)的留果量為800~900個(gè)。
1.2 取樣方法
授粉140 d后,每2 d取20個(gè)果實(shí)進(jìn)行可溶性固形物含量的測(cè)定,當(dāng)果實(shí)的可溶性固形物含量大于6.5%時(shí)記為該處理的生理成熟期;在對(duì)應(yīng)處理的生理成熟期,每株分別隨機(jī)采取120個(gè)健康的獼猴桃果實(shí),采摘后進(jìn)行單果質(zhì)量、淀粉含量、橫徑、縱徑和側(cè)徑指標(biāo)的測(cè)定。常溫放置至軟熟狀態(tài)(硬度小于1.2 kg·cm-2),其間每2 d隨機(jī)抽取9個(gè)果實(shí)進(jìn)行硬度指標(biāo)測(cè)定。軟熟后進(jìn)行可溶性固形物含量和可滴定酸含量的測(cè)定,剩余果實(shí)液氮處理粉碎混勻后-80 ℃保存用于后續(xù)生理指標(biāo)的測(cè)定。
1.3 指標(biāo)測(cè)定與方法
單果質(zhì)量用千分之一電子天平測(cè)量;果實(shí)橫徑、縱徑和側(cè)徑用游標(biāo)卡尺測(cè)量,果形指數(shù)計(jì)算方法:縱徑/橫徑;可溶性固形物含量的測(cè)定用數(shù)顯糖度計(jì);可滴定酸含量的測(cè)定采用滴定法,具體步驟參考曹健康等[29]的報(bào)道;取果實(shí)赤道位置1.5 mm左右的切片,65 ℃烘干至恒質(zhì)量,以干質(zhì)量/鮮質(zhì)量的比值計(jì)為干物質(zhì)含量;采用GY-4型果實(shí)硬度計(jì)測(cè)定果實(shí)硬度;軟熟期的淀粉(Cat#BC0700)、總酚(Cat#BC1345)、類(lèi)黃酮(Cat#BC1330)、葡萄糖(Cat#BC2500)、蔗糖(Cat#BC2460)和果糖(Cat#BC2450)含量的測(cè)定采用試劑盒法(北京索萊寶),步驟按說(shuō)明書(shū)??鼘幩帷幟仕?、蘋(píng)果酸和抗壞血酸含量的測(cè)定采用高效液相色譜法進(jìn)行,具體步驟參考周元等[30]的報(bào)道。
1.4 數(shù)據(jù)分析
使用 Microsoft Excel 2021 進(jìn)行統(tǒng)計(jì)處理及作圖,使用SPSS17.0對(duì)數(shù)據(jù)進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 不同處理對(duì)果實(shí)外觀指標(biāo)的影響
授粉后25~30 d不同處理對(duì)生理成熟期金艷獼猴桃果實(shí)外觀指標(biāo)的影響如表1所示。結(jié)果表明,不同植物生長(zhǎng)調(diào)節(jié)劑處理均能顯著提高單果質(zhì)量,NAA處理對(duì)提高單果質(zhì)量的效果最佳,與對(duì)照相比可將單果質(zhì)量提高43.07%~55.78%。其次是Tri和CPPU處理,可分別將單果質(zhì)量提高34.56%~43.07%和24.07%~31.62%。此外,不同質(zhì)量濃度處理效果差異明顯,100 mg·L-1的NAA處理效果顯著高于50 mg·L-1和200 mg·L-1,20 mg·L-1的Tri處理效果顯著高于5 mg·L-1和10 mg·L-1,10 mg·L-1和20 mg·L-1的CPPU處理效果顯著高于5 mg·L-1。不同質(zhì)量濃度的CPPU、GA3、IAA、NAA、Tri及50 mg·L-1和100 mg·L-1的6-BA、40 mg·L-1的MT和100 mg·L-1的Trp處理均顯著降低了果形指數(shù)。
2.2 不同處理對(duì)生理成熟期及淀粉含量的影響
由圖1和圖2可知,與對(duì)照相比CPPU處理將金艷獼猴桃果實(shí)的生理成熟期提前了18~20 d,NAA處理則將生理成熟期延遲了6~8 d,其他植物生長(zhǎng)調(diào)節(jié)劑對(duì)生理成熟期無(wú)顯著影響。CPPU處理對(duì)提高生理成熟期淀粉含量的效果最佳,與對(duì)照相比可將淀粉含量提高8.53%~17.32%,且5 mg·L-1處理效果顯著高于10 mg·L-1和20 mg·L-1。其次是10 mg·L-1的MT與50 mg·L-1、100 mg·L-1的6-BA處理,可分別將淀粉含量提高8.82%和6.51%~7.60%。不同質(zhì)量濃度的Tri、25 mg·L-1的6-BA、100 mg·L-1和200 mg·L-1的NAA與100 mg·L-1的GA3處理則顯著降低了生理成熟期的淀粉含量。
2.3 不同處理對(duì)硬度及軟化速率的影響
不同處理對(duì)生理成熟期果實(shí)硬度的影響如圖3所示,結(jié)果表明,不同質(zhì)量濃度的MT、Trp、NAA、5 mg·L-1的Tri、25 mg·L-1和50 mg·L-1的6-BA處理均可以顯著提高果實(shí)硬度。其中NAA的處理效果最佳,與對(duì)照相比可將果實(shí)硬度提高15.30%~16.37%。其次是MT處理,可將果實(shí)硬度提高5.24%~10.89%,且不同質(zhì)量濃度MT的處理效果差異顯著,10 mg·L-1的處理效果顯著高于20 mg·L-1和40 mg·L-1。
不同處理對(duì)獼猴桃采后果實(shí)常溫條件下軟化速率的影響由表2可知。分析發(fā)現(xiàn),不同質(zhì)量濃度的NAA、200 mg·L-1的GA3和25 mg·L-1的6-BA處理均能顯著抑制獼猴桃采后果實(shí)的軟化速率。其中NAA處理效果最佳,與對(duì)照相比軟化速率降低了10.96%~16.44%,軟化周期延長(zhǎng)了3~5 d。不同質(zhì)量濃度的CPPU、200 mg·L-1的Trp、100 mg·L-1的GA3、40 mg·L-1的MT和20 mg·L-1的Tri則能顯著提高采后果實(shí)的軟化速率。CPPU處理的效果最顯著,與對(duì)照相比軟化速率提高了13.69%~26.03%,軟化周期提前了4~6 d。
2.4 不同處理對(duì)軟熟期果實(shí)品質(zhì)的影響
2.4.1 不同處理對(duì)果實(shí)可溶性固形物含量的影響 不同處理對(duì)果實(shí)軟熟期可溶性固形物含量的影響如圖4所示。結(jié)果表明,不同質(zhì)量濃度的CPPU處理均能顯著提高果實(shí)軟熟期可溶性固形物含量,且20 mg·L-1和5 mg·L-1的處理效果顯著高于10 mg·L-1,與對(duì)照相比將可溶性固形物含量提高了6.89%~15.04%。不同質(zhì)量濃度的NAA和Tri處理則顯著降低了果實(shí)軟熟期可溶性固形物含量,與對(duì)照相比分別將可溶性固形物含量降低了4.21%~7.32%和3.70%~6.67%。其他植物生長(zhǎng)調(diào)節(jié)劑處理則對(duì)果實(shí)軟熟期可溶性固形物含量無(wú)顯著影響。
2.4.2 不同處理對(duì)果實(shí)可滴定酸含量的影響 軟熟期金艷獼猴桃果實(shí)的可滴定酸含量介于1.16%~1.22%之間。不同處理對(duì)果實(shí)軟熟期可滴定酸含量的影響如圖5所示。結(jié)果表明,不同質(zhì)量濃度的NAA、100 mg·L-1的6-BA、5 mg·L-1的CPPU、50 mg·L-1和100 mg·L-1的IAA、20 mg·L-1的Tri及100 mg·L-1和400 mg·L-1的Trp處理均能顯著提升金艷獼猴桃果實(shí)軟熟期可滴定酸含量。50 mg·L-1的GA3和20 mg·L-1的MT處理顯著降低了果實(shí)軟熟期可滴定酸含量。其他植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度處理對(duì)果實(shí)軟熟期可定酸含量則無(wú)顯著影響。
2.4.3 不同處理對(duì)抗壞血酸含量的影響 不同處理對(duì)果實(shí)軟熟期抗壞血酸含量的影響如圖6所示。結(jié)果發(fā)現(xiàn),不同質(zhì)量濃度的CPPU、NAA和Trp處理均顯著降低了軟熟期金艷獼猴桃果實(shí)的抗壞血酸含量,但不同質(zhì)量濃度之間的處理效果無(wú)顯著差異。其中CPPU的處理效果最為顯著,與對(duì)照相比將果實(shí)軟熟期抗壞血酸含量降低了10.53%~14.47%。其次是Trp和NAA處理,分別降低了9.21%~11.84%和6.24%~8.34%。不同質(zhì)量濃度的MT和Tri處理則能顯著提高果實(shí)軟熟期抗壞血酸含量,分別提高了8.89%~10.53%和6.58%~9.21%。此外,80 mg·L-1的IAA處理也能顯著提高果實(shí)軟熟期抗壞血酸含量,其他植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度則都對(duì)抗壞血酸的含量無(wú)顯著影響。
2.4.4 不同處理對(duì)可溶性糖含量的影響 不同處理對(duì)果實(shí)軟熟期可溶性糖含量的影響如圖7所示。結(jié)果表明,200 mg·L-1的GA3、200 mg·L-1的NAA、10 mg·L-1和20 mg·L-1的MT處理能顯著提高果實(shí)軟熟期果糖含量。其中效果最為顯著的是10 mg·L-1的MT,與對(duì)照相比將果實(shí)軟熟期果糖含量提高了17.43%,其次是200 mg·L-1的GA3、20 mg·L-1的MT和200 mg·L-1的NAA,分別將果實(shí)軟熟期果糖含量提高了13.47%、11.82%和10.64%。其他植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度對(duì)果實(shí)軟熟期果糖含量無(wú)顯著影響。不同質(zhì)量濃度的CPPU、40 mg·L-1的MT、5 mg·L-1的Tri和400 mg·L-1的Trp處理均能顯著提高軟熟期蔗糖含量。與對(duì)照相比,CPPU處理可將蔗糖含量提高34.23%~41.23%,且不同質(zhì)量濃度間的處理效果無(wú)顯著差異。不同質(zhì)量濃度的NAA、50 mg·L-1和200 mg·L-1的GA3處理則顯著降低了軟熟期蔗糖含量,與對(duì)照相比,NAA處理將軟熟期蔗糖含量降低了15.81%~22.21%。不同質(zhì)量濃度的MT、20 mg·L-1和40 mg·L-1的IAA處理可顯著提高軟熟期葡萄糖含量,20 mg·L-1的IAA處理效果最佳,其次是10 mg·L-1的MT,可分別將果實(shí)軟熟期葡萄糖含量提高28.39%和26.59%。
2.4.5 不同處理對(duì)有機(jī)酸含量的影響 不同處理對(duì)軟熟期有機(jī)酸含量的影響如圖8所示。結(jié)果表明,不同質(zhì)量濃度的CPPU和MT處理均顯著降低了軟熟期果實(shí)檸檬酸、奎寧酸和蘋(píng)果酸含量。與對(duì)照相比,檸檬酸含量分別降低了8.75%~10.63%和8.75%~15.01%,奎寧酸含量分別降低了10.77%~15.38%和9.23%~12.30%,蘋(píng)果酸含量分別降低了14.29%~20.01%和23.81%~24.76%。不同質(zhì)量濃度的Trp則顯著提高了軟熟期檸檬酸、奎寧酸和蘋(píng)果酸含量,與對(duì)照相比檸檬酸、奎寧酸和蘋(píng)果酸含量分別提高了7.51%~13.75%、9.23%~13.85%和21.90%~29.05%。此外,不同質(zhì)量濃度的NAA處理顯著提高了果實(shí)軟熟期奎寧酸和蘋(píng)果酸含量,100 mg·L-1的NAA處理顯著提高了果實(shí)軟熟期檸檬酸含量。
2.4.6 不同處理對(duì)總酚和總黃酮含量的影響 軟熟期金艷獼猴桃果實(shí)總酚和總黃酮含量分別介于98~126 mg·100 g-1之間。不同處理對(duì)軟熟期總酚和總黃酮含量的影響如圖9、圖10所示。結(jié)果表明,CPPU和GA3處理均顯著降低了軟熟期果實(shí)總酚含量,與對(duì)照相比分別降低了7.14%~8.93%和6.25%~12.51%。不同質(zhì)量濃度的NAA、MT、20 mg·L-1的Tri和80 mg·L-1的IAA處理則顯著提高了果實(shí)軟熟期總酚含量。不同質(zhì)量濃度的CPPU和MT處理均顯著提高了果實(shí)軟熟期果實(shí)總黃酮含量,與對(duì)照相比分別提高了22.56%~28.75%和8.75%~15.00%,且不同CPPU質(zhì)量濃度處理之間無(wú)顯著差異,MT處理質(zhì)量濃度越大總黃酮含量越高。不同質(zhì)量濃度NAA、Trp、40 mg·L-1和80 mg·L-1的IAA處理則顯著抑制了果實(shí)軟熟期總黃酮的積累,與對(duì)照相比NAA和Trp處理分別將果實(shí)軟熟期總黃酮含量降低了10.00%~15.00%和8.75%~11.25%。其他植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度則對(duì)果實(shí)軟熟期總酚和總黃酮含量無(wú)顯著影響。
3 討 論
植物生長(zhǎng)調(diào)節(jié)劑因具有促進(jìn)植株生長(zhǎng)和果實(shí)發(fā)育、提高產(chǎn)量和抗性等生理作用而被廣泛應(yīng)用于園藝植物的生產(chǎn)過(guò)程中[31]。本研究在果實(shí)外觀指標(biāo)、生理成熟期、果實(shí)硬度,以及淀粉、可溶性固形物、可溶性糖、有機(jī)酸、總酚和總黃酮含量等方面系統(tǒng)地分析了不同植物生長(zhǎng)調(diào)節(jié)劑及質(zhì)量濃度處理對(duì)金艷獼猴桃果實(shí)發(fā)育和采后品質(zhì)指標(biāo)的影響。果實(shí)外觀指標(biāo)是影響消費(fèi)者喜好和商品價(jià)值的重要因素。研究表明,所有的處理均能顯著提高生理成熟期金艷獼猴桃果實(shí)的單果質(zhì)量,這與上述植物生長(zhǎng)調(diào)節(jié)劑在金奉(原奉黃1號(hào))[9]、東紅[7]、紅陽(yáng)[17]、秦美[6,8]和海沃德[6,18]等其他獼猴桃品種中的應(yīng)用效果一致。然而除個(gè)別植物生長(zhǎng)調(diào)節(jié)劑的處理質(zhì)量濃度外,絕大部分的處理均顯著降低了果形指數(shù),這與李圓圓等[6]和伍夢(mèng)婷等[9]報(bào)道的研究結(jié)果一致。
生理成熟期、果實(shí)硬度和淀粉含量是影響采后果實(shí)品質(zhì)形成和貯藏性能的關(guān)鍵因素。本研究中發(fā)現(xiàn),CPPU處理在提高淀粉含量的同時(shí),也提前了金艷獼猴桃的生理成熟期并降低了果實(shí)硬度。這可能是生產(chǎn)上CPPU處理可以提高軟熟期果實(shí)糖度但貯藏性能較差的原因之一。不同質(zhì)量濃度的NAA處理則可以將金艷獼猴桃的生理成熟期延后6~8 d,這在以往關(guān)于NAA的應(yīng)用研究中未見(jiàn)報(bào)道。結(jié)合CPPU和NAA這種相對(duì)立的結(jié)果,可為人工調(diào)控獼猴桃生理成熟期關(guān)鍵技術(shù)開(kāi)發(fā)提供參考。
不同質(zhì)量濃度的CPPU處理均能顯著提高軟熟期獼猴桃果實(shí)可溶性固形物含量,這與李圓圓[6]、熊浩等[7]和伍夢(mèng)婷等[9]報(bào)道的研究結(jié)果一致。雖然不同植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度對(duì)果實(shí)軟熟期可滴定酸含量的影響差異顯著,但可滴定酸含量均介于1.16%~1.22%之間,對(duì)果實(shí)風(fēng)味品質(zhì)形成的貢獻(xiàn)相對(duì)較少。不同質(zhì)量濃度的CPPU、NAA和Trp處理均顯著降低了果實(shí)軟熟期抗壞血酸含量。李圓圓[6]研究發(fā)現(xiàn)5 mg·L-1的CPPU處理對(duì)秦美獼猴桃對(duì)抗壞血酸含量無(wú)顯著影響,10 mg·L-1和20 mg·L-1的CPPU處理則顯著降低抗壞血酸含量,3種質(zhì)量濃度的CPPU處理均能降低海沃德獼猴桃抗壞血酸含量,初步說(shuō)明不同獼猴桃品種對(duì)CPPU處理的響應(yīng)程度不一致,這與本研究的結(jié)果基本一致。張春紅等[23]研究發(fā)現(xiàn)50~200 mg·L-1的NAA處理均能顯著提高藍(lán)莓果實(shí)的抗壞血酸含量。杜麗清等[26]也發(fā)現(xiàn)200 mg·L-1和600 mg·L-1的Trp處理能顯著提高菠蘿果實(shí)的抗壞血酸含量,這與本研究的結(jié)果相反,這說(shuō)明NAA和Trp處理對(duì)不同品種水果的效果有很大差別。
可溶性糖和有機(jī)酸作為獼猴桃最為關(guān)鍵的風(fēng)味物質(zhì),其含量的多少直接影響了軟熟期獼猴桃口感和風(fēng)味。MT處理能顯著提高果實(shí)軟熟期果糖、蔗糖、葡萄糖、總酚和總黃酮含量,但同時(shí)降低了檸檬酸、奎寧酸和蘋(píng)果酸含量。賈潤(rùn)普等[21]和胡容平等[32]研究發(fā)現(xiàn)適宜濃度的MT處理能顯著提高葡萄果實(shí)葡萄糖和果糖含量,李強(qiáng)等[33]也研究發(fā)現(xiàn)MT處理能顯著提高葡萄果實(shí)總酚和總黃酮含量。這與本研究的結(jié)果一致。但MT處理能降低有機(jī)酸組分含量的研究尚未見(jiàn)報(bào)道。CPPU處理能顯著提高軟熟期獼猴桃果實(shí)蔗糖含量,但對(duì)葡萄糖和果糖含量無(wú)顯著影響,同時(shí)能顯著降低果實(shí)軟熟期檸檬酸、奎寧酸和蘋(píng)果酸含量。關(guān)于CPPU處理對(duì)獼猴桃果實(shí)具體糖酸組分的影響研究尚未見(jiàn)報(bào)道,該結(jié)果為解析CPPU處理影響獼猴桃果實(shí)品質(zhì)的研究提供了一定的理論基礎(chǔ)。不同質(zhì)量濃度的NAA處理顯著抑制果實(shí)軟熟期蔗糖的積累與檸檬酸、奎寧酸和蘋(píng)果酸的降解。王西成等[24]研究也發(fā)現(xiàn)50 mg·L-1、100 mg·L-1和200 mg·L-1的NAA處理能顯著抑制可溶性糖組分的積累和有機(jī)酸組分的降解,這與本研究的結(jié)果一致。綜合表明,不同植物生長(zhǎng)調(diào)節(jié)劑和質(zhì)量濃度對(duì)金艷獼猴桃果實(shí)發(fā)育和采后品質(zhì)指標(biāo)含量具有不同的促進(jìn)或抑制作用。
4 結(jié) 論
不同質(zhì)量濃度的6-BA、CPPU、GA3、IAA、MT、NAA、Tri和Trp處理均能顯著提高果實(shí)的單果質(zhì)量,但降低了果形指數(shù)。不同植物生長(zhǎng)調(diào)節(jié)劑或質(zhì)量濃度對(duì)獼猴桃可溶性固形物、抗壞血酸、可溶性糖、有機(jī)酸、總酚和總黃酮含量等果實(shí)品質(zhì)指標(biāo)含量具有不同的促進(jìn)或抑制作用。10 mg·L-1的CPPU處理促進(jìn)淀粉和可溶性固形物積累的效果最佳,100 mg·L-1的NAA處理提升果實(shí)外觀和貯藏性能的效果最佳,MT處理對(duì)提升果實(shí)風(fēng)味品質(zhì)的效果最佳,適宜質(zhì)量濃度的CPPU、NAA和MT復(fù)合處理有望提高獼猴桃綜合品質(zhì)。
參考文獻(xiàn) References:
[1] WANG R C,SHU P,ZHANG C,ZHANG J L,CHEN Y,ZHANG Y X,DU K,XIE Y,LI M Z,MA T,ZHANG Y,LI Z G,GRIERSON D,PIRRELLO J,CHEN K S,BOUZAYEN M,ZHANG B,LIU M C. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis)[J]. New Phytologist,2022,233(1):373-389.
[2] XIONG Y,YAN P,DU K,LI M Z,XIE Y,GAO P. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches[J]. Journal of the Science of Food and Agriculture,2020,100(6):2399-2409.
[3] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國(guó)獼猴桃產(chǎn)業(yè)發(fā)展現(xiàn)狀及對(duì)策建議[J]. 果樹(shù)學(xué)報(bào),2020,37(5):754-763.
QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,F(xiàn)ANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.
[4] 胡新龍,金玲莉,王璠,王斯妤,吳庭觀,李小飛,陳東元,吳美華. 江西獼猴桃產(chǎn)業(yè)現(xiàn)狀及“十四五” 發(fā)展對(duì)策與建議[J]. 江西農(nóng)業(yè)學(xué)報(bào),2022,34(5):34-39.
HU Xinlong,JIN Lingli,WANG Fan,WANG Siyu,WU Tingguan,LI Xiaofei,CHEN Dongyuan,WU Meihua. Development status and suggestions on kiwifruit industry in Jiangxi province during “the 14th Five-Year Plan” period[J]. Acta Agriculturae Jiangxi,2022,34(5):34-39.
[5] WAN H L,KONG X B,LIU Y H,JIN F,HAN L X,XU M,LI X M,LI L,YANG J,LAI D N,NIE J Y. Residue analysis and effect of preharvest forchlorfenuron (CPPU) application on quality formation of kiwifruit[J]. Postharvest Biology and Technology,2023,195:112144.
[6] 李圓圓. 采前CPPU處理對(duì)獼猴桃采后品質(zhì)及細(xì)胞超微結(jié)構(gòu)的影響機(jī)制研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.
LI Yuanyuan. Effect mechanism of preharvest CPPU treatment on postharvest quality and cell ultrastructure of kiwifruit[D]. Yangling:Northwest A amp; F University,2018.
[7] 熊浩,鄭浩,韓佳欣,苑馨予,李吉濤,鐘彩虹,張瓊. CPPU處理對(duì)獼猴桃果實(shí)品質(zhì)的影響[J]. 植物科學(xué)學(xué)報(bào),2022,40(1):74-83.
XIONG Hao,ZHENG Hao,HAN Jiaxin,YUAN Xinyu,LI Jitao,ZHONG Caihong,ZHANG Qiong. Effects of CPPU treatment on fruit quality in Actinidia[J]. Plant Science Journal,2022,40(1):74-83.
[8] 方金豹,黃宏文,李紹華. CPPU對(duì)獼猴桃果實(shí)發(fā)育過(guò)程中糖、酸含量變化的影響[J]. 果樹(shù)學(xué)報(bào),2002,19(4):235-239.
FANG Jinbao,HUANG Hongwen,LI Shaohua. Influence of CPPU on kiwifruit sugar content and titratable acidity during fruit development[J]. Journal of Fruit Science,2002,19(4):235-239.
[9] 伍夢(mèng)婷,鐘文奇,陶俊杰,陳雙雙,賈慧敏,徐小彪,黃春輝. 氯苯脲(CPPU)浸果對(duì)‘奉黃1號(hào)’獼猴桃品質(zhì)的影響[J]. 中國(guó)南方果樹(shù),2023,52(4):100-107.
WU Mengting,ZHONG Wenqi,TAO Junjie,CHEN Shuang-shuang,JIA Huimin,XU Xiaobiao,HUANG Chunhui. Effect of chlorphenylurea (CPPU) on the quality of ‘Fenghuang No. 1’ kiwifruit [J]. South China Fruits,2023,52(4):100-107.
[10] 李國(guó)田,張雪丹,孫山,安淼. 氯吡脲處理對(duì)‘泰山1號(hào)’獼猴桃采后果實(shí)呼吸和品質(zhì)的影響[J]. 北方園藝,2020(12):52-57.
LI Guotian,ZHANG Xuedan,SUN Shan,AN Miao. Effects of CPPU on respiration intensity and fruit quality of ‘Taishan No. 1’ kiwifruit during storage[J]. Northern Horticulture,2020(12):52-57.
[11] WU L,LAN J B,XIANG X X,XIANG H Y,JIN Z,KHAN S,LIU Y Q. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis)[J]. PLoS One,2020,15(10):e0240355.
[12] 張利英,劉雪霞,朱昌華,甘立軍. KT、6-BA對(duì)紅顏草莓果實(shí)品質(zhì)的影響[J]. 生物學(xué)雜志,2019,36(5):62-66.
ZHANG Liying,LIU Xuexia,ZHU Changhua,GAN Lijun. Effects of KT and 6-BA on the fruit quality in ‘Hongyan’ strawberry[J]. Journal of Biology,2019,36(5):62-66.
[13] 孫志偉. 花期噴施GA3和6-BA對(duì)“小目手撕”菠蘿采后果實(shí)品質(zhì)的影響[D]. 昆明:云南農(nóng)業(yè)大學(xué),2023.
SHUN Zhiwei. Effects of spraying GA3 and 6-BA at flowering stage on postharvest fruit quality of “small eye hand-torn” pineapple [D]. Kunming: Yunnan Agricultural University,2023.
[14] ASíN L,VILARDELL P,BONANY J,ALEGRE S. Effect of 6-BA,NAA and their mixtures on fruit thinning and fruit yield in ‘Conference’ and ‘Blanquilla’ pear cultivars[J]. Acta Horticulturae,2010(884):379-382.
[15] 楊衛(wèi)民,杜京旗,趙君. 6-BA、IAA、GA3與ABA對(duì)木棗果實(shí)成熟衰老的調(diào)控作用[J]. 生物技術(shù)通報(bào),2016,32(1):88-91.
YANG Weimin,DU Jingqi,ZHAO Jun. The regulation of 6-BA,IAA,GA3 and ABA on the ripening and senescence of Mu jujube’s fruits (Ziziphus jujuba L.)[J]. Biotechnology Bulletin,2016,32(1):88-91.
[16] 蔡仲慧,李秀杰,王悅,李勃,謝兆森. 赤霉素處理對(duì)陽(yáng)光玫瑰葡萄果實(shí)生長(zhǎng)動(dòng)態(tài)及品質(zhì)的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),2024,55(2):499-508.
CAI Zhonghui,LI Xiujie,WANG Yue,LI Bo,XIE Zhaosen. Growth dynamics observation and quality analysis of grape berry under different gibberellin treatments[J]. Journal of Southern Agriculture,2024,55(2):499-508.
[17] 楊海英. 赤霉素對(duì)獼猴桃果實(shí)采后成熟的調(diào)控及其分子機(jī)制研究[D]. 煙臺(tái):魯東大學(xué),2023.
YANG Haiying. Studies on regulation and molecular mechanism of gibberellin treatment on ripening of postharvest kiwifruit[D]. Yantai:Ludong University,2023.
[18] 尹翠波,周慶陽(yáng). GA3和CPPU對(duì)獼猴桃果實(shí)發(fā)育及品質(zhì)的影響[J]. 福建果樹(shù),2007(4):5-9.
YIN Cuibo,ZHOU Qingyang. Effects of GA3 and CPPU on fruit development and quality of kiwifruit[J]. Fujian Fruits,2007(4):5-9.
[19] 鐘曉紅,石雪暉,馬定渭,黃遠(yuǎn)飛,戴思慧. IAA色氨酸處理對(duì)索非亞草莓營(yíng)養(yǎng)生長(zhǎng)和果實(shí)品質(zhì)的調(diào)控[J]. 果樹(shù)學(xué)報(bào),2004,21(6):565-568.
ZHONG Xiaohong,SHI Xuehui,MA Dingwei,HUANG Yuanfei,DAI Sihui. Study on the effects of tryptophan on the growth and fruit quality of Sophie strawberry cultivar[J]. Journal of Fruit Science,2004,21(6):565-568.
[20] LIU N N. Effects of IAA and ABA on the immature peach fruit development process[J]. Horticultural Plant Journal,2019,5(4):145-154.
[21] 賈潤(rùn)普,王玥,李勃,李鎣男,姚玉新. 外源褪黑素處理對(duì)‘陽(yáng)光玫瑰’葡萄果實(shí)品質(zhì)的影響[J]. 植物生理學(xué)報(bào),2022,58(10):2034-2044.
JIA Runpu,WANG Yue,LI Bo,LI Yingnan,YAO Yuxin. Effects of exogenous melatonin treatment on quality of ‘Shine Muscat’ grape berries[J]. Plant Physiology Journal,2022,58(10):2034-2044.
[22] 蘇金龍. 褪黑素對(duì)獼猴桃果實(shí)后熟衰老的調(diào)控及其生理機(jī)制研究[D]. 西安:西北大學(xué),2021.
SU Jinlong. Studies on regulation and physiological mechanism of melatonin treatment on ripening and senescence of kiwifruit[D]. Xi’an:Northwest University,2021.
[23] 張春紅,吳文龍. NAA處理對(duì)藍(lán)莓果實(shí)發(fā)育和品質(zhì)性狀的影響研究[J]. 中國(guó)南方果樹(shù),2021,50(4):147-152.
ZHANG Chunhong,WU Wenlong. Effects of NAA on fruit development and quality traits of blueberry[J]. South China Fruits,2021,50(4):147-152.
[24] 王西成,吳偉民,趙密珍,錢(qián)亞明,王壯偉. NAA對(duì)葡萄果實(shí)中糖酸含量及相關(guān)基因表達(dá)的影響[J]. 園藝學(xué)報(bào),2015,42(3):425-434.
WANG Xicheng,WU Weimin,ZHAO Mizhen,QIAN Yaming,WANG Zhuangwei. Effect of NAA treatment on sugar acid content and related gene expression in grape berries[J]. Acta Horticulturae Sinica,2015,42(3):425-434.
[25] 吳瓊,吳文龍,李維林,張春紅. NAA處理對(duì)黑莓果實(shí)品質(zhì)及細(xì)胞壁酶活性的影響[J]. 北方園藝,2021(10):15-21.
WU Qiong,WU Wenlong,LI Weilin,ZHANG Chunhong. Effects of NAA treatment on fruit quality and cell wall degrading enzyme activities of blackberry fruits[J]. Northern Horticulture,2021(10):15-21.
[26] 杜麗清,姚艷麗,孫光明,張秀梅. 不同濃度IAA色氨酸處理對(duì)菠蘿果實(shí)品質(zhì)發(fā)育的影響[J]. 熱帶作物學(xué)報(bào),2014,35(3):433-437.
DU Liqing,YAO Yanli,SUN Guangming,ZHANG Xiumei. Different concentrations of IAA and tryptophan effects on the quality development of pineapple[J]. Chinese Journal of Tropical Crops,2014,35(3):433-437.
[27] WóJCIK P,F(xiàn)ILIPCZAK J,WóJCIK M. Effects of prebloom sprays of tryptophan and zinc on calcium nutrition,yielding and fruit quality of ‘Elstar’ apple trees[J]. Scientia Horticulturae,2019,246:212-216.
[28] 吳建輝,陳清香,覃振強(qiáng),王澤清. 0.1%三十烷醇對(duì)柑橘的生長(zhǎng)調(diào)節(jié)作用[J]. 廣東農(nóng)業(yè)科學(xué),2009,36(7):141-142.
WU Jianhui,CHEN Qingxiang,QIN Zhenqiang,WANG Zeqing. Effect of growth regulator to citrus on applying 0.1% triacotanol[J]. Guangdong Agricultural Sciences,2009,36(7):141-142.
[29] 曹健康,姜微波,趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)輕工業(yè)出版社,2007.
CAO Jiankan,JIANG Weibo,ZHAO Yumei. Experiment guidance of postharvest physiology and biochemistry fruits and vegetables[M]. Beijing:China Light Industry Press,2007.
[30] 周元,傅虹飛. 獼猴桃中的有機(jī)酸高效液相色譜法分析[J]. 食品研究與開(kāi)發(fā),2013,34(19):85-87.
ZHOU Yuan,F(xiàn)U Hongfei. Determination of organic acids in kiwifruit by reversed phase HPLC method[J]. Food Research and Development,2013,34(19):85-87.
[31] 高佳緣. 植物生長(zhǎng)調(diào)節(jié)劑在果樹(shù)生產(chǎn)上的應(yīng)用[J]. 黑龍江農(nóng)業(yè)科學(xué),2019(2):163-164.
GAO Jiayuan. Application of plant growth regulators in fruit tree production[J]. Heilongjiang Agricultural Sciences,2019(2):163-164.
[32] 胡容平,范中菡,董義霞,鐘莉莎,林立金,廖明安. 褪黑素對(duì)葡萄果實(shí)品質(zhì)的影響[J]. 北方園藝,2022(4):39-44.
HU Rongping,F(xiàn)AN Zhonghan,DONG Yixia,ZHONG Lisha,LIN Lijin,LIAO Ming’an. Effects of melatonin on fruit quality of grape[J]. Northern Horticulture,2022(4):39-44.
[33] 李強(qiáng),史星雲(yún),馬宗桓,李春玲,趙連鑫,劉偉,張勤德. 褪黑素對(duì)葡萄農(nóng)藝性狀及果實(shí)品質(zhì)的影響[J]. 林業(yè)科技通訊,2021(12):32-36.
LI Qiang,SHI Xingyun,MA Zonghuan,LI Chunling,ZHAO Lianxin,LIU Wei,ZHANG Qinde. Effects of melatonin on agronomic traits and fruit quality of grape[J]. Forest Science and Technology,2021(12):32-36.