摘" " 要:【目的】探究果實(shí)成熟期可溶性糖含量差異大的原因,以挖掘毛花獼猴桃果實(shí)蔗糖代謝關(guān)鍵酶和關(guān)鍵基因?!痉椒ā恳愿咛切挖M綠1號(hào)和低糖型贛綠6號(hào)毛花獼猴桃品種為研究材料,測(cè)定果實(shí)生理成熟期外觀指標(biāo);測(cè)定軟熟期可溶性固形物含量、干物質(zhì)含量、可溶性糖含量、糖組分含量、甜度值、蔗糖代謝酶活性和代謝酶基因相對(duì)表達(dá)量等指標(biāo);分析不同指標(biāo)間的相關(guān)性?!窘Y(jié)果】果實(shí)成熟期可溶性糖含量與蔗糖含量呈顯著正相關(guān);蔗糖含量與蔗糖磷酸合酶活性及其編碼基因AeSPS表達(dá)量呈顯著正相關(guān)?!窘Y(jié)論】蔗糖是引起毛花獼猴桃果實(shí)可溶性糖含量差異大的主要原因,蔗糖磷酸合酶是影響果實(shí)成熟期蔗糖代謝的關(guān)鍵酶,推測(cè)其編碼基因AeSPS是調(diào)控果實(shí)成熟期蔗糖合成的關(guān)鍵基因。
關(guān)鍵詞:毛花獼猴桃;可溶性糖;蔗糖;糖代謝;蔗糖磷酸合酶;果實(shí)品質(zhì)
中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2261-11
Analysis of the fruit quality and the metabolic characteristics of sucrose in fruit of Actinidia eriantha at ripening stage
JIA Dongfeng1, 2, QIAN Jiquan1, 2, GAO Huan1, 2, LIAO Guanglian1, 2, ZHONG Min2, HUANG Chunhui1, 2, XU Xiaobiao1, 2*
(1College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China; 2Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China)
Abstract: 【Objective】 Actinidia eriantha is a unique kiwifruit species of Actinidia spp. The fruit of A. eriantha is rich in nutrients and ascorbic acid (vitamin C). However, the flavor quality of most wild A. eriantha resources is lower than that of the cultivars from A. chinensis or A. deliciosa mainly due to the low accumulations of soluble sugars. Fortunately, a high sugar type kiwifruit cultivar, A. eriantha ‘Ganlü No. 1’, has been developed by our research group recently. In order to explore the formational mechanism of the high accumulation of soluble sugars, and to identify the related key metabolic enzyme and key gene in the fruit of A. eriantha ‘Ganlü No. 1’ at the ripening stage, A. eriantha ‘Ganlü No. 1’ and another low sugar type kiwifruit cultivar, A. eriantha ‘Ganlü No. 6’, were selected as the research materials in this study. These two cultivars possess similar genetic background and they both originated from the wild A. eriantha resources of Magu Mountain in Nancheng County, Jiangxi Province. 【Methods】 The grafted vines of A. eriantha ‘Ganlü No. 1’ and A. eriantha ‘Ganlü No. 6’ were planted in an orchard of the Fengxin County Bureau of Agriculture and Rural Affairs, which was located in Fengxin County, Jiangxi Province. In 2021, at physiological maturity stage when the soluble solids content of fruits of each cultivar reached over 7.0%, fruits without pests, diseases and mechanical damage were collected randomly from selected vines. After collection, the fruits were placed in an ice box and transported to the laboratory for further treatment. For each cultivar, three uniform vines were used as three biological replicates. Twenty fruits were collected from each vine. For fresh fruits, the fruit weight was measured using an electronic balance; the fruit longitudinal diameter and fruit transverse diameter were measured respectively with a vernier caliper. The fruit shape index was obtained using the ratio of the longitudinal diameter to the transverse diameter. Then those fruits were stored at room temperature until soft-ripe stage. For those fresh fruits, soluble solids content (SSC) was measured with a portable refractometer, and dry matter content (DM) was measured using fruit slices. For the remaining fruits, after removing the peel, seeds and core, the flesh was separated, sliced, frozen with liquid nitrogen, and stored in a refrigerator at -80 ℃. For the frozen flesh samples, the soluble sugar content (SS) was determined using anthrone sulfuric acid colorimetry; the titratable acidity (TA) was determined by titration with NaOH; and the ascorbic acid (AsA) content was determined by the 2, 6-dichlorphenolindophenol titration method. The sugar-acid ratio was calculated by the ratio of the SS to the TA. The glucose (Glu), fructose (Fru), and sucrose (Suc) were also extracted from the frozen samples in 80% ethanol, and their contents were determined by high-performance liquid chromatography. The total soluble sugar content (TS) was obtained by calculating the sum of Glu, Fru, and Suc. The sweetness value (SV) was calculated based on the contents of Glu, Fru, Suc, as well as their corresponding coefficients. Besides, for the frozen samples, the activity assays of the main enzymes involved in Suc metabolism, including sucrose phosphate synthase (SPS), sucrose synthase (SUSY), acid invertase (AINV), and neutral invertase (NINV), were carried out using their corresponding kits. Furthermore, the relative expression levels of the related genes encoding those enzymes, including AeSPS, AeSUSY, AeAINV, and AeNINV, were analyzed by qRT-PCR method for A. eriantha ‘Ganlü No. 1’ and A. eriantha ‘Ganlü No. 6’. In addition, the correlation relationships among different indicators were analyzed using bivariable analysis following the Pearson method. Those indicators included SS, SSC, SV, TS, Glu, Fru, Suc, the activities of SPS, SUSY, AINV, NINV, and the relative expression levels of AeSPS, AeSUSY, AeAINV, and AeNINV. 【Results】 The fruit size, fruit shape index, and fruit weight were significantly higher in A. eriantha ‘Ganlü No. 1’ than those in A. eriantha ‘Ganlü No. 6’. Most of the indicators related to internal fruit quality were also significantly higher in A. eriantha ‘Ganlü No. 1’ than those in A. eriantha ‘Ganlü No. 6’. Those indicators included SSC, SS, sugar-acid ratio, and AsA content. Besides, higher contents of Fru, Suc, TS, and higher SV were detected in the fruits of A. eriantha ‘Ganlü No. 1’ at the ripening stage. Additionally, in the fruits of Ganlü No. 1, the activities of SPS and SUSY were both significantly higher than those of Ganlü No. 6; however, the activities of AINV and NINV were significantly lower in the fruits of Ganlü No. 1. Meanwhile, the relative expression levels of the AeSPS and AeNINV were significantly higher in the fruits of Ganlü No. 1 than those of Ganlü No. 6. Moreover, the soluble sugar content was positively correlated to SSC, SV, the contents of TS, Fru, Suc, and the activities of SPS and SUSY; while it was negatively correlated to the Glu content, and the activities of AINV and NINV. Furthermore, the relative expression level of the AeSPS was found to be positively correlated to both the Suc content and SPS activity. 【Conclusion】 The difference in sucrose accumulation level was the dominant factor that results in the great difference in soluble sugar content between the cultivars of A. eriantha ‘Ganlü No. 1’ and A. eriantha ‘Ganlü No. 6’. And the sucrose phosphate synthase was the key metabolic enzyme that could positively regulate sucrose accumulation in the ripe fruit of A. eriantha culitvars at the ripening stage. Besides, we speculated that the AeSPS would be the key gene which could contribute to the biosynthesis of sucrose by increasing SPS activity in the fruits of A. eriantha ‘Ganlü No. 1’ at the ripening stage.
Key words: Actinidia eriantha; Soluble sugar; Sucrose; Sugar metabolism; Sucrose phosphate synthase; Fruit quality
可溶性糖是水果營(yíng)養(yǎng)物質(zhì)的重要組成部分,也是調(diào)控植物生長(zhǎng)發(fā)育的重要信號(hào)分子[1]。在新鮮水果中,蔗糖(Suc)、果糖(Fru)和葡萄糖(Glu)是果實(shí)品質(zhì)的主要決定因子,它們的含量和比例會(huì)對(duì)果實(shí)甜味產(chǎn)生重要影響[2]。在大多數(shù)植物中,蔗糖是源器官(葉)進(jìn)行光合作用的主要產(chǎn)物,蔗糖合成后會(huì)通過(guò)韌皮部長(zhǎng)距離運(yùn)輸轉(zhuǎn)運(yùn)至果實(shí)、根、莖尖等不同的庫(kù)器官中維持其生長(zhǎng)發(fā)育[3-4]。在庫(kù)器官中,包括蔗糖在內(nèi)的可溶性糖首先會(huì)被代謝以滿足庫(kù)器官對(duì)能量和碳源的需求,過(guò)量的可溶性糖可被轉(zhuǎn)化為淀粉貯藏在質(zhì)體中,或者經(jīng)由液泡糖轉(zhuǎn)運(yùn)蛋白介導(dǎo)被轉(zhuǎn)運(yùn)至液泡中貯藏[3,5]。
庫(kù)器官中蔗糖的積累水平主要取決于蔗糖合成和降解的速率。一方面,果實(shí)中的蔗糖可被轉(zhuǎn)化酶(INV)水解成葡萄糖和果糖,也可在蔗糖合酶(SUSY)催化下分解為UDP-葡萄糖(UDPG)和果糖;另一方面,在成熟果實(shí)中,蔗糖磷酸合酶(SPS)可將果糖-6-磷酸(F6P)和UDPG轉(zhuǎn)化為蔗糖6-磷酸,蔗糖-6-磷酸進(jìn)一步在蔗糖-6-磷酸磷酸酶(SPP)的催化下轉(zhuǎn)化為蔗糖而積累[1]。在蔗糖代謝過(guò)程中,SPS、SUSY和INV被認(rèn)為是負(fù)責(zé)蔗糖合成或降解的主要酶[1,6],其中,SPS被認(rèn)為是負(fù)責(zé)蔗糖合成的限速酶[7]。在玉米和水稻中的研究表明,SPS基因?qū)r(nóng)作物生長(zhǎng)速度和產(chǎn)量具有重要的促進(jìn)作用[8-10]。對(duì)一些園藝作物,如香蕉[11]、柑橘[12]、甜瓜[13]等的研究發(fā)現(xiàn),果實(shí)中蔗糖快速積累的階段,SPS基因的表達(dá)也同步顯著上調(diào),暗示SPS基因?qū)麑?shí)中蔗糖合成和積累發(fā)揮重要作用。目前,獼猴桃果實(shí)中SPS酶對(duì)蔗糖代謝功能的研究還處于起步階段,調(diào)控蔗糖合成和積累的關(guān)鍵基因需要進(jìn)一步挖掘。
毛花獼猴桃(Actinidia eriantha)是獼猴桃屬中一個(gè)獨(dú)特的種類,其果實(shí)風(fēng)味濃郁,抗壞血酸(AsA)含量非常高[14-16],且具有較強(qiáng)的抗逆性,是獼猴桃育種和生產(chǎn)中極具應(yīng)用潛力的重要種質(zhì)資源。但是野生毛花獼猴桃果實(shí)普遍存在可溶性糖含量偏低、風(fēng)味偏酸等缺點(diǎn)[16],限制了其在獼猴桃育種和生產(chǎn)中的有效利用。筆者課題組前期從野生毛花獼猴桃種質(zhì)資源中選育出了一個(gè)可溶性糖含量高且綜合性狀優(yōu)異的毛花獼猴桃新品種贛綠1號(hào)[16],可作為果實(shí)糖代謝特征和高糖積累機(jī)制研究的理想材料。筆者在本研究中以高糖型的贛綠1號(hào)為研究材料,以低糖型毛花獼猴桃品種贛綠6號(hào)(前期編號(hào):D6)作為對(duì)照,系統(tǒng)分析了成熟期果實(shí)品質(zhì)指標(biāo)、糖組分含量,發(fā)現(xiàn)蔗糖是導(dǎo)致不同毛花獼猴桃品種果實(shí)可溶性糖含量差異的主要糖類;進(jìn)一步分析了蔗糖代謝相關(guān)酶活性和相關(guān)基因表達(dá)特征,發(fā)現(xiàn)SPS是影響果實(shí)蔗糖積累的關(guān)鍵代謝酶,推測(cè)其編碼基因AeSPS是影響SPS活性和果實(shí)蔗糖含量的關(guān)鍵調(diào)控基因。本研究為毛花獼猴桃果實(shí)甜味品質(zhì)形成和調(diào)控機(jī)制提供了理論依據(jù),亦為進(jìn)一步解析獼猴桃蔗糖磷酸合酶基因的分子功能奠定了重要研究基礎(chǔ)。
1 材料和方法
1.1 材料及處理
選擇可溶性糖含量差異較大的高糖型毛花獼猴桃品種贛綠1號(hào)和低糖型毛花獼猴桃贛綠6號(hào)(對(duì)照)為試驗(yàn)材料,這兩個(gè)品種均系從江西省南城縣麻姑山野生毛花獼猴桃資源中選育而來(lái),其中,贛綠1號(hào)為綜合性狀優(yōu)異的毛花獼猴桃新品種,已獲得農(nóng)業(yè)農(nóng)村部植物新品種權(quán)[16]。供試材料的嫁接苗種植于江西省奉新縣農(nóng)業(yè)農(nóng)村局獼猴桃果園內(nèi)。每個(gè)品種選擇3株長(zhǎng)勢(shì)一致的植株作為3個(gè)生物學(xué)重復(fù)。2021年,在果實(shí)可溶性固形物含量(SSC,w,后同)達(dá)到7.0%的生理成熟期,選擇無(wú)病蟲害和無(wú)機(jī)械損傷的果實(shí)采樣,每株隨機(jī)采集20個(gè)果實(shí)。果實(shí)采集后置于冰盒中帶回實(shí)驗(yàn)室。首先測(cè)定鮮果的單果質(zhì)量、果實(shí)縱徑、果實(shí)橫徑,計(jì)算果形指數(shù)。之后將果實(shí)置于室溫條件,在軟熟期時(shí),測(cè)定其果實(shí)SSC、干物質(zhì)含量(DM);將剩余果實(shí)去除果皮、種子和果心部分,將果肉立即切碎并置于液氮中冷凍,冷凍樣品置于?80 ℃冰箱中保存?zhèn)溆谩?/p>
1.2 外觀和內(nèi)在品質(zhì)指標(biāo)測(cè)定
對(duì)生理成熟期的鮮果樣品,使用電子天平測(cè)定單果質(zhì)量;使用游標(biāo)卡尺分別測(cè)定果實(shí)縱徑、橫徑,以果實(shí)縱徑與橫徑的比值作為果形指數(shù)。對(duì)軟熟期鮮果樣品,使用便攜式糖度計(jì)(PLA-1;ATAGO)測(cè)定果實(shí)SSC;參考Jia等[14]的方法,使用厚度約為2 mm的果實(shí)薄片測(cè)定果實(shí)DM。對(duì)軟熟期果實(shí)冷凍樣品,使用蒽酮比色法測(cè)定可溶性糖含量(SS)[17];使用氫氧化鈉滴定法測(cè)定可滴定酸含量(TA)[17];使用2,6-二氯靛酚法測(cè)定抗壞血酸(AsA)含量[17];以可溶性糖含量與可滴定酸含量的比值作為樣品糖酸比。果實(shí)甜度值計(jì)算參考姚改芳等[18]的方法,略有改動(dòng),計(jì)算公式為:甜度值=果糖含量×1.75+葡萄糖含量×0.70+蔗糖含量×1。
1.3 可溶性糖組分含量測(cè)定
采用高效液相色譜法(HPLC,LC-10A,Shimadzu)測(cè)定果實(shí)凍樣葡萄糖、果糖和蔗糖等主要可溶性糖組分含量。為獲得糖組分提取液,稱取4 g冷凍果實(shí)樣品在液氮中冷凍研磨后轉(zhuǎn)移至10 mL離心管,加入5.0 mL 80%乙醇,置于35 ℃水浴20 min,室溫下10 000 r·min-1離心15 min,將上清液轉(zhuǎn)至15 mL容量瓶中,重復(fù)提取3次,將上清液合并,定容至15 mL。吸取1 mL提取液將其旋轉(zhuǎn)蒸干,加入1 mL超純水溶解干粉,使用過(guò)濾器(孔徑0.45 μm)過(guò)濾溶液,獲得的純化提取液用于HPLC含量測(cè)定。測(cè)定糖組分含量時(shí),使用Waters Spherisorb NH2柱(4.6 mm×250 mm,5.0 μm)進(jìn)行樣品分離,柱溫為35 ℃,流動(dòng)相為8.5:1.5的乙腈:超純水,進(jìn)樣量為20 μL,流速設(shè)置為1.0 mL·min-1,使用RID-10A檢測(cè)器測(cè)量。
1.4 蔗糖代謝相關(guān)酶活性檢測(cè)
使用索萊寶試劑盒分別檢測(cè)冷凍果實(shí)樣品的蔗糖磷酸合酶、蔗糖合酶、酸性轉(zhuǎn)化酶(AINV)和中性轉(zhuǎn)化酶(NINV)的活性,測(cè)定方法參照相應(yīng)試劑盒的說(shuō)明書。
1.5 基因表達(dá)分析
從毛花獼猴桃華特基因組數(shù)據(jù)庫(kù)網(wǎng)站(https://kiwifruitgenome.org/organism/1)分別下載蔗糖磷酸合酶基因AeSPS(DTZ79_13g06220)、蔗糖合酶基因AeSUSY(DTZ79_12g00380)、酸性轉(zhuǎn)化酶基因AeNINV(DTZ79_14g05920)和中性轉(zhuǎn)化酶基因AeAINV(DTZ79_29g07640)的編碼序列,以相關(guān)序列為模板設(shè)計(jì)基因定量引物(表1),使用實(shí)時(shí)熒光定量(qRT-PCR)法分析各基因相對(duì)表達(dá)量。
使用聚合美試劑盒提取冷凍果實(shí)樣品總RNA;使用Hifair Ⅲ1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)試劑盒,去除樣品中基因組DNA后對(duì)其進(jìn)行反轉(zhuǎn)錄合成第一鏈cDNA;使用Hieff UNICON Universal Blue qPCR SYBR Green Master Mix試劑盒對(duì)cDNA樣品開展qRT-PCR分析。以獼猴桃AeActin基因(EF063572.1)作為qRT-PCR反應(yīng)的內(nèi)參基因,以贛綠6號(hào)果實(shí)樣品為對(duì)照,參照Livak等[19]的方法計(jì)算各基因的相對(duì)表達(dá)量,每個(gè)反應(yīng)設(shè)置3次生物學(xué)重復(fù)。
1.6 相關(guān)性分析
使用皮爾遜法(SPSS軟件,20.0版,下同)分析果實(shí)品質(zhì)指標(biāo)[SS、SSC、甜度值(SV)、可溶性總糖含量(TS)、Glu含量、Fru含量、Suc含量]與蔗糖代謝相關(guān)酶(SPS、SUSY、AINV、NINV)活性相互之間的相關(guān)性,其中Glu含量、Fru含量、Suc含量以鮮質(zhì)量計(jì);使用相同方法分析AeSPS、AeSUSY、AeAINV和AeNINV等基因相對(duì)表達(dá)量與蔗糖含量及其相應(yīng)酶(SPS、SUSY、AINV和NINV)活性之間的相關(guān)性。
1.7 數(shù)據(jù)處理
利用SPSS軟件對(duì)不同品種之間相關(guān)數(shù)據(jù)分別在p<0.05和p<0.01水平進(jìn)行獨(dú)立樣本T檢驗(yàn)分析,大多數(shù)結(jié)果以平均值±標(biāo)準(zhǔn)差的形式表示。
2 結(jié)果與分析
2.1 贛綠1號(hào)和贛綠6號(hào)獼猴桃果實(shí)生理成熟期外觀品質(zhì)指標(biāo)
如圖1-A、B所示,在果實(shí)生理成熟期,贛綠1號(hào)獼猴桃的果個(gè)明顯大于贛綠6號(hào);兩個(gè)品種果實(shí)基部的形狀存在明顯差異,贛綠6號(hào)果實(shí)基部接近于圓錐形,而贛綠1號(hào)果實(shí)基部接近于橢球形。對(duì)兩個(gè)品種果實(shí)生理成熟期外觀品質(zhì)指標(biāo)進(jìn)行了測(cè)定,結(jié)果發(fā)現(xiàn),贛綠1號(hào)獼猴桃的果實(shí)縱徑、果實(shí)橫徑、果形指數(shù)和單果質(zhì)量均極顯著高于贛綠6號(hào)獼猴桃。贛綠1號(hào)獼猴桃果實(shí)縱徑為62.04 mm,贛綠6號(hào)果實(shí)縱徑為40.55 mm(圖1-C);贛綠1號(hào)果實(shí)橫徑為30.66 mm,贛綠6號(hào)果實(shí)橫徑為24.24 mm(圖1-D);贛綠1號(hào)的果形指數(shù)為2.05,贛綠6號(hào)的果形指數(shù)為1.68(圖1-E)。此外,相比于贛綠6號(hào)果實(shí)13.52 g的平均單果質(zhì)量,贛綠1號(hào)平均單果質(zhì)量為36.69 g,是前者的2.71倍(圖1-F)。
2.2 贛綠1號(hào)和贛綠6號(hào)獼猴桃果實(shí)軟熟期內(nèi)在品質(zhì)指標(biāo)
在果實(shí)軟熟期,贛綠1號(hào)和贛綠6號(hào)果實(shí)干物質(zhì)含量均為17%左右,兩者之間并無(wú)顯著差異(圖2-A)。然而,贛綠1號(hào)果實(shí)的可溶性固形物含量和可溶性糖含量均極顯著高于贛綠6號(hào),贛綠1號(hào)果實(shí)的SSC為20.73%,贛綠6號(hào)的為16.27%(圖2-B);贛綠1號(hào)果實(shí)的SS為17.56%,贛綠6號(hào)的為11.46%,前者為后者的1.53倍(圖2-C)。相反,贛綠1號(hào)果實(shí)TA含量為0.80%,極顯著低于贛綠6號(hào)的1.09%(圖2-D)。與SS和TA數(shù)據(jù)相一致,贛綠1號(hào)果實(shí)糖酸比為22.04,極顯著高于贛綠6號(hào)果實(shí)(圖2-E),說(shuō)明贛綠1號(hào)果實(shí)風(fēng)味品質(zhì)明顯優(yōu)于贛綠6號(hào)。此外,贛綠1號(hào)果實(shí)抗壞血酸含量也略微高于贛綠6號(hào)果實(shí)(圖2-F)。
2.3 贛綠1號(hào)和贛綠6號(hào)獼猴桃果實(shí)可溶性糖組分含量
對(duì)贛綠1號(hào)和贛綠6號(hào)獼猴桃果實(shí)軟熟期葡萄糖、果糖和蔗糖含量進(jìn)行了測(cè)定,結(jié)果發(fā)現(xiàn),贛綠1號(hào)果實(shí)中葡萄糖含量為26.35 mg·g-1,略低于贛綠6號(hào)果實(shí)的27.67 mg·g-1,但兩者之間無(wú)顯著差異(圖3-A)。贛綠1號(hào)果實(shí)果糖含量為28.99 mg·g-1,極顯著高于贛綠6號(hào)的20.66 mg·g-1(圖3-B)。此外,贛綠1號(hào)果實(shí)蔗糖含量達(dá)28.83 mg·g-1,極顯著高于贛綠6號(hào)果實(shí)的7.84 mg·g-1,其蔗糖含量是贛綠6號(hào)的3.29倍(圖3-C)。贛綠1號(hào)果實(shí)中,3種可溶性總糖含量為81.17 mg·g-1,顯著高于贛綠6號(hào)的56.18 mg·g-1(圖3-D)??梢姡崽鞘莾蓚€(gè)毛花獼猴桃品種糖組分中含量差異最大的可溶性糖。此外,贛綠1號(hào)果實(shí)的甜度值為95.00,極顯著高于贛綠6號(hào)果實(shí)的甜度值(63.38)(圖3-E)。
2.4 蔗糖代謝相關(guān)酶活性
對(duì)贛綠1號(hào)和贛綠6號(hào)果實(shí)蔗糖代謝主要酶活性進(jìn)行了測(cè)定,結(jié)果發(fā)現(xiàn),負(fù)責(zé)蔗糖合成和降解的4個(gè)酶(SPS、SUSY、AINV、NINV)的活性在兩個(gè)品種之間均存在顯著差異。其中,贛綠1號(hào)果實(shí)SPS活性為631.34 U·g-1,極顯著高于贛綠6號(hào)果實(shí)的437.50 U·g-1(圖4-A)。贛綠1號(hào)果實(shí)SUSY活性為807.56 U·g-1,極顯著高于贛綠6號(hào)的575.60 U·g-1(圖4-B)。相反,在贛綠1號(hào)果實(shí)中,負(fù)責(zé)催化蔗糖不可逆降解的兩個(gè)酶的活性均顯著低于贛綠6號(hào)果實(shí)。其中,贛綠1號(hào)果實(shí)AINV的活性為7.82 U·g-1,極顯著低于贛綠6號(hào)的19.06 U·g-1(圖4-C);而贛綠1號(hào)果實(shí)NINV活性為6.65 U·g-1,同樣顯著低于贛綠6號(hào)果實(shí)的9.57 U·g-1(圖4-D)。在兩個(gè)品種中,負(fù)責(zé)蔗糖可逆或不可逆合成的兩個(gè)酶(SPS和SUSY)的活性大幅度高于負(fù)責(zé)蔗糖不可逆降解的兩個(gè)酶(AINV和NINV)的活性,表明軟熟期的果實(shí)中蔗糖的合成速率可能遠(yuǎn)大于其降解速率,蔗糖可能仍處于積累過(guò)程中。
2.5 蔗糖代謝酶基因相對(duì)表達(dá)量
使用qRT-PCR法對(duì)贛綠1號(hào)和贛綠6號(hào)果實(shí)SPS、SUSY、AINV和NINV等蔗糖代謝相關(guān)酶相應(yīng)的編碼基因AeSPS、AeSUSY、AeAINV和AeNINV相對(duì)表達(dá)量進(jìn)行分析,結(jié)果發(fā)現(xiàn),AeSPS在贛綠1號(hào)中的相對(duì)表達(dá)量是贛綠6號(hào)的4.81倍(圖5-A),這與預(yù)期結(jié)果相一致。然而,贛綠1號(hào)果實(shí)中AeSUSY和AeAINV的相對(duì)表達(dá)量均低于贛綠6號(hào)(圖5-B,C),但兩個(gè)品種間并無(wú)顯著差異。與預(yù)期結(jié)果相反,贛綠1號(hào)果實(shí)中AeNINV基因的相對(duì)表達(dá)量顯著高于贛綠6號(hào),這與兩者的NINV活性趨勢(shì)相反(圖4-D,圖5-D)。通過(guò)比較可以發(fā)現(xiàn),獼猴桃AeSPS基因的表達(dá)趨勢(shì)與其編碼的SPS活性趨勢(shì)相一致(圖4-A,圖5-A)。
2.6 果實(shí)品質(zhì)指標(biāo)、糖組分含量、蔗糖代謝酶活性之間的相關(guān)性
對(duì)果實(shí)成熟期不同品質(zhì)指標(biāo)之間的相關(guān)性進(jìn)行分析。結(jié)果(圖6)表明,SS與SSC呈極顯著正相關(guān),它們之間的相關(guān)系數(shù)高達(dá)0.980,且SS和SSC與其他指標(biāo)的相關(guān)系數(shù)也非常接近;SS與SV、TS、Fru含量、Suc含量均呈極顯著正相關(guān),而SS與Glu含量呈負(fù)相關(guān)但并無(wú)顯著差異;SS與SPS活性、SUSY活性均呈顯著正相關(guān),而與AINV活性、NINV活性均呈顯著負(fù)相關(guān)。
果實(shí)成熟期糖組分和總糖含量方面,Glu含量與TS、Fru含量、Suc含量均呈負(fù)相關(guān),但均無(wú)顯著差異;TS、Fru含量、Suc含量三者相互之間均呈極顯著正相關(guān)(圖6)。糖代謝酶活性方面,SPS活性與SUSY活性呈極顯著正相關(guān);AINV活性與NINV活性呈顯著正相關(guān);SPS活性與AINV活性呈極顯著負(fù)相關(guān),與NINV活性呈負(fù)相關(guān)但無(wú)顯著差異;SUSY與AINV活性、NINV活性分別呈極顯著負(fù)相關(guān)和顯著負(fù)相關(guān)(圖6)。
2.7 蔗糖代謝酶基因表達(dá)量與蔗糖含量和蔗糖代謝酶活性的相關(guān)性
對(duì)果實(shí)成熟期4個(gè)蔗糖代謝酶基因(AeSPS、AeSUSY、AeAINV、AeNINV)的相對(duì)表達(dá)量與果實(shí)蔗糖含量、主要蔗糖代謝酶(SPS、SUSY、AINV、NINV)活性之間的相關(guān)性進(jìn)行了分析。結(jié)果表明,蔗糖磷酸合酶基因AeSPS相對(duì)表達(dá)量與果實(shí)Suc含量呈極顯著正相關(guān);AeSPS相對(duì)表達(dá)量與SPS活性、SUSY活性同樣呈極顯著正相關(guān),但是與AINV活性、NINV活性之間分別呈極顯著負(fù)相關(guān)、顯著負(fù)相關(guān)(表2)。蔗糖合酶基因AeSUSY相對(duì)表達(dá)量與Suc含量呈無(wú)顯著差異的負(fù)相關(guān);與SPS活性、SUSY活性、AINV活性之間均呈負(fù)相關(guān),但均無(wú)顯著差異;與NINV活性呈正相關(guān)但無(wú)顯著差異(表2)。
酸性轉(zhuǎn)化酶基因AeAINV相對(duì)表達(dá)量與Suc含量呈負(fù)相關(guān);與其編碼酶AINV的活性呈正相關(guān);與SPS活性、SUSY活性之間均呈負(fù)相關(guān);與NINV活性呈正相關(guān)。然而,上述各指標(biāo)之間的相關(guān)性均無(wú)顯著差異(表2)。與預(yù)期結(jié)果相反,蔗糖中性轉(zhuǎn)化酶基因AeNINV相對(duì)表達(dá)量與Suc含量呈顯著正相關(guān),而其與其編碼酶NINV的活性之間卻呈無(wú)顯著差異的負(fù)相關(guān)。此外,AeNINV相對(duì)表達(dá)量與SPS活性、SUSY活性之間均呈極顯著正相關(guān);與AINV活性呈顯著負(fù)相關(guān)(表2)??梢姡J猴桃果實(shí)中蔗糖代謝調(diào)控是一個(gè)非常復(fù)雜的過(guò)程,蔗糖的代謝過(guò)程可能受到多個(gè)基因和多個(gè)代謝酶共同影響。
3 討 論
3.1 高可溶性糖含量顯著提高了贛綠1號(hào)成熟期毛花獼猴桃果實(shí)品質(zhì)
可溶性糖是調(diào)控水果風(fēng)味尤其是甜味的重要物質(zhì),其含量會(huì)顯著影響消費(fèi)者對(duì)水果的偏好[14,20]。筆者在本研究中發(fā)現(xiàn),贛綠1號(hào)獼猴桃果實(shí)成熟期可溶性糖含量是贛綠6號(hào)的1.53倍,而其果實(shí)中可滴定酸含量?jī)H為贛綠6號(hào)的72.96%。相比于贛綠6號(hào),贛綠1號(hào)可被視為高糖型獼猴桃果實(shí)。在成熟期,兩者果實(shí)可溶性固形物含量趨勢(shì)與可溶性糖含量趨勢(shì)一致,而干物質(zhì)含量并無(wú)顯著差異。因此,贛綠1號(hào)果實(shí)中高可溶性糖含量很大程度上引起可溶性固形物含量的增加,這也解釋了兩個(gè)品種的SS和SSC之間存在極高的相關(guān)系數(shù)(0.980);而且,贛綠1號(hào)果實(shí)具備的高可溶性糖含量也顯著提高了果實(shí)甜度值以及糖酸比,改善了果實(shí)風(fēng)味品質(zhì),使其成為一個(gè)具有獨(dú)特優(yōu)勢(shì)的毛花獼猴桃品種。
3.2 蔗糖含量對(duì)毛花獼猴桃果實(shí)成熟期可溶性糖含量具有重要影響
筆者在本研究中發(fā)現(xiàn),在果實(shí)成熟期,贛綠1號(hào)果實(shí)中3種主要可溶性糖(葡萄糖、果糖、蔗糖)的總含量是贛綠6號(hào)果實(shí)的1.44倍,這種含量差異主要由兩者蔗糖和果糖含量的差異引起,其中蔗糖含量差異尤為明顯。蔗糖是引起毛花獼猴桃贛綠1號(hào)和贛綠6號(hào)果實(shí)成熟期可溶性糖含量存在顯著差異的主要糖類。任金立[21]對(duì)兩個(gè)薄皮甜瓜品種進(jìn)行研究發(fā)現(xiàn),在果實(shí)發(fā)育的不同時(shí)期,兩個(gè)品種果實(shí)糖含量均表現(xiàn)出顯著差異,而蔗糖含量的差異引起兩個(gè)甜瓜品種間甜度產(chǎn)生顯著差異,這一結(jié)果與本研究結(jié)果一致。姚改芳等[18]對(duì)不同栽培種梨果實(shí)的研究發(fā)現(xiàn),成熟期梨果實(shí)糖分主要由果糖、葡萄糖、蔗糖和山梨醇組成,其中果糖含量最高且含量穩(wěn)定,其余糖分含量存在較大差異。劉涵[22]對(duì)3個(gè)不同品種(系)獼猴桃果實(shí)可溶性糖進(jìn)行了研究,結(jié)果發(fā)現(xiàn),在果實(shí)成熟階段,兩個(gè)中華獼猴桃品種皖金和紅陽(yáng)的葡萄糖含量在可溶性糖中占比最高,兩者均為葡萄糖優(yōu)勢(shì)型果實(shí);而對(duì)萼獼猴桃果實(shí)中果糖含量占比最高,為果糖優(yōu)勢(shì)型果實(shí)。本研究中,贛綠1號(hào)獼猴桃果實(shí)成熟期3種可溶性糖含量差異較小,它們占可溶性總糖含量的比例分別為32.47%(葡萄糖)、35.71%(果糖)和31.82%(蔗糖);而贛綠6號(hào)獼猴桃果實(shí)中葡萄糖占可溶性總糖含量的比例最高(49.26%),其次為果糖(36.78%)、蔗糖(13.96%);類似于上述皖金和紅陽(yáng)獼猴桃,贛綠6號(hào)同樣可被視為葡萄糖優(yōu)勢(shì)型果實(shí)。相似地,劉春宏等[23]對(duì)一個(gè)野生毛花獼猴桃的研究發(fā)現(xiàn),在成熟階段,野生毛花獼猴桃果實(shí)中葡萄糖積累最多,其次為果糖,蔗糖積累最少。對(duì)不同品種軟棗獼猴桃進(jìn)行的研究發(fā)現(xiàn),蔗糖通常是果實(shí)中積累量最多的可溶性糖種類[24-25]。此外,蔗糖也是糯米糍荔枝[26]和10個(gè)不同品種杏[27]果實(shí)成熟階段積累量最多的可溶性糖。而成熟階段的蘋果果實(shí)中,果糖占可溶性糖的比例超過(guò)55%[28]??梢?,不同種類果樹中,果實(shí)可溶性糖的積累可能存在較大差異;同一種類不同品種的果樹,果實(shí)中不同可溶性糖的含量也可能存在明顯差異。
3.3 蔗糖磷酸合酶及蔗糖磷酸合酶基因?qū)ΛJ猴桃果實(shí)成熟期蔗糖代謝具有顯著調(diào)控作用
蔗糖是植物光合作用的主要產(chǎn)物,其對(duì)植物生長(zhǎng)發(fā)育、逆境防御和果實(shí)品質(zhì)提升等發(fā)揮重要作用。蔗糖及其代謝產(chǎn)物也是植物生長(zhǎng)發(fā)育的能量來(lái)源;同時(shí)又能作為信號(hào)分子參與細(xì)胞代謝調(diào)控[1]。SPS對(duì)蔗糖積累起重要作用,多數(shù)果樹果實(shí)成熟過(guò)程中蔗糖積累水平與SPS活性呈正相關(guān)。本研究發(fā)現(xiàn),在果實(shí)成熟期,贛綠1號(hào)果實(shí)SPS活性極顯著高于贛綠6號(hào)果實(shí),且兩個(gè)品種果實(shí)蔗糖含量與SPS活性呈極顯著正相關(guān)。由此可推測(cè),蔗糖磷酸合酶是調(diào)控毛花獼猴桃果實(shí)成熟期蔗糖代謝的關(guān)鍵酶。在甜瓜中,反義表達(dá)蔗糖磷酸合酶基因CmSPS1后,轉(zhuǎn)基因植株成熟果實(shí)中蔗糖濃度和SPS活性均降低,果實(shí)變得更小,說(shuō)明SPS在調(diào)控甜瓜果實(shí)發(fā)育和果實(shí)品質(zhì)形成中起重要作用[29]。筆者在本研究中發(fā)現(xiàn),贛綠1號(hào)獼猴桃成熟果實(shí)中SPS編碼基因AeSPS的相對(duì)表達(dá)量達(dá)是贛綠6號(hào)的4.81倍,AeSPS基因表達(dá)量與果實(shí)SPS活性和蔗糖含量均呈極顯著正相關(guān),推測(cè)AeSPS基因是調(diào)控毛花獼猴桃果實(shí)成熟期SPS活性的關(guān)鍵基因。
本研究發(fā)現(xiàn),贛綠1號(hào)成熟果實(shí)中SUSY活性也顯著高于贛綠6號(hào),但其編碼基因AeSUSY在兩個(gè)品種中的相對(duì)表達(dá)量并無(wú)顯著差異,且AeSUSY基因相對(duì)表達(dá)量與果實(shí)蔗糖含量呈負(fù)相關(guān),說(shuō)明SUSY的活性調(diào)節(jié)機(jī)制可能比較復(fù)雜,AeSUSY基因并不是毛花獼猴桃果實(shí)蔗糖積累的關(guān)鍵調(diào)控基因。SUSY能夠可逆催化蔗糖分解與合成,但通常認(rèn)為在庫(kù)器官中SUSY主要起分解蔗糖的作用[30-31]。將一個(gè)番茄SUSY編碼基因反義表達(dá)后,轉(zhuǎn)基因番茄果實(shí)SUSY活性被顯著抑制,蔗糖含量與對(duì)照相比并無(wú)顯著差異,而番茄植株坐果率下降,推測(cè)SUSY主要參與番茄幼果中蔗糖輸入調(diào)控[32]。筆者在本研究中還發(fā)現(xiàn),贛綠1號(hào)果實(shí)中,負(fù)責(zé)調(diào)控蔗糖降解的AINV和NINV的活性均顯著低于贛綠6號(hào)果實(shí),但它們的活性均大幅度低于兩個(gè)品種中SPS和SUSY的活性,表明它們介導(dǎo)的蔗糖分解代謝對(duì)毛花獼猴桃果實(shí)成熟期蔗糖代謝的影響可能相對(duì)有限。此外,AINV和NINV的活性與各自的編碼基因AeAINV和AeNINV的表達(dá)水平并不完全一致,暗示蔗糖轉(zhuǎn)化酶活性不僅與其編碼基因的表達(dá)量有關(guān),亦受蛋白水調(diào)控[33],而相關(guān)作用機(jī)制需要進(jìn)一步研究。
4 結(jié) 論
筆者在本研究中以高糖型(贛綠1號(hào))和低糖型(贛綠6號(hào))兩個(gè)毛花獼猴桃品種為研究對(duì)象,對(duì)成熟期果實(shí)品質(zhì)指標(biāo)進(jìn)行了系統(tǒng)分析,首次發(fā)現(xiàn)蔗糖是引起毛花獼猴桃果實(shí)可溶性糖含量存在較大差異的主要糖類,推測(cè)蔗糖磷酸合酶及其編碼基因AeSPS是負(fù)責(zé)毛花獼猴桃果實(shí)成熟期蔗糖積累的關(guān)鍵代謝酶和關(guān)鍵調(diào)控基因。本研究結(jié)果為深入理解毛花獼猴桃果實(shí)蔗糖調(diào)控機(jī)制和果實(shí)風(fēng)味品質(zhì)的遺傳改良提供了重要的理論依據(jù)。
參考文獻(xiàn) References:
[1] SADDHE A A,MANUKA R,PENNA S. Plant sugars:Homeostasis and transport under abiotic stress in plants[J]. Physiologia Plantarum,2021,171(4):739-755.
[2] NIE X S,HONG C,WANG Q Y,LU M,AN H M. Sugar composition and transcriptome analysis in developing ‘Fengtang’ plum (Prunus salicina Lindl.) reveal candidate genes regulating sugar accumulation[J]. Plant Physiology and Biochemistry,2023,202:107955.
[3] MEHDI F,GALANI S,WICKRAMASINGHE K P,ZHAO P F,LU X,LIN X Q,XU C H,LIU H B,LI X J,LIU X L. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane[J]. Heliyon,2024,10(5):e27277.
[4] YOON J,CHO L H,TUN W,JEON J S,AN G. Sucrose signaling in higher plants[J]. Plant Science,2021,302:110703.
[5] ZHU L C,LI B Y,WU L M,LI H X,WANG Z Y,WEI X Y,MA B Q,ZHANG Y F,MA F W,RUAN Y L,LI M J. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(1):e2022788118.
[6] QIAO K K,ZENG Q T,LV J Y,CHEN L L,HAO J X,WANG D,MA Q F,F(xiàn)AN S L. Exploring the role of GhN/AINV23:Implications for plant growth,development,and drought tolerance[J]. Biology Direct,2024,19(1):22.
[7] ZHANG L H,ZHU L C,XU Y,Lü L,LI X G,LI W H,LIU W D,MA F W,LI M J,HAN D G. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. Journal of Integrative Agriculture,2023,22(7):2080-2093.
[8] BHARALI A,BARUAH K K. Effects of integrated nutrient management on sucrose phosphate synthase enzyme activity and grain quality traits in rice[J]. Physiology and Molecular Biology of Plants,2022,28(2):383-389.
[9] MA M Y,ZHU T,CHENG X Y,LI M Y,YUAN G L,LI C B,ZHANG A H,LU C M,F(xiàn)ANG Y,ZHANG Y. Sucrose phosphate synthase 8 is required for the remobilization of carbon reserves in rice stems during grain filling[J]. Journal of Experimental Botany,2024,75(1):137-151.
[10] ISHIMARU K,ONO K,KASHIWAGI T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy[J]. Planta,2004,218(3):388-395.
[11] DO NASCIMENTO J R,CORDENUNSI B R,LAJOLO F M,ALCOCER M J. Banana sucrose-phosphate synthase gene expression during fruit ripening[J]. Planta,1997,203(3):283-288.
[12] KOMATSU A,MORIGUCHI T,KOYAMA K,OMURA M,AKIHAMA T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships[J]. Journal of Experimental Botany,2002,53(366):61-71.
[13] YU X Y,WANG X F,F(xiàn)AN J D,TIAN H M,ZHENG C C. Cloning and characterization of a sucrose phosphate synthase-encoding gene from muskmelon[J]. Journal of the American Society for Horticultural Science,2007,132(4):557-562.
[14] JIA D F,XU Z Y,CHEN L,HUANG Q,HUANG C H,TAO J J,QU X Y,XU X B. Analysis of organic acid metabolism reveals citric acid and malic acid play major roles in determining acid quality during the development of kiwifruit (Actinidia eriantha)[J]. Journal of the Science of Food and Agriculture,2023,103(12):6055-6069.
[15] JIA D F,GAO H,HE Y Q,LIAO G L,LIN L T,HUANG C H,XU X B. Kiwifruit Monodehydroascorbate reductase 3 gene negatively regulates the accumulation of ascorbic acid in fruit of transgenic tomato plants[J]. International Journal of Molecular Sciences,2023,24(24):17182.
[16] 徐小彪,廖光聯(lián),黃春輝,賈東峰,鐘敏,曲雪艷,劉青,高歡. 甜香型毛花獼猴桃新品種贛綠1號(hào)的選育[J]. 果樹學(xué)報(bào),2024,41(2):358-361.
XU Xiaobiao,LIAO Guanglian,HUANG Chunhui,JIA Dongfeng,ZHONG Min,QU Xueyan,LIU Qing,GAO Huan. A novel sweet aromatic cultivar of Actinidia eriantha ‘Ganlü No. 1’[J]. Journal of Fruit Science,2024,41(2):358-361.
[17] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)輕工業(yè)出版社,2007.
CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press,2007.
[18] 姚改芳,張紹鈴,曹玉芬,劉軍,吳俊,袁江,張虎平,肖長(zhǎng)城. 不同栽培種梨果實(shí)中可溶性糖組分及含量特征[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(20):4229-4237.
YAO Gaifang,ZHANG Shaoling,CAO Yufen,LIU Jun,WU Jun,YUAN Jiang,ZHANG Huping,XIAO Changcheng. Characteristics of components and contents of soluble sugars in pear fruits from different species[J]. Scientia Agricultura Sinica,2010,43(20):4229-4237.
[19] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.
[20] ZHU L C,LI Y Z,WANG C C,WANG Z Q,CAO W J,SU J,PENG Y J,LI B Y,MA B Q,MA F W,RUAN Y L,LI M J. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato[J]. Nature Plants,2023,9(6):951-964.
[21] 任金立. 薄皮甜瓜品系DX108與DX3-5果實(shí)甜度差異分析及其響應(yīng)基因的篩選[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2023.
REN Jinli. Differential mechanism analysis and screening of responsive genes related to sweetness of fruits in two orient melon lines,DX108 and DX3-5[D]. Daqing:Heilongjiang Bayi Agricultural University,2023.
[22] 劉涵. 獼猴桃生理生化變化規(guī)律及調(diào)控獼猴桃果實(shí)大小發(fā)育的基因篩選[D]. 重慶:重慶三峽學(xué)院,2024.
LIU Han. Physiological and biochemical changes and screening of genes regulating fruit size in kiwifruit[D]. Chongqing:Chongqing Three Gorges University,2024.
[23] 劉春宏,邱國(guó)良,劉志斌,楊毅,莊啟國(guó),張茜. 毛花獼猴桃果實(shí)發(fā)育過(guò)程中理化性質(zhì)的變化研究[J]. 四川大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,56(5):951-956.
LIU Chunhong,QIU Guoliang,LIU Zhibin,YANG Yi,ZHUANG Qiguo,ZHANG Qian. Study on the changes of physicochemical properties of A. eriantha during the fruit development[J]. Journal of Sichuan University (Natural Science Edition),2019,56(5):951-956.
[24] HE Y L,QIN H Y,WEN J L,CAO W Y,YAN Y P,SUN Y N,YUAN P Q,SUN B W,F(xiàn)AN S T,LU W P,LI C Y. Characterization of key compounds of organic acids and aroma volatiles in fruits of different Actinidia argute resources based on high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS)[J]. Foods,2023,12(19):3615.
[25] 安嬌. 軟棗獼猴桃果實(shí)發(fā)育過(guò)程中糖酸組分及其相關(guān)酶活性的變化[D]. 延吉:延邊大學(xué),2020.
AN Jiao. Changes of sugar and acid components and related enzyme activities during fruit development of Actinidia arguta[D]. Yanji:Yanbian University,2020.
[26] 王惠聰,黃輝白,黃旭明. 荔枝果實(shí)的糖積累與相關(guān)酶活性[J]. 園藝學(xué)報(bào),2003,30(1):1-5.
WANG Huicong,HUANG Huibai,HUANG Xuming. Sugar accumulation and related enzyme activities in the litchi fruit of ‘Nuomici’ and ‘Feizixiao’[J]. Acta Horticulturae Sinica,2003,30(1):1-5.
[27] 陳美霞,陳學(xué)森,慈志娟,史作安. 杏果實(shí)糖酸組成及其不同發(fā)育階段的變化[J]. 園藝學(xué)報(bào),2006,33(4):805-808.
CHEN Meixia,CHEN Xuesen,CI Zhijuan,SHI Zuoan. Changes of sugar and acid constituents in apricot during fruit development[J]. Acta Horticulturae Sinica,2006,33(4):805-808.
[28] TAO H X,SUN H Q,WANG Y F,SONG X N,GUO Y P. New insights on ‘Gala’ apple fruit development:Sugar and acid accumulation:A transcriptomic approach[J]. Journal of Plant Growth Regulation,2020,39(2):680-702.
[29] TIAN H M,MA L Y,ZHAO C,HAO H,GONG B,YU X Y,WANG X F. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development[J]. Biochemical and Biophysical Research Communications,2010,393(3):365-370.
[30] GESSLER A. Sucrose synthase - an enzyme with a central role in the source-sink coordination and carbon flow in trees[J]. New Phytologist,2021,229(1):8-10.
[31] KHANBO S,SOMYONG S,PHETCHAWANG P,WIROJSIRASAK W,UKOSKIT K,KLOMSA-ARD P,POOTAKHAM W,TANGPHATSORNRUANG S. A SNP variation in the Sucrose synthase (SoSUS) gene associated with sugar-related traits in sugarcane[J]. PeerJ,2023,11:e16667.
[32] D’AOUST M A,YELLE S,NGUYEN-QUOC B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit[J]. The Plant Cell,1999,11(12):2407-2418.
[33] 楊月,程遠(yuǎn),阮美穎,王榮青,葉青靜,姚祝平,周國(guó)治,萬(wàn)紅建. 蔗糖轉(zhuǎn)化酶抑制蛋白研究進(jìn)展[J]. 浙江農(nóng)業(yè)科學(xué),2023,64(5):1236-1241.
YANG Yue,CHENG Yuan,RUAN Meiying,WANG Rongqing,YE Qingjing,YAO Zhuping,ZHOU Guozhi,WAN Hongjian. The research progress of invertase inhibitor[J]. Journal of Zhejiang Agricultural Sciences,2023,64(5):1236-1241.