摘" " 要:【目的】細(xì)菌性潰瘍病是獼猴桃產(chǎn)業(yè)面臨的毀滅性病害,篩選抗性獼猴桃種質(zhì)資源,可為抗病育種與品種改良奠定基礎(chǔ)?!痉椒ā坷秒x體枝條接種的方法,連續(xù)兩年對(duì)山梨63101與中華獼猴桃磨山雄7號(hào)雜交群體進(jìn)行潰瘍病抗性鑒定;選取19份抗病性存在差異的種質(zhì),進(jìn)一步采用石蠟切片法和掃描電鏡技術(shù)觀察葉片組織結(jié)構(gòu)與氣孔特征,并測(cè)定葉片中總酚、可溶性糖、木質(zhì)素含量等,篩選與潰瘍病抗病顯著相關(guān)的指標(biāo)?!窘Y(jié)果】84份種質(zhì)資源中含抗病種質(zhì)67份(占比79.76%)、耐病13份(占比15.48%)、感病3份(占比3.57%)、高感1份(占比1.19%)。相關(guān)性分析表明葉片的海綿組織厚度、氣孔密度和長(zhǎng)度與抗病性呈顯著負(fù)相關(guān),總酚、可溶性糖及木質(zhì)素含量與抗病性呈極顯著正相關(guān)。氣孔寬度、上表皮厚度、下表皮厚度、柵欄組織厚度與枝條抗病性不相關(guān)?!窘Y(jié)論】篩選出67份抗病種質(zhì)資源,證實(shí)葉片海綿組織厚度、氣孔密度、氣孔長(zhǎng)度、木質(zhì)素含量、可溶性糖含量、總酚含量等6個(gè)指標(biāo)可作抗性評(píng)價(jià)指標(biāo),為獼猴桃品種的抗病雜交選育及快速抗性鑒定奠定了基礎(chǔ)。
關(guān)鍵詞:獼猴桃;潰瘍??;種質(zhì)資源;抗性評(píng)價(jià);生理生化指標(biāo)
中圖分類號(hào):S663.4;S436.634 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2235-15
Evaluation of disease resistance and research of resistance mechanism of kiwifruit hybrid population derived from Actinidia rufa and Actinidia chinensis var. chinensis
HE Di1, 2, ZHONG Caihong2#, ZHU Jiahui2, PAN Hui2, LI Wenyi2, YANG Jie2, HUANG Yue1, LIU Pu1*, LI Li2*
(1School of Horticulture, Anhui Agricultural University/Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Hefei 230036, Anhui, China; 2Wuhan Botanic Garden/Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 Kiwifruit is highly appreciated by consumers because of its delicious taste and high nutritional value. Although the global kiwifruit industry has grown rapidly in recent years, it is still facing the great challenge of bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). The disease can cause large scale death of kiwifruit because of its fast transmission and strong pathogenicity, leading to serious yield and economic losses in many countries and limiting the development of the kiwifruit industry. Utilization of resistant kiwifruit cultivars has always been recognized as the most cost-effective and environment-friendly strategy for disease control, but there still is a lack of knowledge about the disease resistance of different cultivars. The analysis of the resistance of different kiwifruit germplasms to bacterial canker and the correlation between different evaluation indexes are of great significance to breeding new kiwifruit varieties resistant to the disease. 【Methods】 The kiwifruit germplasm resources used in this study are the hybrid populations of Actinidia rufa × A. chinensis var. chinensis in the National Kiwifruit Resource Nursery, with consistent ploidy and tree age. Psa M228 was provided by the laboratory of Pathogen Biology and the Research Team of Integrated Control of Fruit Tree Diseases, Northwest A amp; F University, China. Psa was diluted to 1.0×109 CFU·mL-1 before inoculation. The one-year old detached branches, approximately 0.8 cm in diameter, were sterilized with 75% alcohol and then cut into 12-14 cm, the ends of the branches were dipped in candle wax to reduce dehydration. A wound of about 3 mm was made and Psa was added to the wound. Subsequently, all of the branches were put on a draining board on which two layers of sterile absorbent paper had previously been placed. The lower tray was filled with sterile water close to the bottom of the draining board, and another two layers of sterile absorbent paper were placed over the cane pieces. The germplasms with differences in disease resistance were selected, and the leaf tissue structure and stomatal characteristics were observed by paraffin section method and scanning electron microscope technique, and the total phenol, soluble sugar and lignin content of leaves were determined to screen out the indicators significantly related to canker disease resistance. After 42 d of incubation, the outer cortex of the branches was peeled off with a sterile knife for observing and measuring the lesion; the germplasm resistance was classified according to the length of the lesion: Resistant (R): lesion length ≤7.0 mm; Tolerant (T): 7.0 mmlt;lesion length≤9.0 mm; Susceptible (S): 9.0 mmlt;lesion length≤11.0 mm; and High susceptible (HS): lesion length gt;11.0 mm. The data were analyzed by one-way ANOVA (one-way ANOVA) Duncan’s New Compound Extreme Variance method and Pearson correlation analysis using SPSS 21.0 software. 【Results】 Significant difference in the level of resistance of different kiwifruit germplasms were found. There were 67 accessions of disease-resistant germplasms in 84 accessions of germplasms, accounting for 79.76%, 13 accessions of disease-tolerant germplasms, accounting for 15.48%, 3 accessions of susceptible germplasms, accounting for 3.57%, and 1 accession of highly susceptible germplasm, accounting for 1.19%. There were significant differences in the thickness of leaf spongy tissue of different kiwifruit germplasms, and the thickness of the susceptible varieties were generally higher than the that of the resistant varieties, with a maximum stomatal density of 855.2 stomata·mm-2 on the susceptible varieties. The distribution of stomatal apparatus length ranged from 16.78 to 7.68 μm. The total phenol content of the most resistant germplasm was highest at 52.53 mg·g-1. The soluble sugar content varied significantly among the germplasms, from 33.05 mg·g-1 to 51.05 mg·g-1. The higher the lignin content, the higher the resistant to the disease. The thickness of the upper epidermis was greater than that of the lower epidermis in all the germplasms, but it was not related to disease resistance, and the width of the fenestrated tissues and stomata were also not related to disease resistance of the branch. The leaf spongy tissue thickness, stomatal density, and stomatal length were significantly and negatively correlated with resistance, while total phenolic content, soluble sugar content, and lignin content were significantly and positively correlated with resistance. 【Conclusion】 In this study, 67 accessions of resistant germplasm were screened out from the 84 accessions of germplasms of he hybrid populations of A. rufa and A. chinensis var. chinensis. The spongy tissue thickness, stomatal density, stomatal length, lignin content, soluble sugar content, and total phenol content could be used as disease resistance indicators.
Key words: Kiwifruit; Bacterial canker; Germplasm resources; Resistance evaluation; Physiological and biochemical parameters
獼猴桃(Actinidia spp.)隸屬獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.),是一種重要的經(jīng)濟(jì)作物,由于其果實(shí)風(fēng)味獨(dú)特、營(yíng)養(yǎng)豐富、抗壞血酸含量高而備受關(guān)注[1-2]。根據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)最新數(shù)據(jù),2022年我國(guó)獼猴桃收獲面積近20萬(wàn)hm2,占全球的70%;年產(chǎn)量是238萬(wàn)t,占全球的52%,遠(yuǎn)超意大利、新西蘭、伊朗、希臘等國(guó)家[3-4]。獼猴桃細(xì)菌性潰瘍病是丁香假單胞桿菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)引起的病害,該病害于1984年在日本靜岡的美味獼猴桃上首次報(bào)道,目前已成為世界獼猴桃生產(chǎn)的最大制約因素,嚴(yán)重危害產(chǎn)業(yè)健康發(fā)展[4]。生產(chǎn)上對(duì)獼猴桃潰瘍病防治以防御性措施為主,如避雨栽培和一些化學(xué)藥劑(銅制劑、春雷霉素等抗生素)。但這些措施的使用會(huì)增加生產(chǎn)成本,也不利于獼猴桃產(chǎn)業(yè)的綠色健康發(fā)展[5]。因此,挖掘和篩選抗性品種對(duì)潰瘍病的控制至關(guān)重要[6]。中國(guó)擁有豐富的獼猴桃種質(zhì)資源,對(duì)獼猴桃種質(zhì)進(jìn)行抗?jié)儾≡u(píng)價(jià),挖掘可利用的優(yōu)質(zhì)獼猴桃種質(zhì)資源,從中篩選出抗病性較強(qiáng)的種質(zhì),可為品種抗病遺傳改良奠定重要基礎(chǔ)。
植物在長(zhǎng)期適應(yīng)環(huán)境的過(guò)程中,為抵御微生物病原體的侵染,進(jìn)化出組成型和誘導(dǎo)型防御機(jī)制[7]。
植物本身的形態(tài)結(jié)構(gòu)構(gòu)成阻止病原菌滲透的組成型防御機(jī)制,如葉片厚度、柵欄組織厚度、下表皮厚度、海綿組織厚度、氣孔大小和密度等。研究發(fā)現(xiàn)枇杷葉斑病抗性與葉片厚度、海綿組織厚度和氣孔密度顯著相關(guān)[8];核桃葉片的氣孔長(zhǎng)度和面積與疫病病情指數(shù)呈顯著正相關(guān),海綿組織與柵欄組織厚度比與病情指數(shù)呈顯著負(fù)相關(guān),海綿組織越密集、柵欄組織越發(fā)達(dá),品種的抗性就越強(qiáng)[9]。臍橙抗?jié)儾∑贩N的氣孔密度和大小都明顯低于感病品種[10];獼猴桃潰瘍病抗性與葉片的氣孔密度和長(zhǎng)度呈負(fù)相關(guān),與全葉厚度呈正相關(guān)[11-12]。
病原菌突破組成型防御后會(huì)引起植物啟動(dòng)誘導(dǎo)型防御機(jī)制,產(chǎn)生一系列生理生化反應(yīng)增強(qiáng)寄主對(duì)病菌的抗性。植物抵御病原菌侵染的第一步就是誘導(dǎo)合成酚類物質(zhì),如植保素、木質(zhì)素等酚類化合物[13]。水稻總酚含量與細(xì)菌性枯萎病抗性呈顯著正相關(guān)[14];石榴枯萎病抗性品種中總酚、類黃酮和抗氧化物質(zhì)含量相對(duì)更高[15]。糖類物質(zhì)不僅是植物體內(nèi)的能量?jī)?chǔ)存和轉(zhuǎn)移介質(zhì),也是病原菌繁殖的營(yíng)養(yǎng)物質(zhì),其含量變化與抗病性密切相關(guān)。相較于感病品種,杧果角斑病抗性品種的可溶性糖含量更高[16],獼猴桃潰瘍病抗病品種、棉花黃萎病抗病品種的木質(zhì)素含量明顯高于感病品種[17-19]。
中國(guó)是獼猴桃原產(chǎn)地,野生獼猴桃種質(zhì)資源豐富。全世界獼猴桃屬植物共有54個(gè)種,21個(gè)變種,中國(guó)分布有52個(gè)種,其中有44個(gè)種為中國(guó)特有[20]。目前商業(yè)栽培獼猴桃品種主要由中華獼猴桃和美味獼猴桃馴化培育而來(lái)[21],對(duì)潰瘍病抗性較差。野生獼猴桃種質(zhì)資源中含有豐富的抗性基因,但大量的野生獼猴桃資源并未開(kāi)展?jié)儾】剐栽u(píng)價(jià),種質(zhì)抗感性與抗性生理指標(biāo)的關(guān)系研究報(bào)道也較少。宋雅林等[22]發(fā)現(xiàn)29個(gè)不同獼猴桃品種對(duì)潰瘍病抗病性具有顯著差異。溫欣等[23]對(duì)51份軟棗獼猴桃種質(zhì)的潰瘍病抗性進(jìn)行分析,發(fā)現(xiàn)中高抗資源33份,中抗資源18份。李黎等[24]對(duì)國(guó)家獼猴桃資源圃中29個(gè)種82份種質(zhì)資源進(jìn)行了抗性評(píng)價(jià),發(fā)現(xiàn)不同獼猴桃種質(zhì)的抗性差異顯著,篩選到高抗種質(zhì)5份,中抗種質(zhì)9份。筆者在本研究中以國(guó)家獼猴桃資源圃中的84份山梨63101與中華獼猴桃磨山雄7號(hào)雜交群體為材料,基于離體枝條接種進(jìn)行潰瘍病抗性鑒定,并選取19個(gè)抗性不同的株系對(duì)葉片結(jié)構(gòu)、氣孔器特征和生理生化指標(biāo)進(jìn)行分析,明確與抗病相關(guān)的指標(biāo),為獼猴桃抗性資源利用和抗性育種提供理論依據(jù)。
1 材料和方法
1.1 材料
供試菌株P(guān)sa M228為獼猴桃潰瘍病病原菌丁香假單胞菌獼猴桃致病變種Pseudomonas syringae pv. actinidiae(Psa),由西北農(nóng)林科技大學(xué)果樹(shù)病害病原生物學(xué)及綜合防治研究團(tuán)隊(duì)實(shí)驗(yàn)室提供[25],中國(guó)科學(xué)院武漢植物園植物種質(zhì)創(chuàng)新與特色農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室保存。
2019年,武漢植物園獼猴桃課題組選擇母本(山梨獼猴桃63101)與父本(中華獼猴桃磨山雄7號(hào))進(jìn)行雜交,獲得的種子進(jìn)行播種,共得到后代252株,倍性均為2倍體,樹(shù)勢(shì)生長(zhǎng)良好,均保存于國(guó)家獼猴桃資源圃內(nèi),選擇其中84株為試驗(yàn)材料。
1.2 方法
1.2.1 菌株培養(yǎng) 將供試菌株M228接種于LB固體培養(yǎng)基活化培養(yǎng),于25 ℃下培養(yǎng)36 h后,挑取單菌落至5 mL液體LB培養(yǎng)基中。于28 °C、180 r·min-1搖床上培養(yǎng)過(guò)夜,12 000 r·min-1離心5 min,取沉淀,用無(wú)菌水稀釋?xiě)腋∫褐罯D600=1,濃度為109 CFU·mL-1,備試驗(yàn)使用。
1.2.2 采用離體枝條進(jìn)行接種 分別于2022年冬和2023年冬選取直徑約為0.8 cm長(zhǎng)勢(shì)一致且健康的1年生枝條,剪成12~14 cm的小枝條,用石蠟封住枝條兩端,防止水分流失;用75%乙醇對(duì)枝條進(jìn)行表面消毒,用打孔器在枝條中部切割傷口,切口3 mm寬,深至木質(zhì)部,傷口上滴加10 μL的菌液;每種材料接種6根枝條,以無(wú)菌水為對(duì)照。待菌液完全風(fēng)干后,置于底部鋪有濕濾紙的托盤中,傷口朝上,用保鮮膜覆蓋密封保證枝條水分,托盤內(nèi)留有多余水分,內(nèi)部濕度保持80%,放于16 °C、16 h光照/8 h黑暗條件下培養(yǎng);培養(yǎng)42 d后用無(wú)菌刀削去枝條外皮層,觀察測(cè)量病菌侵染后形成的病斑。根據(jù)枝條病斑長(zhǎng)度進(jìn)行種質(zhì)抗性等級(jí)劃分,參照裴艷剛等[26]及Wang等[27]的方法略作調(diào)整:抗病(resistant,R),病斑長(zhǎng)度≤7.0 mm;耐?。╰olerant,T),7.0 mm<病斑長(zhǎng)度≤9.0 mm;感病(susceptible,S),9.0 mm<病斑長(zhǎng)度≤11.0 mm;高感(high susceptible,HS),病斑長(zhǎng)度>11.0 mm。
1.2.3 石蠟切片與觀察 參照張俊環(huán)等[28]的方法略作調(diào)整:使用番紅-固綠對(duì)染的方法制作切片,切取1 cm×1 cm新鮮葉片組織,放入FAA固定液中固定24 h以上,再經(jīng)脫水、透明、浸蠟、包埋、切片處理,最后用番紅-固綠染色,樹(shù)脂膠封片。制作完成的切片由武漢賽維爾生物科技有限公司進(jìn)行全視野數(shù)字切片掃描(whole slide imaging),通過(guò)CaseViewer 2.4軟件測(cè)量葉片上表皮厚度、下表皮厚度、海綿組織厚度及柵欄組織厚度等生理指標(biāo)。
1.2.4 掃描電鏡觀察 參照胡光明等[29]的方法略作調(diào)整:切取1 cm×0.5 cm大小的新鮮葉片組織,用4%的甲醛室溫固定2 h,再轉(zhuǎn)移至4 ℃保存;將固定好的樣品依次轉(zhuǎn)入30%、50%、75%、90%和100% 5個(gè)濃度梯度的乙醇中脫水,每次40 min;脫水后的樣品放進(jìn)二氧化碳臨界點(diǎn)干燥儀內(nèi)進(jìn)行干燥后轉(zhuǎn)入離子濺射鍍膜儀日立樣品臺(tái)進(jìn)行噴金處理;最后利用臺(tái)式掃描電鏡觀察并拍照,用Image-J圖像處理軟件分別對(duì)氣孔密度和氣孔長(zhǎng)度、寬度進(jìn)行測(cè)量,并將密度相關(guān)指標(biāo)換算成每平方毫米的數(shù)目。
1.2.5 生理生化指標(biāo)測(cè)定 參考李小方等[30]《植物生理學(xué)實(shí)驗(yàn)指導(dǎo)》測(cè)量生理指標(biāo)??偡樱═P)含量采用福林酚法測(cè)定,稱取0.1 g新鮮樣本,加入1.5 mL的60%乙醇研磨后,60 ℃水浴振蕩提取2 h,離心后取上清液待測(cè)。可溶性糖(SS)含量采用蒽酮比色法測(cè)定,取待測(cè)樣本0.1 g,加入1 mL水,研磨后沸水浴10 min后,離心取上清液稀釋50倍后待測(cè)。取總酚、可溶性糖待測(cè)液,按照南京建成生物工程研究所提取試劑盒說(shuō)明書(shū)加入試劑提取,利用多功能酶標(biāo)儀測(cè)量。樣本研磨后使用武漢力博瑞公司ELISA科研試劑盒提取木質(zhì)素,并計(jì)算木質(zhì)素含量。每個(gè)生理生化指標(biāo)測(cè)定3次重復(fù),取平均值。
1.3 數(shù)據(jù)統(tǒng)計(jì)
所有指標(biāo)用Excel 2019整理,利用SPSS 21.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(one-way ANOVA)和Duncan’s差異顯著性檢驗(yàn)和Pearson相關(guān)性分析,表中數(shù)據(jù)用平均值±標(biāo)準(zhǔn)誤差表示。
2 結(jié)果與分析
2.1 山梨中華群體種質(zhì)抗性評(píng)價(jià)
以東紅為對(duì)照,連續(xù)2 a(年)對(duì)雜交群體進(jìn)行離體枝條接種試驗(yàn),根據(jù)病斑長(zhǎng)度從低到高劃分為四個(gè)抗性等級(jí):抗?。≧)、耐?。═)、感?。⊿)、高感(HS)。從表1和圖1中可以看出84份種質(zhì)枝條發(fā)病后病斑大小有差異顯著,病斑長(zhǎng)度在3~22 mm之間。84份種質(zhì)中含抗病種質(zhì)67份,占比79.76%;耐病種質(zhì)13份,占比15.48%;感病種質(zhì)3份,占比3.57%;高感種質(zhì)僅有1份,占比1.19%。其中雜交群體母本(山梨獼猴桃63101)的病斑均值為4.24 mm,父本(中華獼猴桃磨山雄7號(hào))的病斑均值為7.32 mm。由表1中結(jié)果可以得出二者雜交所產(chǎn)生的后代群體抗性較強(qiáng),抗病種質(zhì)總體占比高達(dá)79.76%。2022年枝條接種結(jié)果與2023年接種結(jié)果之間相關(guān)系數(shù)為0.77,呈顯著相關(guān),說(shuō)明群體抗性比較穩(wěn)定(圖2)。
2.2 不同抗性獼猴桃種質(zhì)葉片組織結(jié)構(gòu)比較
選取19份抗病性存在差異的種質(zhì)進(jìn)行葉片組織結(jié)構(gòu)比較(表2),可見(jiàn)獼猴桃葉片結(jié)構(gòu)均由表皮、葉肉細(xì)胞和葉脈組成,上下表皮細(xì)胞均由一層體積較大、形狀不規(guī)則、緊密貼合的單層細(xì)胞構(gòu)成。葉片柵欄組織與海綿組織分化明顯,為典型的異面葉。柵欄組織緊密排列呈柵狀,垂直于上表皮細(xì)胞下方,內(nèi)含大量的葉綠體。海綿組織位于柵欄組織與下表皮之間,排列疏松,呈海綿狀。研究結(jié)果表明,19份種質(zhì)的柵欄組織厚度分布在75.3~136.29 μm之間,與病斑值無(wú)顯著相關(guān)性。海綿組織厚度分布在74.47~130.05 μm之間,與枝條病斑長(zhǎng)度值呈顯著正相關(guān),即病斑長(zhǎng)度越長(zhǎng),抗性越低,則海綿組織越厚。種質(zhì)上表皮厚度分布在28.70~11.60 μm之間,比下表皮厚度(14.93~8.36 μm)要大,但上下表皮厚度與獼猴桃抗病能力不相關(guān)。
2.3 不同抗性獼猴桃種質(zhì)氣孔特征比較
19份獼猴桃種質(zhì)氣孔特征如表3所示,氣孔均分布在下表皮,形狀為橢圓形或?qū)拡A形,氣孔器由兩個(gè)腎形保衛(wèi)細(xì)胞組成。密度分布在855.2~331.05個(gè)·mm-2,其中同一視野中E674氣孔密度最大,為855.2個(gè)·mm-2,其病斑長(zhǎng)度均值最長(zhǎng),抗病性最差;E2545氣孔密度最小,為331.05個(gè)·mm-2,其病斑長(zhǎng)度均值最小,抗病性最強(qiáng)。氣孔長(zhǎng)度分布在16.78~7.68 μm之間,其中抗性最強(qiáng)種質(zhì)為E2545,氣孔長(zhǎng)度為7.68 μm;抗性最弱種質(zhì)為E674,氣孔長(zhǎng)度為16.78 μm。由此可見(jiàn),隨著抗性降低,獼猴桃種質(zhì)的葉片氣孔密度與氣孔長(zhǎng)度增大。氣孔寬度最大為2.68 μm,最小為1.02 μm。其中E2545抗性最強(qiáng),氣孔寬度為1.27 mm,E674抗性最弱,氣孔寬度為1.61 mm。
氣孔密度與病斑均值相關(guān)系數(shù)為0.715,氣孔長(zhǎng)度與病斑長(zhǎng)度均值相關(guān)系數(shù)為0.905,均呈現(xiàn)極顯著正相關(guān),進(jìn)一步證實(shí)抗病種質(zhì)的氣孔密度與長(zhǎng)度小于感病種質(zhì),整體隨抗性增強(qiáng)呈現(xiàn)遞減趨勢(shì)。氣孔寬度與病斑長(zhǎng)度均值相關(guān)系數(shù)為-0.231,不存在相關(guān)性(圖3)。
2.4 不同野生獼猴桃種質(zhì)生理生化指標(biāo)比較
對(duì)上述19份獼猴桃種質(zhì)采集葉片進(jìn)行生理指標(biāo)測(cè)定,發(fā)現(xiàn)不同種質(zhì)的生理數(shù)據(jù)間存在差異。根據(jù)表4可知,每g葉片的總酚含量(w,后同)在23.15~52.23 mg·g-1之間,枝條抗性最高的種質(zhì)為E2545,其總酚含量最高,為52.23 mg·g-1;抗性最差的種質(zhì)E674總酚含量為25.57 mg·g-1。同樣,可溶性糖含量分布在51.05~33.05 mg·g-1之間,抗性最高的種質(zhì)為E2545,可溶性糖含量最高為51.05 mg·g-1;抗性最差的種質(zhì)E674可溶性糖含量最低為33.05 mg·g-1。不同種質(zhì)葉片木質(zhì)素含量差異顯著,在96.72~80.41 mg·g-1之間,木質(zhì)素含量(96.72 mg·g-1)最高的為E2545種質(zhì),其抗性也最強(qiáng);含量(80.41 mg·g-1)最低的種質(zhì)為E2532。
抗性種質(zhì)葉片中的總酚、可溶性糖、木質(zhì)素含量顯著高于感病種質(zhì)。隨著抗性降低,19份種質(zhì)的總酚、可溶性糖、木質(zhì)素含量均呈現(xiàn)下降趨勢(shì)。對(duì)不同種質(zhì)間生理指標(biāo)與枝條病斑長(zhǎng)度進(jìn)行相關(guān)性分析,如圖4所示,可見(jiàn)總酚含量、可溶性糖含量、木質(zhì)素含量均與枝條病斑長(zhǎng)度呈極顯著負(fù)相關(guān),相關(guān)系數(shù)分別為-0.732、-0.853、-0.855。
綜合而言,潰瘍病菌接種枝條后病斑越短,種質(zhì)抗病性越高,對(duì)應(yīng)生理指標(biāo)中的總酚、可溶性糖及木質(zhì)素含量越高。相反,潰瘍病菌接種枝條后病斑長(zhǎng)度越長(zhǎng),種質(zhì)感病性越高,對(duì)應(yīng)生理指標(biāo)中的總酚、可溶性糖及木質(zhì)素含量越低。
3 討 論
防治獼猴桃潰瘍病最直接有效的方法就是培育和栽培抗性品種[31]。對(duì)種質(zhì)資源進(jìn)行抗性鑒定,是選育抗性品種的前提。關(guān)于獼猴桃潰瘍病鑒定方法,田間鑒定的結(jié)果最具直觀性,但易受環(huán)境等諸多因素的影響,鑒定結(jié)果不穩(wěn)定且容易導(dǎo)致病原菌擴(kuò)散[5]。室內(nèi)離體枝條接種具有安全、高效、可靠等優(yōu)點(diǎn),在梨[32]、蘋(píng)果[33]、獼猴桃[23,34-35]、柑橘[36]、山楂[37]上應(yīng)用廣泛。溫欣等[23]對(duì)51份軟棗獼猴桃種質(zhì)進(jìn)行潰瘍病菌離體枝條和葉片接種,結(jié)果表明離體葉片接種、離體葉脈接種、半木質(zhì)化離體枝條接種法均可作為抗性鑒定方法,其中離體枝條接種的結(jié)果較為準(zhǔn)確。Hoyte等[38]對(duì)75個(gè)商業(yè)品系及中華/軟棗、中華/黑蕊、中華/對(duì)萼3個(gè)類型的2000余份雜交群體實(shí)生苗進(jìn)行離體木質(zhì)化枝條及嫩枝接種,發(fā)現(xiàn)兩種方法均可有效用于獼猴桃對(duì)潰瘍病抗性評(píng)價(jià)。
我國(guó)野生獼猴桃種質(zhì)資源極其豐富,近年來(lái)國(guó)內(nèi)學(xué)者也開(kāi)展了系列抗性評(píng)價(jià)工作。崔麗紅等[39]、王發(fā)明等[5]、裴艷剛等[26]研究結(jié)果均表明就潰瘍病抗性而言,毛花獼猴桃品種>美味獼猴桃品種>中華獼猴桃品種。劉娟[40]、宋雅林等[22]、Datson等[41]研究證實(shí)不同種或變種獼猴桃資源的抗病性差異顯著,毛花、軟棗、京梨、葛棗等種的抗病性較強(qiáng),中華、闊葉、長(zhǎng)葉相對(duì)較感病。Hoyte等[38]研究證實(shí)軟棗、黑蕊、對(duì)萼與中華雜交后代部分抗性增強(qiáng),種內(nèi)抗性存在明顯分化。李黎等[24]研究證實(shí)山梨、毛花及軟棗等野生種質(zhì)抗性較強(qiáng),但抗性存在種內(nèi)分化。本研究所用材料為山梨與中華雜交后代,研究結(jié)果表明群體材料抗性雖存在分化,但整體后代抗性較強(qiáng)。
植物的表型結(jié)構(gòu)與抗性密切相關(guān)。葉面是植物與病原菌接觸的第一層屏障,葉片結(jié)構(gòu)差異直接影響病原菌侵染的難易程度。李伯凌等[42]認(rèn)為高抗品種木薯葉片的柵欄組織細(xì)胞和海綿組織細(xì)胞排列較感病品種更整齊緊密。田麗波等[43]認(rèn)為海綿組織厚度越厚、葉片結(jié)構(gòu)越疏松的苦瓜品系,越容易受到白粉病的侵染。本研究通過(guò)顯著性相關(guān)分析,發(fā)現(xiàn)不同種質(zhì)的獼猴桃葉片海綿組織厚度存在顯著差異,海綿組織越厚植物抗病性越弱,但上下表皮厚度、柵欄組織厚度與抗病性沒(méi)有相關(guān)性,規(guī)律與上述文獻(xiàn)[42-43]一致。氣孔是植物與外界進(jìn)行氣體交換的場(chǎng)所,也是病原菌的主要入侵點(diǎn),植物表皮的氣孔數(shù)量與形態(tài)結(jié)構(gòu)與抗病性息息相關(guān)。在油茶[44]、枇杷[8]、核桃[45]等植物中,氣孔密度越大,氣孔越長(zhǎng),植物越易感病。本研究結(jié)果證明獼猴桃葉片的氣孔密度、長(zhǎng)度與獼猴桃種質(zhì)抗性呈顯著正相關(guān),與賀占雪等[11]、李淼等[12]、李靖等[46]在獼猴桃中的研究結(jié)果相同。綜上,不同種質(zhì)獼猴桃的海綿組織厚度和氣孔器大小、密度與抗?jié)儾∠嚓P(guān)性顯著,這些微表觀特征也可為獼猴桃潰瘍病抗病選育提供形態(tài)學(xué)參考。
當(dāng)植物被病原菌感染時(shí),感染部位會(huì)通過(guò)苯丙烷途徑大量合成木質(zhì)素,促進(jìn)植物細(xì)胞壁的木質(zhì)化,抵抗病原菌的進(jìn)一步感染[47]??扇苄蕴呛康蜁?huì)抑制病原菌在植物體內(nèi)的繁殖與生長(zhǎng)[48]。李亞等[49]、鄭磊等[16]認(rèn)為核桃對(duì)黃單胞桿菌抗性、杧果對(duì)細(xì)菌性角斑病抗性均與可溶性含糖量呈顯著正相關(guān)。酚類物質(zhì)是木質(zhì)素合成的前體,植物感病組織中酚類化合物的積累會(huì)抑制病原菌的入侵,是誘導(dǎo)植物發(fā)揮抗性的主要物質(zhì)[50]。陳浩等[51]發(fā)現(xiàn)接種霜霉病菌后,抗病荔枝品種的總酚和類黃酮含量顯著高于感病品種;李國(guó)平等[52]認(rèn)為杧果葉片的總酚、類黃酮、阿魏酸、木質(zhì)素相對(duì)含量與對(duì)細(xì)菌性角斑病抗性呈正相關(guān)。Qin等[53]研究發(fā)現(xiàn),高感中華獼猴桃品種紅陽(yáng)和抗性毛花品種中存在22個(gè)參與木質(zhì)素合成的差異表達(dá)基因,表明木質(zhì)素含量與潰瘍病抗性呈正相關(guān)。本研究中獼猴桃葉片中木質(zhì)素、可溶性糖、總酚含量均與抗病性呈顯著正相關(guān),與上述研究結(jié)果規(guī)律一致。
獼猴桃產(chǎn)業(yè)的持續(xù)發(fā)展需要潰瘍病抗病品種的栽培推廣,野生型獼猴桃經(jīng)過(guò)長(zhǎng)期的自然選擇與遺傳變異有著豐富的抗性基因[24],山梨獼猴桃抗旱、耐澇或耐高濕及抗病性的能力較強(qiáng),且果實(shí)風(fēng)味淡甜、果面無(wú)毛[54]。目前大部分商業(yè)栽培的中華獼猴桃品種雖風(fēng)味濃郁、果實(shí)較大,但對(duì)潰瘍病感病或中抗,且遺傳背景比較狹窄。雜交育種可以使后代具有親本雙方的優(yōu)良性狀,實(shí)現(xiàn)優(yōu)異多基因聚合的育種目標(biāo),從而可以培育出滿足消費(fèi)者和生產(chǎn)者需求的優(yōu)良品種。申素云等[55]對(duì)山梨與中華雜交果實(shí)進(jìn)行品質(zhì)與感官評(píng)價(jià),發(fā)現(xiàn)山梨與中華雜交種類的整體喜好度平均值最高,風(fēng)味喜好度和濃烈程度也較高。結(jié)合本試驗(yàn)的結(jié)果,有望篩選到產(chǎn)量高、品質(zhì)佳且潰瘍病抗性強(qiáng)的優(yōu)質(zhì)高抗山梨中華雜交子代。
此外,基于種質(zhì)抗性評(píng)價(jià)結(jié)果,可進(jìn)一步對(duì)抗性基因進(jìn)行QTL群體定位或者挖掘關(guān)鍵抗性基因。Tahir等[56-57]利用簡(jiǎn)化基因組測(cè)序GBS在中華獼猴桃染色體LG27上發(fā)現(xiàn)1個(gè)主要效應(yīng)QTL位點(diǎn),隨后進(jìn)一步在四倍體中華獼猴桃中鑒定到4個(gè)關(guān)鍵QTL位點(diǎn)。Zhao等[6]和Liu等[58]從高感紅陽(yáng)基因組中鑒定出3個(gè)抗?jié)儾£P(guān)鍵基因,并基于抗感獼猴桃種質(zhì)的轉(zhuǎn)錄組差異鑒定獲得了2個(gè)抗?jié)儾£P(guān)鍵因子。本研究對(duì)山梨與中華雜交群體進(jìn)行了抗性評(píng)價(jià),后續(xù)可根據(jù)該評(píng)價(jià)結(jié)果進(jìn)一步挖掘抗性基因,為闡明獼猴桃抗?jié)儾C(jī)制奠定材料基礎(chǔ)。
4 結(jié) 論
研究評(píng)價(jià)了84份山梨與中華獼猴桃雜交群體種質(zhì)的潰瘍病抗性,篩選出67份抗病種質(zhì),并發(fā)現(xiàn)海綿組織厚度、氣孔密度、氣孔長(zhǎng)度、木質(zhì)素含量、可溶性糖含量、總酚含量6個(gè)指標(biāo)與獼猴桃抗性相關(guān),其中海綿組織厚度、氣孔密度、氣孔長(zhǎng)度與獼猴桃抗病性呈顯著負(fù)相關(guān),木質(zhì)素含量、可溶性糖含量、總酚含量與獼猴桃抗病性呈顯著正相關(guān)。研究結(jié)果為獼猴桃抗性育種及抗性機(jī)制研究奠定了基礎(chǔ)。
參考文獻(xiàn) References:
[1] 呂正鑫,王海令,賀艷群,劉青,黃春輝,賈東峰,徐小彪. 基于HS-SPME-GC-MS的5份獼猴桃種質(zhì)風(fēng)味品質(zhì)研究[J]. 果樹(shù)學(xué)報(bào),2022,39(1):47-59.
Lü Zhengxin,WANG Hailing,HE Yanqun,LIU Qing,HUANG Chunhui,JIA Dongfeng,XU Xiaobiao. Flavor quality analysis of five kiwifruit germplasm based on HS-SPMEGC-MS[J]. Journal of Fruit Science,2022,39(1):47-59.
[2] 徐子怡,羅晨宇,占坤,邱榮輝,黃春輝,徐小彪,賈東峰. 獼猴桃OSCA基因家族鑒定及其在非生物脅迫下的表達(dá)分析[J]. 果樹(shù)學(xué)報(bào),2024,41(3):436-447.
XU Ziyi,LUO Chenyu,ZHAN Kun,QIU Ronghui,HUANG Chunhui,XU Xiaobiao,JIA Dongfeng. Genome-wide identification of OSCA gene family members and their expression under different abiotic stresses in kiwifruit[J]. Journal of Fruit Science,2024,41(3):436-447.
[3] 鐘彩虹,黃文俊,李大衛(wèi),張瓊,李黎. 世界獼猴桃產(chǎn)業(yè)發(fā)展及鮮果貿(mào)易動(dòng)態(tài)分析[J]. 中國(guó)果樹(shù),2021(7):101-108.
ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.
[4] ZHONG C H,HUANG W J,WANG Z P,LI L,LI D W,ZHANG Q,ZHAO T T,ZHANG P. The breeding progress and development status of the kiwifruit industry in China[J]. Acta Horticulturae,2022(1332):445-454.
[5] 王發(fā)明,莫權(quán)輝,葉開(kāi)玉,龔弘娟,蔣橋生,劉平平,李潔維. 獼猴桃潰瘍病抗性育種研究進(jìn)展[J]. 廣西植物,2019,39(12):1729-1738.
WANG Faming,MO Quanhui,YE Kaiyu,GONG Hongjuan,JIANG Qiaosheng,LIU Pingping,LI Jiewei. Research progress on kiwifruit resistance breeding to Pseudomonas syringae pv. actinidiae[J]. Guihaia,2019,39(12):1729-1738.
[6] ZHAO C,LIU W,ZHANG Y L,LI Y Z,MA C,TIAN R Z,LI R,LI M J,HUANG L L. Two transcription factors,AcREM14 and AcC3H1,enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae[J]. Horticulture Research,2023,11(1):uhad242.
[7] YANG S M,XU T L,YANG Y,PEI W Y,LUO L,YU C,WANG J,CHENG T R,ZHANG Q X,PAN H T. H2O2 accumulation plays critical role in black spot disease resistance in roses[J]. Horticulture,Environment,and Biotechnology,2023,64(1):1-14.
[8] 陳依麗,陳雨瓊,鄧穎,李春雨,彭澤,楊向暉. 枇杷屬植物葉片結(jié)構(gòu)與葉斑病抗性的相關(guān)性研究[J]. 果樹(shù)學(xué)報(bào),2022,39(11):2133-2140.
CHEN Yili,CHEN Yuqiong,DENG Ying,LI Chunyu,PENG Ze,YANG Xianghui. Analysis of correlation between leaf structure and resistance to leaf spot in Eriobotrya[J]. Journal of Fruit Science,2022,39(11):2133-2140.
[9] YANG H B,HAN S,HE D,JIANG S J,CAO G L,WAN X Q,CHEN L H,XIAO J J,ZHU P. Resistance evaluation of walnut (Juglans spp.) against Xanthomonas arboricola and the correlation between leaf structure and resistance[J]. Forest Pathology,2021,51(1):e12659.
[10] WANG Y,F(xiàn)U X Z,LIU J H,HONG N. Differential structure and physiological response to canker challenge between ‘Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance[J]. Scientia Horticulturae,2011,128(2):115-123.
[11] 賀占雪,李欣,朱太富,蘇效蘭,王連春. 野生獼猴桃枝葉組織結(jié)構(gòu)與抗?jié)儾〉年P(guān)系分析[J]. 中國(guó)植保導(dǎo)刊,2023,43(10):9-14.
HE Zhanxue,LI Xin,ZHU Taifu,SU Xiaolan,WANG Lianchun. Analysis of the relationship between the resistance of wild kiwifruit to canker and the tissue structure of its branches and leaves[J]. China Plant Protection,2023,43(10):9-14.
[12] 李淼,檀根甲,李瑤,承河元,李珂. 獼猴桃品種葉片組織結(jié)構(gòu)與抗?jié)儾〉年P(guān)系[J]. 安徽農(nóng)業(yè)科學(xué),2002,30(5):740-742.
LI Miao,TAN Genjia,LI Yao,CHENG Heyuan,LI Ke. Study on the leaf tissue structure of kiwifruit cultivars in relation to bacterial canker disease resistance[J]. Journal of Anhui Agricultural Sciences,2002,30(5):740-742.
[13] 任艷芳,宋雅萍,肖桂云,張黎明,何俊瑜,林肖,王艷玲. 一氧化氮介導(dǎo)水楊酸誘導(dǎo)的采后杧果果實(shí)炭疽病抗性反應(yīng)[J]. 植物生理學(xué)報(bào),2021,57(3):632-642.
REN Yanfang,SONG Yaping,XIAO Guiyun,ZHANG Liming,HE Junyu,LIN Xiao,WANG Yanling. Nitric oxide mediates salicylic acid-induced defense responses in mango fruit against anthracnose disease[J]. Plant Physiology Journal,2021,57(3):632-642.
[14] SHASMITA,MOHAPATRA D,MOHAPATRA P K,NAIK S K,MUKHERJEE A K. Priming with salicylic acid induces defense against bacterial blight disease by modulating rice plant photosystem II and antioxidant enzymes activity[J]. Physiological and Molecular Plant Pathology,2019,108:101427.
[15] PRIYA B T,MURTHY B N S,GOPALAKRISHNAN C,ARTAL R B,JAGANNATH S. Identification of new resistant sources for bacterial blight in pomegranate[J]. European Journal of Plant Pathology,2016,146(3):609-624.
[16] 鄭磊,詹儒林,柳鳳,李國(guó)平,趙艷龍,常金梅,何衍彪. 杧果感染細(xì)菌性角斑病菌后的生理代謝變化[J]. 廣東農(nóng)業(yè)科學(xué),2016,43(4):67-72.
ZHENG Lei,ZHAN Rulin,LIU Feng,LI Guoping,ZHAO Yanlong,CHANG Jinmei,HE Yanbiao. Physiological metabolic changes of mango infected by bacterial leaf spot pathogen[J]. Guangdong Agricultural Sciences,2016,43(4):67-72.
[17] 李亞巍. 獼猴桃漆酶基因AcLac35的克隆及抗?jié)儾〉墓δ芊治鯷D]. 合肥:安徽農(nóng)業(yè)大學(xué),2019.
LI Yawei. Isolation of laccase Aclac35 in kiwifruit and analysis its role in defense to bacterial canker[D]. Hefei:Anhui Agricultural University,2019.
[18] MENDU L,ULLOA M,PAYTON P,MONCLOVA-SANTANA C,CHAGOYA J,MENDU V. Lignin and cellulose content differences in roots of different cotton cultivars associated with different levels of Fusarium wilt race 4 (FOV4) resistance-response[J]. Journal of Agriculture and Food Research,2022,10:100420.
[19] ZHANG Y,WU L Z,WANG X F,CHEN B,ZHAO J,CUI J,LI Z K,YANG J,WU L Q,WU J H,ZHANG G Y,MA Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants[J]. Molecular Plant Pathology,2019,20(3):309-322.
[20] 孫雷明,方金豹. 我國(guó)獼猴桃種質(zhì)資源的保存與研究利用[J]. 植物遺傳資源學(xué)報(bào),2020,21(6):1483-1493.
SUN Leiming,F(xiàn)ANG Jinbao. Conservation,research and utilization of kiwifruit germplasm resources in China[J]. Journal of Plant Genetic Resources,2020,21(6):1483-1493.
[21] WU H L,MA T,KANG M H,AI F D,ZHANG J L,DONG G Y,LIU J Q. A high-quality Actinidia chinensis (kiwifruit) genome[J]. Horticulture Research,2019,6:117.
[22] 宋雅林,林苗苗,鐘云鵬,陳錦永,齊秀娟,孫雷明,方金豹. 獼猴桃品種(系)潰瘍病抗性鑒定及不同評(píng)價(jià)指標(biāo)的相關(guān)性分析[J]. 果樹(shù)學(xué)報(bào),2020,37(6):900-908.
SONG Yalin,LIN Miaomiao,ZHONG Yunpeng,CHEN Jinyong,QI Xiujuan,SUN Leiming,F(xiàn)ANG Jinbao. Evaluation of resistance of kiwifruit varieties (line) against bacterial canker disease and correlation analysis among evaluation indexes[J]. Journal of Fruit Science,2020,37(6):900-908.
[23] 溫欣,秦紅艷,艾軍,王月,韓先焱,李昌禹. 軟棗獼猴桃種質(zhì)資源潰瘍病抗性鑒定方法的建立與評(píng)價(jià)[J]. 植物保護(hù),2021,47(2):193-199.
WEN Xin,QIN Hongyan,AI Jun,WANG Yue,HAN Xianyan,LI Changyu. Establishment and evaluation of resistance identification method for Pseudomonas syringae pv. actinidiae disease in Actinidia arguta germplasm resources[J]. Plant Protection,2021,47(2):193-199.
[24] 李黎,潘慧,李文藝,汪祖鵬,鐘彩虹. 中國(guó)野生獼猴桃資源的潰瘍病抗性種質(zhì)篩選[J]. 植物科學(xué)學(xué)報(bào),2022,40(6):801-809.
LI Li,PAN Hui,LI Wenyi,WANG Zupeng,ZHONG Caihong. Screening of wild Actinidia germplasms resistant to bacterial canker disease in China[J]. Plant Science Journal,2022,40(6):801-809.
[25] ZHAO Z B,GAO X N,HUANG Q L,HUANG L L,QIN H Q,KANG Z. Identification and characterization of the causal agent of bacterial canker of kiwifruit in the Shaanxi province of China[J]. Journal of Plant Pathology,2013,95(1):155-162.
[26] 裴艷剛,馬利,歲立云,崔永亮,劉曉敏,龔國(guó)淑. 不同獼猴桃品種對(duì)潰瘍病菌的抗性評(píng)價(jià)及其利用[J]. 果樹(shù)學(xué)報(bào),2021,38(7):1153-1162.
PEI Yangang,MA Li,SUI Liyun,CUI Yongliang,LIU Xiaomin,GONG Guoshu. Resistance evaluation and utilization of different kiwifruit cultivars to Pseudomonas syringae pv. actinidiae[J]. Journal of Fruit Science,2021,38(7):1153-1162.
[27] WANG F M,LI J W,YE K Y,GONG H J,LIU P P,JIANG Q S,QI B B,MO Q H. Preliminary report on the improved resistance towards Pseudomonas syringae pv. actinidiae of cultivated kiwifruit (Actinidia chinensis) when grafted onto wild Actinidia guilinensis rootstock in vitro[J]. Journal of Plant Pathology,2021,103(1):51-54.
[28] 張俊環(huán),張美玲,楊麗,姜鳳超,于文劍,王玉柱,孫浩元. 基于葉片顯微結(jié)構(gòu)綜合評(píng)價(jià)杏不同品種(系)的抗旱性[J]. 果樹(shù)學(xué)報(bào),2023,40(11):2381-2390.
ZHANG Junhuan,ZHANG Meiling,YANG Li,JIANG Fengchao,YU Wenjian,WANG Yuzhu,SUN Haoyuan. Comprehensive evaluation of drought resistance of different apricot cultivars(lines) based on leaf microstructure[J]. Journal of Fruit Science,2023,40(11):2381-2390.
[29] 胡光明,肖濤,彭家清,李大衛(wèi),田華,王華玲,肖麗麗,程均歡,黃海雷,吳偉,鐘彩虹. 基于葉片形態(tài)及顯微特征評(píng)價(jià)12個(gè)獼猴桃栽培品種的抗旱性[J]. 果樹(shù)學(xué)報(bào),2024,41(5):911-928.
HU Guangming,XIAO Tao,PENG Jiaqing,LI Dawei,TIAN Hua,WANG Hualing,XIAO Lili,CHENG Junhuan,HUANG Hailei,WU Wei,ZHONG Caihong. Evaluation of drought resistance of 12 kiwifruit cultivars based on leaf morphology and microscopic characteristics[J]. Journal of Fruit Science,2024,41(5):911-928.
[30] 李小方,張志良. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 5版. 北京:高等教育出版社,2016.
LI Xiaofang,ZHANG Zhiliang. Experimental guidance of plant physiology[M]. 5th ed. Beijing:Higher Education Press,2016.
[31] 張敏,唐冬梅,趙志博,仲偉敏. 貴州產(chǎn)區(qū)黃肉獼猴桃品種及優(yōu)系潰瘍病抗性評(píng)價(jià)[J]. 分子植物育種,2021,19(23):7892-7899.
ZHANG Min,TANG Dongmei,ZHAO Zhibo,ZHONG Weimin. Evaluation of canker resistance on yellow-fleshed kiwifruit cultivars and superior lines in Guizhou[J]. Molecular Plant Breeding,2021,19(23):7892-7899.
[32] 陳勵(lì)坤,徐葉挺,王永鵬,何臨梓,曾斌,艾沙江·買買提. 新疆梨種質(zhì)資源的火疫病抗性評(píng)價(jià)[J]. 中國(guó)果樹(shù),2022(8):16-22.
CHEN Likun,XU Yeting,WANG Yongpeng,HE Linzi,ZENG Bin,Aisajan·Mamat. Evaluation on fire blight resistance of Pyrus sinkiangensis Yu germplasm resources[J]. China Fruits,2022(8):16-22.
[33] 曹雅芝,陳衛(wèi)民,張勝軍,陸彪,崔志軍,李克梅,韓麗麗,張學(xué)超,張曉倩,阿依達(dá)娜·阿思克別列. 83份新疆野蘋(píng)果種質(zhì)資源對(duì)梨火疫病菌的抗病性評(píng)價(jià)[J]. 植物檢疫,2024,38(1):33-46.
CAO Yazhi,CHEN Weimin,ZHANG Shengjun,LU Biao,CUI Zhijun,LI Kemei,HAN Lili,ZHANG Xuechao,ZHANG Xiaoqian,Ayidana·Asikebielie. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Erwinia amylovora[J]. Plant Quarantine,2024,38(1):33-46.
[34] QIN H Y,ZHAO Y,CHEN X L,ZHANG B X,WEN X,LI C Y,F(xiàn)AN S T,WANG Y,YANG Y M,XU P L,LIU Y X,AI J. Pathogens identification and resistance evaluation on bacterial canker in Actinidia arguta germplasm[J]. Journal of Plant Pathology,2023,105(3):973-985.
[35] WANG F M,MO Q H,YE K Y,GONG H J,QI B B,LIU P P,JIANG Q S,LI J W. Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Plant Pathology,2020,69(6):979-989.
[36] 占爽,吳望,胡軍華,吳玉珠,喬興華,陳力,程蘭,周彥. 重慶萬(wàn)州疑似柑桔輪斑病的病原鑒定及防治藥劑篩選[J]. 中國(guó)南方果樹(shù),2021,50(1):1-7.
ZHAN Shuang,WU Wang,HU Junhua,WU Yuzhu,QIAO Xinghua,CHEN Li,CHENG Lan,ZHOU Yan. Identification and fungicides screening for Pseudofabraea citricarpa like pathogen caused citrus target spot disease in Wanzhou,Chongqing[J]. South China Fruits,2021,50(1):1-7.
[37] 王杰花,韓麗麗,張勝軍,陳衛(wèi)民,張學(xué)超. 新疆山楂種質(zhì)資源對(duì)梨火疫病的抗性鑒定與評(píng)價(jià)[J]. 北方園藝,2023(24):30-37.
WANG Jiehua,HAN Lili,ZHANG Shengjun,CHEN Weimin,ZHANG Xuechao. Identification and evaluation of resistance of hawthorn germplasm resources to pear fire blight in Xinjiang[J]. Northern Horticulture,2023(24):30-37.
[38] HOYTE S,REGLINSKI T,ELMER P,MAUCHLINE N,STANNARD K,CASONATO S,AH CHEE A,PARRY F,TAYLOR J,WURMS K,YU J,CORNISH D,PARRY J. Developing and using bioassays to screen for Psa resistance in New Zealand kiwifruit[J]. Acta Horticulturae,2015(1095):171-180.
[39] 崔麗紅,高小寧,張迪,黃麗麗,黃蔚,陳繼富. 湘西地區(qū)獼猴桃細(xì)菌性潰瘍病抗性資源篩選及其抗性機(jī)理研究[J]. 植物保護(hù),2019,45(3):158-164.
CUI Lihong,GAO Xiaoning,ZHANG Di,HUANG Lili,HUANG Wei,CHEN Jifu. Screening of resistance resource and resistance mechanism of kiwifruit to Pseudomonas syringae pv. actinidiae in Xiangxi area[J]. Plant Protection,2019,45(3):158-164.
[40] 劉娟. 獼猴桃潰瘍病抗性材料評(píng)價(jià)及其親緣關(guān)系的ISSR聚類分析[D]. 雅安:四川農(nóng)業(yè)大學(xué),2015.
LIU Juan. Evaluation of resistant varieties on kiwifruit bacterial canker and cluster analysis of genetic relations by ISSR markers[D]. Yaan:Sichuan Agricultural University,2015.
[41] DATSON P,NARDOZZA S,MANAKO K,HERRICK J,MARTINEZ-SANCHEZ M,CURTIS C,MONTEFIORI M. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Acta Horticulturae,2015(1095):181-184.
[42] 李伯凌,霍本君,朱壽松,熊茜,李可,羅麗娟,李春霞,陳銀華. 木薯葉片組織結(jié)構(gòu)及生理生化特征與其抗細(xì)菌性枯萎病的關(guān)系[J]. 熱帶生物學(xué)報(bào),2017,8(3):292-300.
LI Boling,HUO Benjun,ZHU Shousong,XIONG Qian,LI Ke,LUO Lijuan,LI Chunxia,CHEN Yinhua. The structure and physiological characteristics of cassava leaves and their relationship with the resistance to bacterial blight[J]. Journal of Tropical Biology,2017,8(3):292-300.
[43] 田麗波,商桑,楊衍,司龍亭,李丹丹. 苦瓜葉片結(jié)構(gòu)與白粉病抗性的關(guān)系[J]. 西北植物學(xué)報(bào),2013,33(10):2010-2015.
TIAN Libo,SHANG Sang,YANG Yan,SI Longting,LI Dandan. Relationship between the leaf structure of bitter melon and resistance to powdery mildew[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2010-2015.
[44] 王文峰,喬新派,胡孝明,陳圓圓,卜付軍,張黨權(quán),楊超臣. 油茶葉片形態(tài)結(jié)構(gòu)及內(nèi)含物與炭疽病抗性的相關(guān)性[J]. 經(jīng)濟(jì)林研究,2024,42(2):103-111.
WANG Wenfeng,QIAO Xinpai,HU Xiaoming,CHEN Yuanyuan,BU Fujun,ZHANG Dangquan,YANG Chaochen. Relationship between leaf structure and inclusions of Camellia oleifera and anthracnose resistance[J]. Non-wood Forest Research,2024,42(2):103-111.
[45] 何丹. 四川核桃品種(系)對(duì)黑斑病的抗性評(píng)價(jià)及與葉結(jié)構(gòu)的相關(guān)性[D]. 雅安:四川農(nóng)業(yè)大學(xué),2018.
HE Dan. The resistance of Sichuan walnut varieties (clones) to walnut blight and the correlation between leaf structure and walnut blight[D]. Yaan:Sichuan Agricultural University,2018.
[46] 李靖,涂美艷,鐘程操,孫淑霞,陳棟,宋海巖,劉飄,廖明安,江國(guó)良. 6個(gè)獼猴桃品種抗?jié)儾〔町惣吧頇C(jī)制研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),2019,32(11):2579-2585.
LI Jing,TU Meiyan,ZHONG Chengcao,SUN Shuxia,CHEN Dong,SONG Haiyan,LIU Piao,LIAO Ming’an,JIANG Guoliang. Study on difference of canker-resistance and physiological mechanism of six kiwifruit varieties[J]. Southwest China Journal of Agricultural Sciences,2019,32(11):2579-2585.
[47] 張燁婧,陳捷胤,李冉,戴小楓. 棉花抗黃萎病生理生化機(jī)制研究進(jìn)展[J]. 植物保護(hù),2024,50(2):19-36.
ZHANG Yejing,CHEN Jieyin,LI Ran,DAI Xiaofeng. Recent advances in physiological and biochemical mechanisms of cotton resistance to Verticillium wilt[J]. Plant Protection,2024,50(2):19-36.
[48] 王芳,肖玉,糜加軒,時(shí)羽杰,萬(wàn)雪琴,楊漢波. 不同抗性泡核桃對(duì)褐斑病病原菌侵染的生理生化響應(yīng)[J]. 西北植物學(xué)報(bào),2022,42(12):2083-2092.
WANG Fang,XIAO Yu,MI Jiaxuan,SHI Yujie,WAN Xueqin,YANG Hanbo. Physiological and biochemical responses of different resistant walnuts to brown spot infection by Ophiognomonia leptostyla[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(12):2083-2092.
[49] 李亞,韓穎,楊斌,趙寧. 黃單胞桿菌侵染后不同品種核桃抗病性相關(guān)生理指標(biāo)的測(cè)定[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,49(4):453-458.
LI Ya,HAN Ying,YANG Bin,ZHAO Ning. Assessing resistance against Xanthomonasar boricola in 4 walnuts cultivars using physiological indexes[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2020,49(4):453-458.
[50] GU G F,YANG S,YIN X H,LONG Y H,MA Y,LI R Y,WANG G L. Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and morphological structure modification in the kiwifruit stems[J]. International Journal of Molecular Sciences,2021,22(22):12185.
[51] 陳浩,孫進(jìn)華,王樹(shù)軍,李煥苓,王果,王家保. 霜疫霉侵染對(duì)不同荔枝品種果皮苯丙烷類代謝的影響[J]. 熱帶作物學(xué)報(bào),2021,42(6):1694-1699.
CHEN Hao,SUN Jinhua,WANG Shujun,LI Huanling,WANG Guo,WANG Jiabao. Effects of phenylpropanoid metabolism in different Litchi varieties during the infection of Phytophthora litchii[J]. Chinese Journal of Tropical Crops,2021,42(6):1694-1699.
[52] 李國(guó)平,鄭磊,柳鳳. 杧果細(xì)菌性角斑病菌對(duì)杧果酚類代謝的影響[J]. 中國(guó)南方果樹(shù),2021,50(1):66-70.
LI Guoping,ZHENG Lei,LIU Feng. Effect of bacterial ceratospora mangifera on phenolic metabolites of mango[J]. South China Fruits,2021,50(1):66-70.
[53] QIN X B,ZHANG M,LI Q H,CHEN D L,SUN L M,QI X J,CAO K,F(xiàn)ANG J B. Transcriptional analysis on resistant and susceptible kiwifruit genotypes activating different plant-immunity processes against Pseudomonas syringae pv. actinidiae[J]. International Journal of Molecular Sciences,2022,23(14):7643.
[54] 韓飛,趙婷婷,劉小莉,張琦,李大衛(wèi),田華,彭玨,鐘彩虹. 山梨獼猴桃與中華獼猴桃種間雜交后代果實(shí)性狀的遺傳傾向分析[J]. 植物科學(xué)學(xué)報(bào),2022,40(4):505-512.
HAN Fei,ZHAO Tingting,LIU Xiaoli,ZHANG Qi,LI Dawei,TIAN Hua,PENG Jue,ZHONG Caihong. Genetic analysis of fruit traits in Actinidia rufa (Siebold and Zuccarini) Planchon ex Miquel × Actinidia chinensis var. chinensis C. F. Liang kiwifruit hybrid population[J]. Plant Science Journal,2022,40(4):505-512.
[55] 申素云,王周倩,張琦,楊潔,韓飛,鐘彩虹,王傳華,黃文俊. 36份獼猴桃種質(zhì)資源的果實(shí)品質(zhì)與感官評(píng)價(jià)分析[J]. 植物科學(xué)學(xué)報(bào),2023,41(4):540-551.
SHEN Suyun,WANG Zhouqian,ZHANG Qi,YANG Jie,HAN Fei,ZHONG Caihong,WANG Chuanhua,HUANG Wenjun. Analysis of fruit quality and sensory evaluation of 36 kiwifruit (Actinidia) germplasm accessions[J]. Plant Science Journal,2023,41(4):540-551.
[56] TAHIR J,HOYTE S,BASSETT H,BRENDOLISE C,CHATTERJEE A,TEMPLETON K,DENG C,CROWHURST R,MONTEFIORI M,MORGAN E,WOTTON A,F(xiàn)UNNELL K,WIEDOW C,KNAEBEL M,HEDDERLEY D,VANNESTE J,MCCALLUM J,HOEATA K,NATH A,CHAGNé D,GEA L,GARDINER S E. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis)[J]. Horticulture Research,2019,6:101.
[57] TAHIR J,BRENDOLISE C,HOYTE S,LUCAS M,THOMSON S,HOEATA K,MCKENZIE C,WOTTON A,F(xiàn)UNNELL K,MORGAN E,HEDDERLEY D,CHAGNé D,BOURKE P M,MCCALLUM J,GARDINER S E,GEA L. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population[J]. Pathogens,2020,9(11):967.
[58] LIU W,ZHAO C,LIU L,HUANG D,MA C,LI R,HUANG L L. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection[J]. International Journal of Biological Macromolecules,2022,222:101-113.