摘" " "要:【目的】全面了解多倍體獼猴桃種質資源的染色體倍性和基因組特征,并分析其在獼猴桃屬植物中的系統(tǒng)進化關系,以期為多倍體獼猴桃全基因組組裝提供參考?!痉椒ā炕诹魇郊毎g分析中華獼猴桃AcD2301(Actinidia chinensis)、軟棗獼猴桃AcD2302(Actinidia arguta)、對萼獼猴桃AcD2303(Actinidia valvata)染色體倍性,利用Illumina二代測序平臺開展基因組Survey分析,并基于SNP構建15種獼猴桃屬植物系統(tǒng)進化樹?!窘Y果】中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對萼獼猴桃AcD2303的染色體倍性分別為四倍體、四倍體、六倍體,與survey分析結果一致。K-mer分析預測中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對萼獼猴桃AcD2303單套基因組大小分別約為626 Mb、668 Mb、585 Mb,雜合度為3.00%、3.30%、8.06%,重復序列比例為43.70%、45.30%、40.70%。系統(tǒng)進化樹顯示軟棗獼猴桃與對萼獼猴桃親緣關系較近,且均從中華獼猴桃獨立進化而來?!窘Y論】分析了中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對萼獼猴桃AcD2303的染色體倍性、基因組大小和系統(tǒng)進化關系,為將來開展多倍體獼猴桃全基因組測序提供了參考,也為深入研究獼猴桃多倍化和系統(tǒng)進化提供了理論支持。
關鍵詞:獼猴桃;基因組survey分析;基因組大?。幌到y(tǒng)進化
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)11-2214-10
Survey analysis and phylogenetic study of three polyploid kiwifruit genomes
ZHOU Jia1, WANG Feifei1, 2, ZHONG Weimin1, QI Yong1, LIU Qing1, SHI Binbin1, ZHANG Sheng1, NIU Xinyu2, ZHENG Qianming1, TANG Dongmei1*
(1Guizhou Fruit Science Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China; 2College of Plant Sciences, Tibet Agricultural and Animal Husbandry College, Nyingchi 860000, Xizang, China)
Abstract: 【Objective】 Plant polyploidization is the evolution of adaption to environmental changes and protection of their own population development. The polyploidization of kiwifruit could double its chromosome number and affect the structure and function of its genome, thereby enriching the genetic diversity of the species. The study aimed to comprehensively understand the chromosomal ploidy and genomic characteristics of polyploid kiwifruit germplasm resources, and analyze their systematic evolutionary relationships in kiwifruit. 【Methods】 This study analyzed the chromosome ploidy of AcD2301 (Actinidia chinensis), AcD2302 (A. arguta) and AcD2303 (A. valvata) with reference to the diploid A. chinensis ‘Hongyang’. The samples were analyzed by flow cytometry on the CyFlow Space flow cytometer after being lysed by CyStar UV Precise P kit and dyed by DAPI fluorescent dye in the dark. The total genomic DNA of kiwifruit was extracted by CTAB method, and then electrophoresis was conducted with 0.8% agarose gel. The DNA quality was detected with UV spectrophotometer. The second-generation sequencing technology Illumina NovaSeq sequencing platform was used to perform double end sequencing on the sample library. The softwares such as FastP were used to view the distribution of base quality, average error rate distribution of reads, and base content distribution of reads sequencing. The raw data with adapters and low-quality reads were filtered to obtain high-quality sequences, and the sequences were compared with nucleic acid databases. The high quality sequencing data was generated using Jellyfish (version 2.3.0) software k-mer19 to generate K-mer frequency tables, and genome size, heterozygosity, and repeatability were estimated using the GenomeScope 2. The next-generation sequencing data of kiwifruit, published in the NGDC and NCBI databases, were compared with the reference genome A. chinensis Hongyang v4.0. The SNP calling was performed using GATK software, and the Maximum likelihood algorithm in fast Tree software was used to construct phylogenetic trees of the 15 kiwifruit species, including A. chinensis, A. arguta and A. valvata. 【Results】 The samples were subjected to flow cytometry analysis, and the peak values of the diploid Hongyang kiwifruit were compared with the reference species. The chromosome ploidy of the AcD2301 and AcD2302 were both tetraploid, while the chromosome ploidy of the AcD2303 was hexaploid. The subsequent genome survey analysis results were consistent with this. The AcD2301, AcD2302 and AcD2303 gene DNA were sequenced by the Illumina NovaSeq sequencing platform. The sequencing yielded raw data of 162.91 Gb, 139.74 Gb, and 142.44 Gb, followed by filtering to obtain high-quality data of 160.64 Gb, 138.16 Gb, and 140.73 Gb. The sequencing quality assessment showed that the Q20 and Q30 values of the AcD2301 were 96.95% and 91.91%, respectively. The Q20 and Q30 values of the AcD2302 were 97.09% and 92.07%, respectively. The Q20 and Q30 values of the AcD2303 were 96.80% and 91.43%, respectively; The GC contents were approximately 37.20%, 36.77%, and 36.15%, respectively. The sequencing data quality values were all greater than 35, and the base error rates were all less than 0.045, indicating that the genome reads had high quality and could be used for subsequent analysis. The reads from the sequencing data of the AcD2301, AcD2302, and AcD2303 were randomly selected and compared with the nucleic acid library (NT library). The results showed that all the randomly selected reads could be compared with the genome of kiwifruit plants, indicating that there was no contamination in the sequencing data. Through K-mer analysis of the kiwifruit genome data after quality control, the genome size of the AcD2301 was estimated to be 626 Mb, heterozygosity to be 3.00%, and repeat sequence ratio to be 43.70%; The estimated size of the AcD2302 genome was 668 Mb, with a heterozygosity of 3.30% and a repeat sequence ratio of 45.30%; The estimated genome size of the AcD2303 was 585 Mb, with a heterozygosity of 8.06% and a repeat sequence ratio of 40.70%. In addition, the support rates for homologous tetraploids of the AcD2301 and AcD2302 were 97% and 96.7%, respectively. To analyze the evolutionary relationship of kiwifruit plants, the SNP sequences were screened from the second-generation sequencing data of the 15 kiwifruit, including the AcD2301, AcD2302, and AcD2303. The Maximum likelihood algorithm was used to construct a phylogenetic tree. The results showed that the 15 kiwifruit plants were divided into three major evolutionary branches, with Actinidia chinensis AcD2301 as an independent branch, Actinidia chinensis ‘Donghong’ as another independent branch, and the remaining 13 kiwifruit species as an evolutionary branch. Actinidia chinensis var. deliciosa in the third evolutionary branch was a small evolutionary branch, while the other 12 kiwifruit species formed a small evolutionary branch. For the latter, Actinidia hubeiensis was a separate group; The remaining 11 kiwifruit species were grouped together, and the 6 kiwifruit species in the net fruit group were clustered into a small evolutionary branch, while the 9 kiwifruit species in the remaining branches were all part of the spotted fruit group. From this, it could be seen that the AcD2302, which belonged to the net fruit group, was closely related to the AcD2303, and both had evolved independently from the AcD2301 in the spotted fruit group. 【Conclusion】 The chromosome ploidy, genome size, and phylogenetic relationships of the AcD2301, AcD2302 and AcD2303 were analyzed, which could provide reference for the whole genome sequencing of the polyploid kiwifruit in the future.
Key words: Kiwifruit; Genome survey analysis; Genome size; System evolution
獼猴桃(Actinidia spp.)是獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.)植物,是20世紀初開始人工馴化栽培的特色經濟果樹,由于果實風味獨特、營養(yǎng)豐富、維生素C含量高等優(yōu)點,被譽為水果之王且深受廣大消費者青睞[1-2]。2024年聯合國糧農組織FAO(https://www.fao.org/home/zh/)統(tǒng)計數據顯示,截至2022年世界獼猴桃采收面積28.61萬hm2,產量429.15萬t,是全球性重要的水果產業(yè)。其中中國獼猴桃產量約占世界獼猴桃總產量的2/3,已成為中國重要的特色水果產業(yè)之一。獼猴桃為功能性雌雄異株植物,起源和分布中心均在中國,是廣大山區(qū)常見的一種水果,生長在路旁、林中、水溝邊、灌叢中,自然狀態(tài)下存在著廣泛的種間和種內雜交現象,造成了獼猴桃屬植物復雜的形態(tài)結構變異。在獼猴桃屬植物中,多倍化現象普遍存在,例如已知的主栽品種中華獼猴桃紅陽、軟棗獼猴桃魁綠、美味獼猴桃貴長分別為二倍體、四倍體、六倍體。此外,獼猴桃種內染色體倍性變異也較為常見,不同倍性材料在生態(tài)適應[3]、抗逆[4]及果實品質[5]方面存在顯著差異。獼猴桃多倍化是適應環(huán)境變化保護自身種群發(fā)展的進化,不僅使獼猴桃的染色體數目加倍,還影響其基因組的結構和功能,從而豐富獼猴桃遺傳多樣性[6]。
隨著基因組學時代的到來和發(fā)展,測序成本不斷降低,高通量測序已被廣泛應用于植物基因組測序中。在獼猴桃屬植物中,中華獼猴桃(Actinidia chinensis)[7]、毛花獼猴桃(Actinidia eriantha)[8]、闊葉獼猴桃(Actinidia latifolia)[9]、山梨獼猴桃(Actinidia rufa)[10]、軟棗獼猴桃(Actinidia arguta)[11]、長葉獼猴桃(Actinidia hemsleyana)[12]、葛棗獼猴桃(Actinidia polygama)[10]等基因組已有報道,為其他獼猴桃屬植物的全基因組測序、重要性狀解析和遺傳改良等工作奠定了基礎[13]。然而中華獼猴桃、美味獼猴桃、軟棗獼猴桃等主要栽培利用的物種普遍存在多倍化的現象,盡管不同倍性種質的基因組信息有共性之處,但多倍體獼猴桃的全基因組信息仍有待解析[14-15]。此外,對萼獼猴桃作為新型獼猴桃砧木,具備較強的抗?jié)场⒖购?、抗病能力,在產區(qū)中也已經得到較大規(guī)模的推廣[16],但缺乏其基因組信息,阻礙了對其重要抗逆性狀的解析。因此,考察中華獼猴桃、軟棗獼猴桃、對萼獼猴桃的倍性及基因組信息對后續(xù)指導多倍體基因組的組裝和輔助其他相關研究具有十分重要的意義。
筆者在本研究中選取野生種質中華獼猴桃AcD2301(Actinidia chinensis)、軟棗獼猴桃AcD2302(Actinidia arguta)、對萼獼猴桃AcD2303(Actinidia valvata)進行多倍體獼猴桃基因組Survey分析及系統(tǒng)進化研究,通過流式細胞術、K-mer分析和系統(tǒng)進化樹構建,進行染色體倍性、物種雜合率、基因組重復序列比例和基因組大小的評估及系統(tǒng)進化關系研究,以期為多倍體獼猴桃全基因組組裝提供參考,也可為深入研究獼猴桃多倍化和系統(tǒng)進化提供理論支持。
1 材料和方法
1.1 試驗材料
試驗材料中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對萼獼猴桃AcD2303均為野生資源(表1),保存于貴州省農業(yè)科學院果樹科學研究所百宜落葉果樹試驗基地。試驗樣品采集,剪取頂端幼嫩葉片,液氮速凍后置于-80 ℃超低溫冰箱保存?zhèn)溆谩?/p>
1.2 試驗方法
1.2.1 染色體倍性檢測 以二倍體紅陽獼猴桃(Actinidia chinensis ‘Hongyang’,2n=58)為內參樣本,采用流式細胞術進行染色體倍性檢測[17]。分別稱取AcD2301、AcD2302和AcD2303新鮮頂端葉片0.2 g,置于培養(yǎng)皿中,用CyStain UV Precise P試劑盒進行細胞核裂解,提取完成后用50 μm Celltrics濾網過濾至樣品管中,加入DAPI熒光染液避光染色2 min后在CyFlow Space流式細胞儀上進行流式細胞術測試,用FloMax軟件分析核懸浮液。
1.2.2 DNA提取及測序 采用CTAB法提取獼猴桃基因組總DNA,并通過0.8%瓊脂糖凝膠電泳檢測DNA提取質量,同時采用紫外分光光度計對DNA進行定量。利用第二代測序技術Illumina NovaSeq測序平臺對樣本文庫進行雙末端測序。采用fastp[18]等軟件查看堿基質量分布、Reads平均錯誤率分布、Reads測序堿基含量分布,原始數據過濾接頭和低質量reads獲得高質量序列,并與核酸庫進行比對,排除外源物種污染。
1.2.3 基因組Survey分析 高質量測序數據基于jellyfish(version 2.3.0)軟件設置K-mer為19生成 K-mer 頻數表和頻率直方圖,統(tǒng)計總K-mer數、唯一K-mer數等,并運用GenomeScope 2工具進行基因組大小、雜合度和重復序列比例的估計[19-20]。
1.2.4 基于SNP的系統(tǒng)進化樹構建 基于自測數據(AcD2301、AcD2302、AcD2303)和公共數據庫(NGDC、NCBI)下載部分已公布的獼猴桃二代測序數據(表2),在貴州省農業(yè)科學院果樹科學研究所生物信息學分析平臺進行系統(tǒng)進化分析,與參考基因組紅陽v4.0[21]進行比對,利用GATK軟件[22]進行SNP calling(僅保留二等位基因),用fastTree軟件中的Maximum likelihood算法構建系統(tǒng)進化樹,并將樹文件進行可視化處理。
2 結果與分析
2.1 獼猴桃染色體倍性分析
以二倍體紅陽獼猴桃(Actinidia chinensis var. ‘Hongyang’,2n=58)為內參樣本,分析3份獼猴桃樣品的倍性,圖1展示為獼猴桃多倍體樣品倍性的流式直方圖。其流式直方圖中橫坐標代表熒光強度,縱坐標代表細胞數量,熒光強度與DNA含量成正比,即峰值的位置反映測試樣品的倍性。根據內參物種二倍體紅陽獼猴桃(圖1-A)的峰值比較,AcD2301(圖1-B)和AcD2302(圖1-C)的染色體倍性均為四倍體,而AcD2303(圖1-D)染色體倍性為六倍體,流式細胞術測得染色體倍性結果與后續(xù)全基因組測序結果一致,圖中雜峰可能是部分細胞核降解造成的。
2.2 獼猴桃基因組測序及質控
通過二代Illumina NovaSeq測序平臺對AcD2301、AcD2302和AcD2303基因DNA進行測序,分別獲得162.91 Gb、139.74 Gb和142.44 Gb原始測序數據,經過過濾后分別獲得160.64 Gb、138.16 Gb和140.73 Gb高質量測序數據;測序的質量評估結果顯示,AcD2301的Q20、Q30值分別為96.95%、91.91%,AcD2302的Q20、Q30值分別為97.09%、92.07%,AcD2303的Q20、Q30值分別為96.80%、91.43%,表明基因組數據可靠,可用于后續(xù)分析。AcD2301、AcD2302和AcD2303基因GC含量分別約為37.20%、36.77%和36.15%(表3)。AcD2301(圖2-A、圖3-A)、AcD2302(圖2-B、圖3-B)和AcD2303(圖2-C、圖3-C)基因組中大部分測序數據質量值均大于35(圖2),其堿基錯誤率均小于0.045(圖3),表明其基因組測序的Reads質量較高,測序結果可信度較高。
2.3 獼猴桃基因組測序數據與NT數據庫比對
進一步從AcD2301、AcD2302和AcD2303基因組測序數據中隨機抽取10 000條Reads數據使用Blast軟件與核酸庫(NT庫)進行比對,挑選最優(yōu)比對結果按物種統(tǒng)計(表4),結果顯示隨機選取Reads均能比對上獼猴桃屬植物基因組,表明此次測序的基因組數據不存在污染,部分樣本與核酸庫比對率較低的原因與取樣少有關。
2.4 獼猴桃基因組survey分析
高質量數據通過K-mer分析,預估物種基因組大小,并對物種的雜合度、重復情況進行分析。通過對質控后的獼猴桃基因組數據進行K-mer分析(圖4、表5),可知AcD2301(圖4-A)預估單套基因組大小為626 Mb,雜合度為3.00%,重復序列比例為43.70%;AcD2302(圖4-B)預估單套基因組大小為668 Mb,雜合度為3.30%,重復序列比例為45.30%;AcD2303(圖4-C)預估單套基因組大小為585 Mb,雜合度為8.06%,重復序列比例為40.70%。基于獼猴桃基因組Survey數據分析得出AcD2301(圖4-A)同源四倍體支持率為97%,AcD2302(圖4-B)同源四倍體支持率為96.7%。
2.5 獼猴桃屬植物進化樹分析
為分析獼猴桃屬植物的進化關系,篩選了已報道的中華獼猴桃東紅、美味獼猴桃和湖北獼猴桃等15種獼猴桃屬植物的二代測序數據中的SNP序列,采用Maximum likelihood算法構建系統(tǒng)進化樹。該系統(tǒng)進化樹顯示(圖5),15種獼猴桃屬植物分為三大進化分枝,且均得到了較好的支持,其中中華獼猴桃AcD2301為一個獨立進化枝,東紅獼猴桃為另一個獨立進化枝,其余13種獼猴桃組成一個進化枝。在第三個進化分枝中的美味獼猴桃為一個小進化枝,其余12種獼猴桃組成一個小進化分枝。對于后者湖北獼猴桃單獨一組;其余11種獼猴桃為一組,其中凈果組的6種獼猴桃(軟棗獼猴桃AcD2302、軟棗獼猴桃、葛棗獼猴桃、大籽獼猴桃、對萼獼猴桃AcD2303、對萼獼猴桃)聚為一個小進化分枝,而其余分枝的9種獼猴桃均為斑果組。
3 討 論
多倍化是推動植物遺傳多樣性和適應環(huán)境變化的重要機制之一,在植物中廣泛存在,其中獼猴桃屬植物中多倍化現象非常普遍。獼猴桃多倍化表現為體細胞均增大、果形更加圓潤飽滿,葉片顏色更深、表皮毛被明顯增多、產量高、抗性強等特征[3-5]。盡管以往的研究已經從很大程度上揭示了獼猴桃屬物種的基因組信息以及主要倍性,但仍有部分物種尚未明確。本研究中就基于流式細胞術分析AcD2301、AcD2302、AcD2303的染色體倍性分別為四倍體、四倍體和六倍體。而基于獼猴桃基因組Survey數據分析所得AcD2301同源四倍體支持率為97%,AcD2302同源四倍體支持率為96.7%,與上述結果基本一致。以上工作為進一步豐富獼猴桃物種基因組奠定了基礎。
基于測序技術解析全基因組信息,為植物起源、進化、生殖、發(fā)育、抗性和性別調控等研究提供了基礎。不同種類的植物基因組大小相差很大,根據目前已經公布的基因組數據中梅溪蕨(Tmesipteris oblanceolata)的基因組大小約160.45 Gb,而旋刺草(Genlisea aurea)的基因組大小僅為約0.063 6 Gb,相差約2500倍[23]。目前主要采用流式細胞術和高通量測序技術等方法評估植物的基因組大小,例如在四數九里香[24]、白及[25]、荊芥[26]等多種植物基因組大小特征評估中都有應用。流式細胞術是通過測量細胞中DNA與熒光染料結合后發(fā)出的熒光信號強度,來間接預估基因組大小的相對值,而基因組Survey分析是利用高通量測序技術對植物基因組進行測序和直接獲取基因組大小等信息的測序技術,這兩種技術結合起來評估基因組大小和特征相對可靠[27]。已報道獼猴桃屬植物的基因組大小通常在600 Mb左右,中華獼猴桃為610.1 Mb[7],毛花獼猴桃為619.3 Mb和611.7 Mb[8]等,本研究結果所揭示的單套基因組大小較為相近,AcD2301為626 Mb、AcD2302為668 Mb、AcD2303為585 Mb,均都在600 Mb左右,但基因組具體大小又取決于不同的種質資源。
基因組學研究還可以揭示物種的遺傳多樣性、基因組演化歷程以及基因功能等,通過構建系統(tǒng)進化樹可以直觀地展現親緣關系和進化歷程[28]。已有研究通過UPGMA聚類分析得到星毛組的中華獼猴桃與凈果組的軟棗獼猴桃親緣關系較遠[29],并且與凈果組的對萼獼猴桃親緣關系也較遠[30],由此推測同為凈果組的軟棗獼猴桃和對萼獼猴桃親緣關系較近,并均與星毛組的中華獼猴桃親緣關系較遠。本研究中構建的獼猴桃屬植物系統(tǒng)進化樹,證明了軟棗獼猴桃AcD2302與對萼獼猴桃AcD2303親緣關系較近,且均與中華獼猴桃AcD2301獨立進化而來的結果一致,為闡明物種進化關系及基因組的內在結構奠定了基礎。
4 結 論
中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對萼獼猴桃AcD2303的染色體倍性分別為四倍體、四倍體和六倍體,與全基因組測序預估結果一致;基于全基因組Survey分析預測基因組大小分別為626 Mb、668 Mb、585 Mb,雜合度為3.00%、3.30%、8.06%,重復序列比例為43.70%、45.30%、40.7%。SNP系統(tǒng)進化樹顯示軟棗獼猴桃AcD2302與對萼獼猴桃AcD2303親緣關系較近,且均與中華獼猴桃AcD2301獨立進化而來。
參考文獻References:
[1] 黃宏文. 獼猴桃屬 分類 資源 馴化 栽培[M]. 北京:科學出版社,2013.
HUANG Hongwen. Actinidia taxonomy germplasm domestication cultivation[M]. Beijing:Science Press,2013.
[2] 鐘彩虹. 獼猴桃栽培理論與生產技術[M]. 北京:科學出版社,2020.
ZHONG Caihong. Cultivation theory and production technology of kiwifruit[M]. Beijing:Science Press,2020.
[3] 劉彩艷,李大衛(wèi),楊石建,潘志立,金若涵,陳芳,郭雯. 不同倍性獼猴桃的適生區(qū)預測及生態(tài)位分化[J]. 應用生態(tài)學報,2021,32(9):3167-3176.
LIU Caiyan,LI Dawei,YANG Shijian,PAN Zhili,JIN Ruohan,CHEN Fang,GUO Wen. Potential suitable area and niche shift of different ploidy kiwifruit[J]. Chinese Journal of Applied Ecology,2021,32(9):3167-3176.
[4] 金若涵. 不同倍性獼猴桃木質部解剖結構和水分傳導功能關系的研究[D]. 昆明:云南大學,2022.
JIN Ruohan. Relationship between xylem anatomical structure and hydraulic function of kiwifruit with different ploidy levels[D]. Kunming:Yunnan University,2022.
[5] 李志,方金豹,齊秀娟,林苗苗,陳錦永,顧紅. 不同倍性雄株對軟棗獼猴桃坐果及果實性狀的影響[J]. 果樹學報,2016,33(6):658-663.
LI Zhi,FANG Jinbao,QI Xiujuan,LIN Miaomiao,CHEN Jinyong,GU Hong. Effects of male plants with different ploidy on the fruit set and fruit characteristics in Actinidia arguta kiwifruit[J]. Journal of Fruit Science,2016,33(6):658-663.
[6] 李文萃. 中華獼猴桃和多倍體美味獼猴桃的抗冷基因表達及進化研究[D]. 北京:中國環(huán)境科學研究院,2024.
LI Wencui. Study on the expression and evolution of cold resistance genes in Actinidia chinensis and polyploid Actinidia deliciosa[D]. Beijing:Chinese Research Academy of Environmental Sciences,2024.
[7] HUANG S X,DING J,DENG D J,TANG W,SUN H H,LIU D Y,ZHANG L,NIU X L,ZHANG X,MENG M,YU J D,LIU J,HAN Y,SHI W,ZHANG D F,CAO S Q,WEI Z J,CUI Y L,XIA Y H,ZENG H P,BAO K,LIN L,MIN Y,ZHANG H,MIAO M,TANG X F,ZHU Y Y,SUI Y,LI G W,SUN H J,YUE J Y,SUN J Q,LIU F F,ZHOU L Q,LEI L,ZHENG X Q,LIU M,HUANG L,SONG J,XU C H,LI J W,YE K Y,ZHONG S L,LU B R,HE G H,XIAO F M,WANG H L,ZHENG H K,FEI Z J,LIU Y S. Draft genome of the kiwifruit Actinidia chinensis[J]. Nature Communications,2013,4:2640.
[8] WANG Y Z,DONG M H,WU Y,ZHANG F,REN W M,LIN Y Z,CHEN Q Y,ZHANG S J,YUE J Y,LIU Y S. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha[J]. Molecular Horticulture,2023,3(1):4.
[9] HAN X,ZHANG Y L,ZHANG Q,MA N,LIU X Y,TAO W J,LOU Z Y,ZHONG C H,DENG X W,LI D W,HE H. Two haplotype-resolved,gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit[J]. Molecular Plant,2023,16(2):452-470.
[10] AKAGI T,VARKONYI-GASIC E,SHIRASAWA K,CATANACH A,HENRY I M,MERTTEN D,DATSON P,MASUDA K,FUJITA N,KUWADA E,USHIJIMA K,BEPPU K,ALLAN A C,CHARLESWORTH D,KATAOKA I. Recurrent neo-sex chromosome evolution in kiwifruit[J]. Nature Plants,2023,9(3):393-402.
[11] LU X M,YU X F,LI G Q,QU M H,WANG H,LIU C,MAN Y P,JIANG X H,LI M Z,WANG J,CHEN Q Q,LEI R,ZHAO C C,ZHOU Y Q,JIANG Z W,LI Z Z,ZHENG S,DONG C,WANG B L,SUN Y X,ZHANG H Q,LI J W,MO Q H,ZHANG Y,LOU X,PENG H X,YI Y T,WANG H X,ZHANG X J,WANG Y B,WANG D,LI L,ZHANG Q,WANG W X,LIU Y B,GAO L,WU J H,WANG Y C. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits[J]. Plant Communications,2024,5(6):100856.
[12] QI X Q,XIE X D,YANG M J,ATAK A,ZHONG C H,LI D W. Characterization of the complete chloroplast genome of Actinidia hemsleyana[J]. Mitochondrial DNA. Part B,Resources,2021,6(11):3259-3260.
[13] 孫雷明,方金豹. 我國獼猴桃種質資源的保存與研究利用[J]. 植物遺傳資源學報,2020,21(6):1483-1493.
SUN Leiming,FANG Jinbao. Conservation,research and utilization of kiwifruit germplasm resources in China[J]. Journal of Plant Genetic Resources,2020,21(6):1483-1493.
[14] 滕曉梅,廖川江,劉暢,徐雨生. 葡萄葉獼猴桃(獼猴桃科)葉綠體全基因組測序[J]. 種子科技,2021,39(21):23-25.
TENG Xiaomei,LIAO Chuanjiang,LIU Chang,XU Yusheng. Whole genome sequencing of chloroplasts from Actinidia chinensis (Actinidiaceae)[J]. Seed Science amp; Technology,2021,39(21):23-25.
[15] 王連潤,陶磅,萬紅,陳霞,李坤明,沙毓滄,丁仁展. 云南4種野生獼猴桃基因組大小測定與比較[J]. 中國南方果樹,2022,51(4):100-103.
WANG Lianrun,TAO Bang,WAN Hong,CHEN Xia,LI Kunming,SHA Yucang,DING Renzhan. Detection and comparison of genome size of four wild kiwifruit varieties from Yunnan[J]. South China Fruits,2022,51(4):100-103.
[16] 魏遠新,郭興利,張振營,孫繼中,李金良,李書林. 對萼獼猴桃新型砧木及其綠枝嫁接關鍵技術[J]. 北方果樹,2023(6):35-36.
WEI Yuanxin,GUO Xingli,ZHANG Zhenying,SUN Jizhong,LI Jinliang,LI Shulin. New rootstock of Actinidia chinensis and key technology of green branch grafting[J]. Northern Fruits,2023(6):35-36.
[17] 呂雅雅,白事麟,韓宜潔,邱娟,師小軍. 基于流式細胞術對棱葉韭染色體的倍性鑒定和基因組大小分析[J/OL]. 分子植物育種,2024(2024-03-19)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20240318.1332.006.
Lü Yaya,BAI Shilin,HAN Yijie,QIU Juan,SHI Xiaojun. Estimation ploidy and genome size of Allium caeruleum Pall. by flow cytometry[J/OL]. Molecular Plant Breeding,2024(2024-03-19)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20240-
318.1332.006.
[18] CHEN S F,ZHOU Y Q,CHEN Y R,GU J. Fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[19] MAR?AIS G,KINGSFORD C. A fast,lock-free approach for efficient parallel counting of occurrences of k-mers[J]. Bioinformatics,2011,27(6):764-770.
[20] VURTURE G W,SEDLAZECK F J,NATTESTAD M,UNDERWOOD C J,FANG H,GURTOWSKI J,SCHATZ M C. GenomeScope:Fast reference-free genome profiling from short reads[J]. Bioinformatics,2017,33(14):2202-2204.
[21] YUE J Y,CHEN Q Y,WANG Y Z,ZHANG L,YE C,WANG X,CAO S,LIN Y Z,HUANG W,XIAN H,QIN H Y,WANG Y L,ZHANG S J,WU Y,WANG S H,YUE Y,LIU Y S. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis[J]. Horticulture Research,2023,10(2):uhac264.
[22] ZHOU Y,KATHIRESAN N,YU Z C,RIVERA L F,YANG Y J,THIMMA M,MANICKAM K,CHEBOTAROV D,MAULEON R,CHOUGULE K,WEI S,GAO T T,GREEN C D,ZUCCOLO A,XIE W B,WARE D,ZHANG J W,MCNALLY K L,WING R A. A high-performance computational workflow to accelerate GATK SNP detection across a 25-genome dataset[J]. BMC Biology,2024,22(1):13.
[23] FERNáNDEZ P,AMICE R,BRUY D,CHRISTENHUSZ M J M,LEITCH I J,LEITCH A L,POKORNY L,HIDALGO O,PELLICER J. A 160 Gbp fork fern genome shatters size record for eukaryotes[J]. iScience,2024,27(6):109889.
[24] 邢琴琴,周韜,卜家豪,沈植國,韓文軍. 四數九里香全基因組Survey分析[J/OL]. 分子植物育種,2023(2023-12-08)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20231207.1357.012.
XING Qinqin,ZHOU Tao,BU Jiahao,SHEN Zhiguo,HAN Wenjun. Genome Survey Analysis in Murraya tetramera Huang[J/OL]. Molecular Plant Breeding,2023(2023-12-08)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20231207.1357.012.
[25] 楊淵,黃明進,王大昌,阮寶麗,楊秋悅,楊洋,羅影子,覃玉強. 基于流式細胞術與基因組Survey分析白及基因組大小及特征[J]. 中成藥,2023,45(11):3677-3682.
YANG Yuan,HUANG Mingjin,WANG Dachang,RUAN Baoli,YANG Qiuyue,YANG Yang,LUO Yingzi,QIN Yuqiang. Analysis of genome size and characteristics of Bletilla striata based on flow cytometry and genomic survey[J]. Chinese Traditional Patent Medicine,2023,45(11):3677-3682.
[26] 姜濤,劉靈娣,田偉,劉銘,溫春秀. 基于流式細胞術和K-mer分析的荊芥基因組大小評估[J]. 特產研究,2023,45(6):1-5.
JIANG Tao,LIU Lingdi,TIAN Wei,LIU Ming,WEN Chunxiu. Genome-determination of Nepeta cataria based on flow cytometry and K-mer analysis[J]. Special Wild Economic Animal and Plant Research,2023,45(6):1-5.
[27] 饒靜云,劉義飛,黃宏文. 中華獼猴桃不同倍性間雜交后代倍性分離和遺傳變異分析[J]. 園藝學報,2012,39(8):1447-1456.
RAO Jingyun,LIU Yifei,HUANG Hongwen. Analysis of ploidy segregation and genetic variation of progenies of different interploidy crosses in Actinidia chinensis[J]. Acta Horticulturae Sinica,2012,39(8):1447-1456.
[28] LIU Y B,ZHOU Y,CHENG F,ZHOU R C,YANG Y Q,WANG Y C,ZHANG X T,SOLTIS D E,XIAO N W,QUAN Z J,LI J S. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution[J]. The Plant Journal,2024,118(1):73-89.
[29] 劉娟,廖明安,謝玥,周良強,李明章. 獼猴桃屬16個雄性材料遺傳多樣性的ISSR分析[J]. 植物遺傳資源學報,2015,16(3):618-623.
LIU Juan,LIAO Ming’an,XIE Yue,ZHOU Liangqiang,LI Mingzhang. Genetic diversity of 16 male Actinidia cultivars based on ISSR[J]. Journal of Plant Genetic Resources,2015,16(3):618-623.
[30] 張慧,張世鑫,吳紹華,田維敏,彭小列,劉世彪. 獼猴桃屬33份種質資源的AFLP遺傳多樣性分析[J]. 生物學雜志,2018,35(2):29-33.
ZHANG Hui,ZHANG Shixin,WU Shaohua,TIAN Weimin,PENG Xiaolie,LIU Shibiao. Genetic diversity of 33 kiwifruit germplasms based on AFLP markers[J]. Journal of Biology,2018,35(2):29-33.