摘" " 要:【目的】分析金怡獼猴桃實生后代雄株花性狀變異程度,為有效利用金怡獼猴桃雄株資源提供理論指導(dǎo)?!痉椒ā拷疴J猴桃是湖北省農(nóng)業(yè)科學(xué)院果樹茶葉研究所選育的中華獼猴桃(Actinidia chinensis Planch. var. chinensis)品種。以金怡獼猴桃實生后代120份雄株資源為試驗材料,統(tǒng)計雄花花藥數(shù)、單花藥花粉量、花粉萌發(fā)率,并分析其變異特點。【結(jié)果】雄株花藥數(shù)、單花藥花粉量和花粉萌發(fā)率分布區(qū)間分別為31.50~99.40個、6.08萬~19.17萬粒·花藥-1、1.00%~86.24%,變異系數(shù)分別為18.21%、22.63%、64.17%;3個性狀均符合正態(tài)分布規(guī)律;經(jīng)主成分分析,第一主成分中萌發(fā)率特征向量值最大,貢獻(xiàn)率為43.16%。雄花性狀綜合表現(xiàn)較好的為JY-402、JY-275、JY-212、JY-403、JY-260?!窘Y(jié)論】金怡獼猴桃實生后代雄株花性狀變異豐富,為獼猴桃雄株選育提供了豐富的資源。JY-402、JY-275、JY-212、JY-403、JY-260可以作為中華獼猴桃優(yōu)良授粉雄株的候選資源,其中JY-402綜合性狀最佳,可重點關(guān)注。
關(guān)鍵詞:金怡獼猴桃;實生后代;雄花性狀;花藥數(shù);花粉量;花粉萌發(fā)率;變異分析
中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)11-2173-09
Variation analysis of flower traits in male lines of Jinyi kiwifruit seedling progeny
LUO Minmin1, 2, WANG Zhi1, WANG Xiaoyu1, 2, GAO Lei1, LUO Xuan1, HUANG Qiong1, PENG Jue1, CHEN Qinghong1, ZHANG Lei1*, YE Lixia1*
(1Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees/Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan 430064, Hubei, China; 2College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, Hubei, China)
Abstract: 【Objective】 Kiwifruit is a dioecious and self-sterile plant, requiring an appropriate number of male plants or artificial pollination for effective fertilization. Insufficient pollination will result in reduced seed numbers, low endogenous hormone levels, and ultimately, smaller or deformed fruit. Identifying superior male plants with high pollen yield and viability can enhance pollination efficiency, lower production costs, and improve fruit quality. However, there has been limited reports on the varieties of male kiwifruit plants. This study aimed to screen male plants with desirable traits from 120 progeny of Jinyi kiwifruit seedlings in order to provide valuable resources for breeding new male variety. 【Methods】 The experiment was conducted in April 2022 at the kiwifruit breeding orchard of Shen Shan Xing Nong Science and Technology Co., Ltd., Chibi City, Hubei Province. The experimental materials consisted of 120 four-year-old male seedlings of Jinyi. Traits such as the number of anthers per male flower, pollen quantity per anther, and pollen germination rate were measured. In addition, analyses of variation patterns, outliers, distribution characteristics, and principal components were performed. 【Results】 The analysis revealed that the average number of anthers per flower, pollen quantity (10 000 grains) per anther, and pollen germination rate (%) were 45.60±8.30, 10.30±2.33, and 34.66±22.24, respectively. The median values were 44.10, 10.04, and 33.72, and the modes were 44.60, 10.17, and 70.53, with distribution ranges of 31.50-99.40, 6.08×10 000 grains-19.17×10 000 grains, and 1.00%-86.24%, respectively. The coefficients of variation for these traits exceeded 18%, with the highest variation observed in the pollen germination rate (64.17%), indicating substantial variation within the sample population. The maximum-to-minimum ratios for these traits were greatest for pollen germination rate (86.24 times), followed by the number of anthers (3.16 times) and pollen quantity (3.15 times). The outlier analysis identified JY-334 and JY-250 as mild high outliers in anther number, JY-402 and JY-130 as mild high outliers in pollen quantity, and JY-329 as an extreme outlier in anther number. No outliers were observed in the pollen germination rate. After excluding outliers, the distribution analysis showed that the median anther number was 43.80, predominantly ranging from 36.00 to 54.00 (82.50% of samples). The median pollen quantity was 99 800 grains, mainly between 70 000 and 130 000 grains (80.83% of samples). The median pollen germination rate was 33.72%, with the majority of samples (65.83%) distributed between 10.00% and 60.00%. The skewness (Sk) and kurtosis (Su) values for anther number, pollen quantity, and pollen germination rate were 0.514, 0.406, and 0.417 (Sk), and 0.085, -0.28, and -0.74 (Su), respectively. Frequency distribution plots indicated a continuous distribution of these traits, with a larger number of intermediate plants, fitting a normal distribution pattern. The principal component analysis indicated that the eigenvector value of the pollen germination rate was the largest, and the contribution rate was 43.16%. Based on the comprehensive evaluations, the male plants JY-402, JY-275, JY-212, JY-403, and JY-260 had superior male flower traits. 【Conclusion】 Significant variation was observed in the male flower traits from seedlings of Jinyin. JY-402, JY-275, JY-212, JY-403, and JY-260 were identified as potential candidates for use in breeding programs, and JY-402 showed the best overall performance.
Key words: Jinyi kiwifruit; Seedling progeny; Male flower traits; Anther number; Pollen amount; Pollen germination rate; Variation analysis
獼猴桃隸屬獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.),有54個種和21個變種,共約75個分類群,目前栽培種主要為中華獼猴桃(A. chinensis Planch. var. chinensis)和美味獼猴桃(A. chinensis Planch. var. deliciosa)[1]。金怡獼猴桃是湖北省農(nóng)業(yè)科學(xué)院果樹茶葉研究所進(jìn)行獼猴桃野生資源考察時,將在湖北省房縣采集的野生中華獼猴桃經(jīng)播種得到的實生后代選育而成[2]。金怡獼猴桃是優(yōu)質(zhì)的早熟中華獼猴桃新品種,于2011年獲得農(nóng)業(yè)部植物新品種保護(hù)授權(quán),其果肉呈金黃色或黃綠色,品質(zhì)細(xì)膩多汁,成熟果實可溶性固形物含量為17.0%~20%,可溶性總糖含量可達(dá)12.1%,可滴定酸含量可達(dá)1.28%,維生素C含量可達(dá)1322 mg·kg-1,品質(zhì)極佳[2]。
獼猴桃是雌雄異株植物,若雌雄株配比不合理,將導(dǎo)致受精不良,從而使果實種子數(shù)量少、果實內(nèi)源激素不足,最終果實偏小或形成扁果[3]。前人對獼猴桃花粉活力、散粉規(guī)律以及花粉保存條件等開展了較多的工作。研究表明,采粉期在花蕾期時花粉活力較高[4],花朵花粉量最大[5]。用恒溫箱干燥法制取、離體萌發(fā)法測定的獼猴桃花粉活力最高[6-7]。在密閉環(huán)境下,溫度越低貯藏效果越好,-20 ℃貯藏30 d花粉活力還保持在較高水平,可以短期貯藏[8]。篩選出花粉量大、花粉活性高的優(yōu)良雄株,可以提高授粉效率,節(jié)約生產(chǎn)成本,并且提高果實品質(zhì),在生產(chǎn)上有一定意義。目前已報道的獼猴桃雄株品種并不多,截至2023年1月已授權(quán)的獼猴桃植物新品種權(quán)共114項,其中雄株品種4個(磨山雄1號、磨山雄2號、磨山雄3號、磨山雄5號),占比約3.51%[9]。另外,近期首個軟棗獼猴桃雄株新品種金獼棗雄1號也已授權(quán)[10]。新西蘭作為獼猴桃主要出口國,選育出了許多獼猴桃優(yōu)良品種,這些品種也都有相應(yīng)的適配雄株。如六倍體美味獼猴桃雄株品種馬吐阿(Matua)、陶木里(Tomuri)、Chieftain等為綠肉獼猴桃品種海沃德(Hayward)的授粉品種,Bruce是為黃肉品種Hort16A的專用授粉品種,現(xiàn)在主推的新一代黃肉品種Gold3(G3)的授粉樹多用四倍體中華獼猴桃雄株M91[11-13]。筆者在本研究中以120株金怡獼猴桃實生后代雄株資源為試驗材料,統(tǒng)計其花藥數(shù)(平均每朵花包含的花藥數(shù)量)、花粉量(平均每粒花藥包含的花粉數(shù)量)、花粉萌發(fā)率(每個樣本平均萌發(fā)率)等性狀,并進(jìn)行性狀分析、變異分析、離群值分析、分布規(guī)律分析和主成分分析,以期解析金怡獼猴桃實生后代雄株株系變異的豐富性,篩選性狀優(yōu)良雄株,為獼猴桃育種提供資源。
1 材料和方法
1.1 材料
材料為120株4年生金怡獼猴桃實生后代,定植于湖北省赤壁市神山興農(nóng)科技有限公司半島獼猴桃基地育種園。
1.2 試驗方法
1.2.1 樣品采集方法 對金怡后代群體中的雄株,每天早上10:00左右采集鈴鐺花期花蕾10枚,小心用鑷子分別將每個花苞的花藥剝下平鋪于稱量紙上,拍照統(tǒng)計花藥數(shù)。每朵花中隨機選取10個花藥(共100個)放入15 mL離心管中,于25 ℃恒溫烘箱烘干48 h,用于測量花粉量。將剩余花藥混合后收集在鋪有稱量紙的培養(yǎng)皿中,置于25 ℃恒溫烘箱烘干24 h,將花粉收集到10 mL離心管中保存于-20 ℃冰箱,用于后續(xù)花粉萌發(fā)試驗。
1.2.2 花藥數(shù)統(tǒng)計 對金怡后代群體中的雄株每株10枚花朵的花藥數(shù)進(jìn)行統(tǒng)計。用鑷子小心剝?nèi)♀忚K花花藥分散于稱量紙上,拍照后用Adobe Photoshop軟件的計數(shù)功能進(jìn)行統(tǒng)計,然后計算花藥數(shù)的平均值。
1.2.3 單花藥花粉量的測定 用血球計數(shù)板法對花粉量進(jìn)行測定。稱取5 g偏磷酸鈉粉末定容至100 mL,置于振蕩器中振蕩2 h以上形成懸濁液,取出后靜置0.5 h,再用移液槍吸取5 mL上層懸濁液至收集有100個花藥的離心管中,用渦旋振蕩儀震蕩,使花粉粒均勻分散開。用移液槍吸取10 μL離心管內(nèi)的液體滴到血球計數(shù)板的中間計數(shù)區(qū)域中心,用蓋玻片壓平,避免出現(xiàn)氣泡。每個樣本3次重復(fù),每個重復(fù)記5個中方格。最后在顯微鏡下選取合適位置拍照計數(shù),按照“記上不記下,記左不記右”的規(guī)則計數(shù)。5 mL懸濁液包含的花粉粒數(shù)計算公式為:X/(16×1/4000)×5×103 mm3·mL-1=1.25×105×X(X為血球計數(shù)板中格包含的平均花粉粒數(shù))。
1.2.4 花粉萌發(fā)率的測定 采用離體培養(yǎng)基萌發(fā)法檢測花粉萌發(fā)率,固體培養(yǎng)基的配方為:10%蔗糖+1%瓊脂+0.1%硼酸。使用1 mL的移液槍將培養(yǎng)基點涂在雙凹載玻片凹面處,冷卻。待培養(yǎng)基凝固后,將花粉從冰箱取出,用毛筆蘸取少許花粉后均勻灑在培養(yǎng)基平面上,將載玻片置于墊有濕濾紙的培養(yǎng)皿中,放入恒溫26 ℃培養(yǎng)箱培養(yǎng)3.5~4.0 h,再用顯微鏡觀察花粉萌發(fā)情況,隨機選擇10個20×視野拍照進(jìn)行萌發(fā)率統(tǒng)計。
1.2.5 數(shù)據(jù)處理及分析 利用Adobe Photoshop軟件計數(shù)功能進(jìn)行統(tǒng)計,用Excel進(jìn)行數(shù)據(jù)整理和變異分析,將用Excel整理后的數(shù)據(jù)導(dǎo)入IBM SPSS Statistics 26軟件,選擇圖形功能中的箱圖進(jìn)行離群值分析,選擇分析功能中的描述統(tǒng)計進(jìn)行正態(tài)分布分析。在主成分分析之前,參考劉科鵬等[14]的方法采用隸屬函數(shù)法對數(shù)據(jù)進(jìn)行Z-score標(biāo)準(zhǔn)化,然后利用IBM SPSS Statistics 26進(jìn)行主成分分析和可視化處理,再將主成分分析的結(jié)果使用Excel計算綜合評價得分。綜合評價得分(Dn)的計算公式為:Dn=Xa×X1+Xb×X2+Xc×X3(Xa、Xb、Xc分別為標(biāo)準(zhǔn)化處理后的3個指標(biāo)的特征向量值,X1、X2、X3分別為標(biāo)準(zhǔn)化處理后的3個指標(biāo)的測量值)。
2 結(jié)果與分析
2.1 雄花性狀分析
為探究120株金怡獼猴桃實生后代雄株花性狀,對花藥數(shù)、花粉量、花粉萌發(fā)率進(jìn)行了統(tǒng)計分析(表1)。分析結(jié)果表明花藥數(shù)、花粉量、萌發(fā)率平均值分別為45.60個±8.30個、10.30萬±2.33萬粒、34.66%±22.24%(表1)。
2.2 雄花性狀變異分析
2.2.1 雄花性狀變異分析 如表2所示,花藥數(shù)、花粉量、萌發(fā)率中位數(shù)分別為44.10、10.04、33.72,眾數(shù)分別為44.60、10.17、70.53,分布區(qū)間分別為31.50~99.40、6.08~19.17、1.00~86.24。3個指標(biāo)變異系數(shù)都在18%以上,花粉萌發(fā)率變異程度最大,高達(dá)64.17%(表2、圖1),表明樣本的花粉萌發(fā)率變異最豐富,花粉量和花藥數(shù)變異較豐富。從極差值看,3個雄花性狀的最大值均為最小值的數(shù)倍,其中萌發(fā)率的倍數(shù)最大,為86.24倍,其次是花藥數(shù),為3.16倍,最小是花粉量,為3.15倍(表2)。綜上,金怡獼猴桃雄株3個雄花性狀均存在廣泛變異,花粉萌發(fā)率變異最大。
2.2.2 離群值分析 為了探究120株金怡獼猴桃實生后代雄株花性狀分離情況,進(jìn)行了離群值篩選。結(jié)果表明,在平均花藥數(shù)上,JY-334、JY-250為溫和高離群值,JY-329為極端高離群值;在花粉量上,JY-402、JY-130為溫和高離群值,萌發(fā)率無離群值(圖2)。綜上,在120株金怡獼猴桃實生后代雄株雄花性狀分析中,JY-334、JY-250、JY-402、JY-130、JY-329這5個樣本均為高離群值。
2.2.3 分布規(guī)律分析 為了探究數(shù)據(jù)的分布特點,對數(shù)據(jù)進(jìn)行正態(tài)分布分析(去除離群值)。分析發(fā)現(xiàn)花藥數(shù)中位數(shù)為43.80粒,主要分布在36.00~54.00粒,占所有樣本的82.50%;花粉量中位數(shù)為9.98萬粒,主要分布在7.00萬~13.00萬粒,占所有樣本的80.83%;萌發(fā)率中位數(shù)為33.72%,主要分布在10.00%~60.00%,占所有樣本的65.83%(表3,圖3)。3個雄花性狀指標(biāo)正態(tài)曲線偏度值Sk分別為0.514、0.406、0.417,峰度值Su分別為0.085、-0.280、-0.740(表3)。由頻率分布圖可看出,萌發(fā)率、花粉量和花藥數(shù)在株系中的分布是連續(xù)的,在分布區(qū)間兩邊植株數(shù)量少,中間植株數(shù)量多,符合正態(tài)分布特點(圖3)。
2.2.4 主成分分析 為了探究120個金怡實生后代雄株株系雄花性狀主要貢獻(xiàn)成分,進(jìn)行主成分分析。萌發(fā)率、花粉量和花藥數(shù)在3個主成分中的特征向量值、特征值、貢獻(xiàn)率以及累計貢獻(xiàn)率如表4。第一主成分的特征值1.30,貢獻(xiàn)率為43.16%,萌發(fā)率和花粉量的特征向量值較高,分別為0.76和0.71。表明雄花性狀主要由萌發(fā)率和花粉量決定(表4)。
在先前的主成分分析中,提取1個主成分,3個性狀特征向量值分別為0.76、0.71、0.47,標(biāo)準(zhǔn)化處理后為0.67、0.62、0.41,則第1個主成分綜合評價得分由標(biāo)準(zhǔn)化后的特征向量和各雄株測量指標(biāo)原始數(shù)值經(jīng)過標(biāo)準(zhǔn)化后的數(shù)值計算得出。綜合評價得分(Dn)的計算公式為:Dn=0.67 X1+0.62 X2+0.41 X3(X1、X2、X3分別為3個指標(biāo)原始測量值標(biāo)準(zhǔn)化后的數(shù)值),第1個主成分綜合評價得分前5個樣本編號分別為JY-402、JY-275、JY-212、JY-403、JY-260(表5)。綜上表明JY-402、JY-275、JY-212、JY-403、JY-260花性狀綜合表現(xiàn)最好。
3 討 論
本研究統(tǒng)計了金怡實生后代雄花花粉萌發(fā)率、花粉量、花藥數(shù)和分布頻率,并進(jìn)行了特異值分析、相關(guān)性分析和主成分分析,探究金怡獼猴桃實生后代雄株株系花性狀變異情況。在金怡實生后代雄株株系中花粉萌發(fā)率變異最大,花粉量、花藥數(shù)變異相對較小,三者變異系數(shù)分別為64.17%、22.63%、18.21%;極差分別為85.24、13.09、67.9;最大值分別為86.24%、19.17萬粒、99.4粒;最小值分別為1.00%、6.04萬粒、31.50粒,表明金怡獼猴桃實生后代雄株有明顯的性狀分化。王斯妤等[15]對不同獼猴桃花粉量和萌發(fā)率進(jìn)行差異分析,發(fā)現(xiàn)中華獼猴桃花粉量和萌發(fā)率變異較大。本研究結(jié)果與之一致。獼猴桃存在明顯的花粉直感效應(yīng),不同花粉授粉后,后代果實性狀差異明顯[16-17],在生產(chǎn)上,選擇樹體健壯、花粉萌發(fā)率高、單花藥花粉量多、單花花藥數(shù)多的授粉雄株,有助于當(dāng)代果實的品質(zhì)性狀改善[18-19]。金怡獼猴桃實生后代雄株花性狀表現(xiàn)均較好,萌發(fā)率、花粉量、花藥數(shù)的均值分別為34.66%、10.30萬粒、45.6粒;中位數(shù)分別為33.72%、10.04萬粒、44.10粒。前人測定了不同品種獼猴桃平均單花藥花粉量,如貴長獼猴桃雄株約1.52萬粒[5]、毛花獼猴桃約0.70萬粒[20],以及其他測試的中華獼猴桃約0.14萬粒[15],本研究中,金怡獼猴桃單花藥平均花粉量10.30萬粒,遠(yuǎn)遠(yuǎn)高于其他獼猴桃品種。有研究表明,花粉量與果實產(chǎn)量之間存在顯著的相關(guān)性[21],因此金怡適合作為獼猴桃授粉雄株。前人在中華獼猴桃花粉萌發(fā)率的研究中發(fā)現(xiàn),中華獼猴桃萌發(fā)率超過80%[15,22]。在實際生產(chǎn)過程中,作為授粉品種,花粉萌發(fā)率一般不低于30%[23],本研究金怡獼猴桃雄株萌發(fā)率平均值和中位數(shù)均超過30%,且變異豐富,有作為授粉品種的潛能。
經(jīng)正態(tài)檢驗分析發(fā)現(xiàn),萌發(fā)率、花粉量和花藥數(shù)的數(shù)據(jù)分布兩邊少中間多、分布連續(xù)、符合正態(tài)分布特點。離群值分析發(fā)現(xiàn),3個性狀極端變異材料數(shù)量大小為花藥數(shù)>花粉量>萌發(fā)率,其中萌發(fā)率無極端變異情況,JY-402、JY-130、JY-329、JY-334、JY-250這5個樣本均為高離群值,JY-329花藥數(shù)為極高離群值。研究發(fā)現(xiàn)授粉是否充分決定了果實種子數(shù)量多少,而種子數(shù)量又與果實大小呈正相關(guān)[24],授粉充分也可提高坐果率,降低果實畸形率[25],而授粉效果又與花粉活性息息相關(guān),有活性的花粉數(shù)量少,坐果率就低[26]。本試驗主成分分析發(fā)現(xiàn),第一主成分中萌發(fā)率特征向量值最大,貢獻(xiàn)率為43.16%,表明萌發(fā)率在雄株評價中權(quán)重較大。單花中可萌發(fā)花粉量越高,坐果率和果實品質(zhì)都可以大大提高。JY-402、JY-275、JY-212、JY-403、JY-260這5個雄株為主成分分析后綜合評價得分前五的優(yōu)系,可作為篩選金怡優(yōu)良授粉雄株候選對象,其中JY-402綜合性狀最優(yōu),可重點關(guān)注。后續(xù)將對其花粉親和力、授粉后坐果率、果實品質(zhì)等方面進(jìn)行研究,進(jìn)而篩選出綜合性狀優(yōu)良、可用于生產(chǎn)的雄株品種。
4 結(jié) 論
金怡獼猴桃雄株雄花性狀變異豐富。JY-402、JY-275、JY-212、JY-403、JY-260可以作為進(jìn)一步深入研究和篩選金怡優(yōu)良授粉雄株的候選資源,JY-402綜合性狀最優(yōu),可重點關(guān)注。本試驗為有效利用優(yōu)良雄株資源提供了理論指導(dǎo)。
參考文獻(xiàn)References:
[1] 黃宏文. 獼猴桃馴化改良百年啟示及天然居群遺傳漸滲的基因發(fā)掘[J]. 植物學(xué)報,2009,44(2):127-142.
HUANG Hongwen. History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild[J]. Chinese Bulletin of Botany,2009,44(2):127-142.
[2] 陳慶紅,顧霞,張蕾,秦仲麒,盛敏. 早熟獼猴桃新品種‘金怡’[J]. 果農(nóng)之友,2013(2):7.
CHEN Qinghong,GU Xia,ZHANG Lei,QIN Zhongqi,SHENG Min. A new early ripening kiwifruit variety Jinyi[J]. Fruit Growers’ Friend,2013(2):7.
[3] 張相文,趙菊琴,屈學(xué)農(nóng). 海沃德獼猴桃果實變扁變小的原因及對策[J]. 山西果樹,2007(3):30-31.
ZHANG Xiangwen,ZHAO Juqin,QU Xuenong. Reasons and countermeasures of flattening and smallening of kiwifruit fruit in Hayward[J]. Shanxi Fruits,2007(3):30-31.
[4] 陳永安,陳鑫,劉艷飛. 采粉期及貯藏條件對獼猴桃花粉生活力的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2012,40(8):157-160.
CHEN Yongan,CHEN Xin,LIU Yanfei. Effects of different collecting pollen periods and storage conditions on pollen viability of kiwifruit[J]. Journal of Northwest A amp; F University (Natural Science Edition),2012,40(8):157-160.
[5] 賀興江,任曉曉,周文才,萬煒,韋小平,王胤晨. 貴長獼猴桃散粉規(guī)律及花粉活力研究[J]. 特種經(jīng)濟動植物,2021,24(3):10-12.
HE Xingjiang,REN Xiaoxiao,ZHOU Wencai,WAN Wei,WEI Xiaoping,WANG Yinchen. Study on the law of dispersed powder and pollen vigor of kiwifruit[J]. Special Economic Animals and Plants,2021,24(3):10-12.
[6] 楊紅,余和明,李小艷,馮瑩瑩. 獼猴桃花粉生活力測定方法及花藥處理方法研究[J]. 北方園藝,2015(8):36-39.
YANG Hong,YU Heming,LI Xiaoyan,F(xiàn)ENG Yingying. Study on the method of measuring pollen viability and pretreatment of pollen[J]. Northern Horticulture,2015(8):36-39.
[7] 姚春潮,龍周俠,劉旭峰,王西芳. 不同干燥及貯藏方法對獼猴桃花粉活力的影響[J]. 北方園藝,2010(20):37-39.
YAO Chunchao,LONG Zhouxia,LIU Xufeng,WANG Xifang. Effects of different dryness and storage methods on pollen viability in Actinidia deliciosa[J]. Northern Horticulture,2010(20):37-39.
[8] 陳厚錫,楊技超,王勝艷,潘麗珊,羅充,李葦潔. 影響獼猴桃花粉活力的因素探討[J]. 中國果樹,2021(9):59-62.
CHEN Houxi,YANG Jichao,WANG Shengyan,PAN Lishan,LUO Chong,LI Weijie. Discussion on the factors of affecting the activity of kiwifruit pollen[J]. China Fruits,2021(9):59-62.
[9] 高磊,張蕾,羅軒,白福璽,汪志,葉麗霞,陳慶紅. 獼猴桃雄株選育與利用研究進(jìn)展[J]. 中國果樹,2023(12):8-12.
GAO Lei,ZHANG Lei,LUO Xuan,BAI Fuxi,WANG Zhi,YE Lixia,CHEN Qinghong. Research progress on breeding and utilization of male kiwifruit[J]. China Fruits,2023(12):8-12.
[10] 羅軒,陳慶紅,張蕾,高磊,白福璽,汪志,葉麗霞,彭玨. 軟棗獼猴桃雄性新品種‘金獼棗雄1號’[J]. 園藝學(xué)報,2023,50(增刊2):19-20.
LUO Xuan,CHEN Qinghong,ZHANG Lei,GAO Lei,BAI Fuxi,WANG Zhi,YE Lixia,PENG Jue. A new pollenizer cultivar of Actinidia arguta ‘Jinmizao Xiong 1’[J]. Acta Horticulturae Sinica,2023,50(Suppl. 2):19-20.
[11] SEAL A G,DUNN J K,JIA Y L. Pollen parent effects on fruit attributes of diploid Actinidia chinensis ‘Hort16A’ kiwifruit[J]. New Zealand Journal of Crop and Horticultural Science,Taylor amp; Francis,2013,41(4):219-229.
[12] RIBEIRO H,MARIZ-PONTE N,PEREIRA S,GUEDES A,ABREU I,MOURA L,SANTOS C. Can photoselective nets’ influence pollen traits? A case study in ‘Matua’ and ‘Tomuri’ kiwifruit cultivars[J]. Plants,2024,13(12):1691.
[13] TWIDLE A M,BARKER D,SEAL A G,F(xiàn)EDRIZZI B,SUCKLING D M. Identification of floral volatiles and pollinator responses in kiwifruit cultivars,Actinidia chinensis var. chinensis[J]. Journal of Chemical Ecology,2018,44(4):406-415.
[14] 劉科鵬,黃春輝,冷建華,陳葵,嚴(yán)玉平,辜青青,徐小彪. ‘金魁’獼猴桃果實品質(zhì)的主成分分析與綜合評價[J]. 果樹學(xué)報,2012,29(5):867-871.
LIU Kepeng,HUANG Chunhui,LENG Jianhua,CHEN Kui,YAN Yuping,GU Qingqing,XU Xiaobiao. Principal component analysis and comprehensive evaluation of the fruit quality of ‘Jinkui’ kiwifruit[J]. Journal of Fruit Science,2012,29(5):867-871.
[15] 王斯妤,鐘敏,廖光聯(lián),陳璐,徐小彪. 不同獼猴桃雄株花粉量及花粉活力差異研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2017,39(3):460-467.
WANG Siyu,ZHONG Min,LIAO Guanglian,CHEN Lu,XU Xiaobiao. Comparison of pollen quantity and pollen viability of 41 male plants in Actinidia[J]. Acta Agriculturae Universitatis Jiangxiensis,2017,39(3):460-467.
[16] 楊技超,韓振誠,何茂梅,羅充,李良良,李葦潔. ‘紅陽’獼猴桃花粉直感效應(yīng)研究[J]. 中國果樹,2021(6):7-12.
YANG Jichao,HAN Zhencheng,HE Maomei,LUO Chong,LI Liangliang,LI Weijie. Effect of pollen xenia on ‘Hongyang’ kiwifruit[J]. China Fruits,2021(6):7-12.
[17] 趙鳳軍,閆春蕾,黃國輝. 3個軟棗獼猴桃品種花粉直感效應(yīng)研究[J]. 中國果樹,2022(8):35-38.
ZHAO Fengjun,YAN Chunlei,HUANG Guohui. Study on the pollen xenia of three Actinidia arguta varieties[J]. China Fruits,2022(8):35-38.
[18] 張文慧,張百忍,李學(xué)宏,鐘云鵬,李夏,鄭敏,潘曉紅. 獼猴桃雄花特性與授粉果實性狀相關(guān)性研究[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報,2020,37(3):413-418.
ZHANG Wenhui,ZHANG Bairen,LI Xuehong,ZHONG Yunpeng,LI Xia,ZHENG Min,PAN Xiaohong. Effects of the correlation between the characteristics of male flowers and pollinated fruit of kiwifruit[J]. Journal of Agricultural Resources and Environment,2020,37(3):413-418.
[19] 王麗華,鄭曉琴,莊啟國,李明章. 紅陽獼猴桃優(yōu)良雄株選擇初報[J]. 資源開發(fā)與市場,2013,29(8):792-793.
WANG Lihua,ZHENG Xiaoqin,ZHUANG Qiguo,LI Mingzhang. Preliminary report of Hongyang’s excellent male plants choose[J]. Resource Development amp; Market,2013,29(8):792-793.
[20] 鐘敏,廖光聯(lián),李章云,鄒梁峰,黃清,陳璐,黃春輝,陶俊杰,朱博,徐小彪. 野生毛花獼猴桃雄花花器性狀及SSR遺傳多樣性研究[J]. 果樹學(xué)報,2018,35(6):658-667.
ZHONG Min,LIAO Guanglian,LI Zhangyun,ZOU Liangfeng,HUANG Qing,CHEN Lu,HUANG Chunhui,TAO Junjie,ZHU Bo,XU Xiaobiao. Genetic diversity of wild male kiwifruit (Actinidia eriantha Benth.) germplasms based on SSR and morphological markers[J]. Journal of Fruit Science,2018,35(6):658-667.
[21] 單琨,劉布春,李茂松,武永峰. 基于花粉量的作物產(chǎn)量預(yù)測模型研究進(jìn)展[J]. 中國農(nóng)業(yè)氣象,2010,31(2):282-287.
SHAN Kun,LIU Buchun,LI Maosong,WU Yongfeng. Research progress of pollen variable models for forecasting crop yield[J]. Chinese Journal of Agrometeorology,2010,31(2):282-287.
[22] 何文娟. 獼猴桃優(yōu)良雄性單株觀察測評與選擇[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
HE Wenjuan. Observation,evaluation and selection of superior male single strains of kiwifruit[D]. Yangling:Northwest A amp; F University,2019.
[23] 沈根華,王曉慶,駱軍,張紹鈴,錢培華,金鳳雷. 大棚栽培對梨花粉量及花粉生活力的影響[J]. 上海農(nóng)業(yè)學(xué)報,2008,24(3):54-57.
SHEN Genhua,WANG Xiaoqing,LUO Jun,ZHANG Shaoling,QIAN Peihua,JIN Fenglei. Effects of greenhouse culture on pear pollen quantity per anther and pollen viability[J]. Acta Agriculturae Shanghai,2008,24(3):54-57.
[24] 董慧. 獼猴桃精量控制授粉技術(shù)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2014.
DONG Hui. Research on precision control pollination of kiwifruit[D]. Yangling:Northwest A amp; F University,2014.
[25] 秦紅艷,張寶香,艾軍,范書田,楊義明,王振興,宋惠芳. 2個軟棗獼猴桃品種的花粉育性研究[J]. 西北植物學(xué)報,2017,37(5):909-914.
QIN Hongyan,ZHANG Baoxiang,AI Jun,F(xiàn)AN Shutian,YANG Yiming,WANG Zhenxing,SONG Huifang. Studies on pollen fertility of hardy kiwifruit (Actinidia arguta Planch.) two cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(5):909-914.
[26] 錢超越. 富平楸子雜交坐果率低的主要原因初步分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.
QIAN Chaoyue. Preliminary analysis on the main reasons of low hybrid fruit setting rate of artificial pollination for Fuping-qiuzi (Malus prunifolia)[D]. Yangling:Northwest A amp; F University,2017.