摘 要:【目的】探究不同水生植物對(duì)農(nóng)田退水氮磷污染物的去除效果,為利用水生植物修復(fù)和防治水體污染提供科學(xué)依據(jù)?!痉椒ā坎捎盟嘣囼?yàn)測(cè)定12種水生植物莖葉和根的生物量、氮磷含量、氮磷吸收量以及對(duì)水體氮磷的去除率,運(yùn)用篩選指標(biāo)的平均隸屬函數(shù)值對(duì)12種水生植物去除氮磷能力進(jìn)行聚類分析。【結(jié)果】挺水植物中,水蔥、蘆葦、香蒲凈增生物量較高;蘆葦?shù)樟孔罡哌_(dá)到201.22 mg·m-2,香蒲磷吸收量最高達(dá)到26.64 mg·m-2;蘆葦對(duì)氨氮、硝氮、總氮、總磷去除率最高,分別達(dá)到98.56%、78.93%、80.22%、81.36%。浮水植物中,鳳眼蓮凈增生物量最高;鳳眼蓮氮吸收量最高達(dá)到156.14 mg·m-2,睡蓮磷吸收量最高達(dá)到23.48 mg·m-2;鳳眼蓮對(duì)氨氮、硝氮、總氮、總磷去除率最高,分別達(dá)到95.63%、76.01%、71.66%、80.58%。沉水植物中,狐尾藻凈增生物量最高;狐尾藻氮吸收量最高達(dá)到230.75 mg·m-2,苦草磷吸收量最高達(dá)到26.11 mg·m-2;狐尾藻對(duì)氨氮、總氮去除率最高,分別達(dá)到97.94%、84.93%;苦草對(duì)硝氮、總磷去除率最高,分別達(dá)到76.32%、79.09%。蘆葦、水蔥、睡蓮主要通過(guò)根吸收累積氮磷,其他9種水生植物主要通過(guò)莖葉吸收氮磷從而增加生物量去除水體氮磷。水體氮磷去除率與植物氮磷吸收量呈極顯著正相關(guān)。蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物。【結(jié)論】挺水植物蘆葦、香蒲、水蔥、千屈菜,浮水植物睡蓮和沉水植物狐尾藻、苦草對(duì)寧夏引黃灌區(qū)農(nóng)田退水氮磷污染物去除效果較好。
關(guān)鍵詞:挺水植物;浮水植物;沉水植物;農(nóng)田退水;去除率;引黃灌區(qū)
中圖分類號(hào):S719 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)10-0105-11
基金項(xiàng)目:寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022BEG02007);寧夏自然科學(xué)基金項(xiàng)目(2022AAC03447);農(nóng)業(yè)高質(zhì)量發(fā)展和生態(tài)保護(hù)科技創(chuàng)新示范課題(NGSB-2021-11)。
The removal effect of 12 aquatic plants on nitrogen and phosphorus in the return flow of farmland
HONG Yu1,2, HE Ziqi1, FANG Xi1, LIU Ruliang2
(1. College of Life and Environmental Sciences, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 2. Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, Ningxia, China)
Abstract:【Objective】Exploring the removal effects of nitrogen and phosphorus in the return flow of farmland by different aquatic plants, providing scientific basis for the use of aquatic plants in the remediation and prevention of water pollution.【Method】Using hydroponic experiments to determine the changes of biomass, content and absorption of nitrogen and phosphorus in roots, stems and leaves of 12 aquatic plants, as well as removal rate of nitrogen and phosphorus in water. Cluster analysis was conducted on the nitrogen and phosphorus removal ability of 12 aquatic plants using the average membership function values of screening indicators.【Result】Among the emergent plants, the net increase biomasses of Scirpusvalidus, Phragmitesaustralis and Typhaorientalis were higher. Phragmitesaustralis had the highest nitrogen absorption, reaching 201.22 mg·m-2, and Typhaorientalis had the highest phosphorus absorption, reaching 26.64 mg·m-2. Phragmitesaustralis had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 98.56%, 78.93%, 80.22%, and 81.36%, respectively. Among floating plants, the net increase biomass of Eichhorniacrassipes was the highest. Eichhorniacrassipes had the highest nitrogen absorption, reaching 156.14 mg·m-2, and Nymphaea tetragona had the highest phosphorus absorption, reaching 23.48 mg·m-2. Eichhorniacrassipes had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 95.63%, 76.01%, 71.66%, and 80.58%, respectively.Among submerged plants, the net increase biomass of Myriophyllumverticillatum was the highest. Myriophyllumverticillatum had the highest nitrogen absorption, reaching 230.75 mg·m-2, and Vallisnerianatans had the highest phosphorus absorption, reaching 26.11 mg·m-2. Myriophyllumverticillatum had the highest removal rate of ammonia nitrogen and total nitrogen, reaching 97.94% and 84.93%, respectively; and Vallisnerianatans had the highest removal rates of nitrate nitrogen and total phosphorus, reaching 76.32% and 79.09%, respectively. Phragmitesaustralis, Scirpusvalidus and Nymphaea tetragona mainly absorbed nitrogen and phosphorus through their roots, while the other 9 aquatic plants mainly absorbed nitrogen and phosphorus through their stems and leaves, thereby increasing biomass and removing nitrogen and phosphorus from the water. The removal rate of nitrogen and phosphorus in water was significantly positively correlated with the absorbed quantities of nitrogen and phosphorus by plants. Phragmitesaustralis, Typhaorientalis and Myriophyllumverticillatum were highly efficient purification plants, while Vallisnerianatans, Scirpusvalidus, Eichhorniacrassipes, Nymphaea tetragona, and Lythrumsalicaria were relatively efficient purification plants.【Conclusion】In Ningxia Yellow River irrigation region, the emergent plants such as Phragmitesaustralis, Typhaorientalis, Scirpusvalidus, and Lythrumsalicaria, as well as the floating plants such as Nymphaea tetragona, and the submerged plants such as Myriophyllumverticillatum and Vallisnerianatans, had a good removal effect on nitrogen and phosphorus.
Keywords: emergent plants; floating plants; submerged plants; return flow of farmland; removal rate; Yellow River irrigation region
寧夏引黃灌區(qū)是我國(guó)西北地區(qū)重要的灌溉農(nóng)區(qū)和商品糧基地,由于獨(dú)特的灌排制度,每年從黃河引水量約70×108 m3,退水量約30×108 m3,其中40%通過(guò)排水溝退回黃河。農(nóng)業(yè)生產(chǎn)過(guò)程中,農(nóng)戶個(gè)體經(jīng)營(yíng)方式較為普遍,長(zhǎng)期存在化肥過(guò)量施用和大水漫灌現(xiàn)象,導(dǎo)致大量的氮磷隨農(nóng)田退水進(jìn)入各級(jí)排水溝,導(dǎo)致地表水水質(zhì)惡化[1-2],對(duì)黃河水質(zhì)安全造成了嚴(yán)重威脅。以農(nóng)田排水溝為核心的灌區(qū)水系污染正演變?yōu)橛绊扅S河水質(zhì)的主要污染源[3-4]。農(nóng)田退水氮磷高污染負(fù)荷,無(wú)序不穩(wěn)定性,潛伏周期長(zhǎng),是農(nóng)業(yè)面源污染的主要貢獻(xiàn)者,已經(jīng)成為灌區(qū)排水溝氮磷污染和水環(huán)境富營(yíng)養(yǎng)化的主要來(lái)源[5-6]。通過(guò)水生植物修復(fù)技術(shù)去除農(nóng)田排水溝中過(guò)量氮、磷污染物成為灌區(qū)水體保持良好水質(zhì)的關(guān)鍵[7-8]。
利用水生植物(挺水植物、浮水植物和沉水植物)的吸收、吸附及其根系微生物降解等途徑去除水體氮磷污染物[9],抑制沉積物營(yíng)養(yǎng)物質(zhì)的釋放[10],通過(guò)植物生命活動(dòng)改變根圍的水體微環(huán)境,影響微生物轉(zhuǎn)化和去除污染物的過(guò)程[11],以及通過(guò)對(duì)氮、磷等營(yíng)養(yǎng)物質(zhì)的競(jìng)爭(zhēng)作用,抑制藻類繁殖,改善水體環(huán)境[12],是一種投資低、耗能低、無(wú)二次污染的修復(fù)技術(shù)。有研究表明,無(wú)錫市農(nóng)田退水凈污濕地中,挺水植物去除退水氮磷的能力較強(qiáng)[13]。沉水植物苦草型凈化系統(tǒng)對(duì)農(nóng)田退水除磷效率較高 [14]。與單一、自然植被相比,多種人工植被對(duì)長(zhǎng)江流域農(nóng)田生態(tài)排水溝渠TN削減效果最好,平均削減率為47.72%[15]。但是關(guān)于挺水、浮水和沉水植物對(duì)寧夏引黃灌區(qū)農(nóng)田退水氮磷的去除能力的研究仍少見(jiàn)報(bào)道。寧夏引黃灌區(qū)屬于中溫帶干旱區(qū),水生植物的生態(tài)學(xué)特性、生長(zhǎng)規(guī)律及養(yǎng)分吸收機(jī)制均有其特殊性,篩選適宜的水生植物修復(fù)寧夏引黃灌區(qū)農(nóng)田退水氮磷污染成為重要的環(huán)節(jié)。本研究開(kāi)展水培試驗(yàn),比較研究寧夏引黃灌區(qū)農(nóng)田排水溝常見(jiàn)的12種水生植物對(duì)農(nóng)田退水氮磷的去除效果及其作用機(jī)制,運(yùn)用聚類分析篩選去除氮磷能力強(qiáng)的水生植物,為西北地區(qū)農(nóng)業(yè)面源污染水生植物修復(fù)提供科學(xué)依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)位于寧夏回族自治區(qū)銀川市賀蘭縣常信鄉(xiāng)(106°21′26″E,38°37′32″N),屬于典型中溫帶大陸性干旱氣候,年均降水量138.8 mm,平均溫度9.7 ℃,全年無(wú)霜期165 d,積溫3 280 ℃。年均日照為2 935.5 h,全年太陽(yáng)輻射總量為140.9 kcal·cm-2。
1.2 供試植物的來(lái)源
根據(jù)課題組前期試驗(yàn)結(jié)果,綜合考慮植物成活率、生態(tài)型與凈化效果,選擇寧夏引黃灌區(qū)常見(jiàn)的6種挺水植物:香蒲Typha orientalis、菖蒲Acorus calamus、千屈菜Lythrum salicaria、蘆葦Phragmites australis、水蔥Scirpus validus、慈姑Sagittaria trifolia,3種浮水植物:睡蓮Nymphaea tetragona、鳳眼蓮Eichhornia crassipes、浮萍Lemna minor和3種沉水植物:狐尾藻Myriophyllum verticillatum、伊樂(lè)藻Elodea nuttallii、苦草Vallisneria natans的幼苗移栽在農(nóng)田退水排水溝,生長(zhǎng)2個(gè)月,作為水培試驗(yàn)材料。
1.3 試驗(yàn)設(shè)計(jì)
選取性狀相同、生長(zhǎng)狀況良好的植株,種植在48 cm×35 cm×25 cm白色透明塑料箱中,箱底鋪上5 cm厚的用蒸餾水清洗過(guò)的石英砂,自然光照。試驗(yàn)用水取自賀蘭縣常信鄉(xiāng)稻田排水溝的農(nóng)田退水,原水中TN 2.83±0.06 mg·L-1,NH4+-N 0.91±0.05 mg·L-1,NO3--N 1.76±0.14 mg·L-1,TP 0.41±0.06 mg·L-1,通過(guò)添加NH4Cl、KNO3和KH2PO4試劑,參照地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB 3838—2002),配制成NH4+-N、NO3--N和TP為5.0、10.0和1.8 mg·L-1的劣Ⅴ類水,每個(gè)處理18 L試驗(yàn)用水,空白處理只放置石英砂,每個(gè)處理3個(gè)重復(fù)。以植物移植的當(dāng)天為第1次取水樣時(shí)間,以后每隔4 d取水樣1次,每次取水樣50 mL,持續(xù)時(shí)間28 d,取水樣8次,測(cè)定NH4+、NO3--N、TN和TP濃度;測(cè)定水培試驗(yàn)前和水培試驗(yàn)結(jié)束后植株的生物量及植物根莖葉TN和TP含量。水培試驗(yàn)前12種植物莖葉和根TN、TP含量如圖1所示。
1.4 樣品處理與測(cè)定方法
水培試驗(yàn)開(kāi)始前與結(jié)束后,將植株從溶液中取出,用蒸餾水沖洗植物樣品的殘留物,置于陰涼處晾干表面水分,分別稱量各種植物莖葉和根的鮮質(zhì)量后,在70℃恒溫下烘干至恒質(zhì)量,稱取每個(gè)樣品的烘干質(zhì)量,用研磨機(jī)磨碎各烘干植物樣品,過(guò)0.25 mm孔徑篩,用自封袋密閉保存?zhèn)溆谩?/p>
植物樣品經(jīng)濃硫酸和過(guò)氧化氫消解后,采用凱氏定氮儀法測(cè)定TN含量,采用鉬銻抗吸光光度法測(cè)定TP含量。采用連續(xù)流動(dòng)分析儀(FUTURA,法國(guó)Alliance)測(cè)定水樣NH4+-N、NO3--N濃度,采用鉬銻抗分光光度法測(cè)定水樣H2PO4-濃度,采用堿性過(guò)硫酸鉀消解紫外分光光度法測(cè)定水樣TN濃度,采用鉬酸銨分光光度法測(cè)定水樣TP濃度。
1.5 數(shù)據(jù)統(tǒng)計(jì)分析
采用SPSS 26.0軟件的Duncan新復(fù)極差法進(jìn)行多重比較。
2 結(jié)果與分析
2.1 不同水生植物體內(nèi)氮磷含量及分布
從表1可以看出,水蔥、蘆葦凈增生物量顯著高于其他植物(P<0.05)。挺水植物中,水蔥凈增生物量最高(105.50 g·m-2),其次是蘆葦、香蒲;蘆葦莖葉凈增量最大,水蔥根凈增量最大。浮水植物中,鳳眼蓮凈增生物量最高(42.72 g·m-2),其莖葉凈增量最大;睡蓮根凈增量最大。沉水植物中,狐尾藻凈增生物量最高(61.24 g·m-2),莖葉、根凈增量最大。蘆葦、水蔥、睡蓮、伊樂(lè)藻的根凈增量均高于莖葉,其他水生植物的莖葉凈增量均高于根。
從圖2可以看出,在試驗(yàn)結(jié)束時(shí),挺水植物中,千屈菜莖葉TN含量最高(4.04 g·kg-1),慈姑根最高(2.87 g·kg-1);浮水植物中,鳳眼蓮莖葉TN含量最高(3.98 g·kg-1),睡蓮根最高(1.56 g·kg-1);沉水植物中,苦草莖葉TN含量最高(2.73 g·kg-1),伊樂(lè)藻根最高(2.77 g·kg-1)。挺水植物中,慈姑莖葉、根TP含量最高,分別為0.73、0.60 g·kg-1;浮水植物中,浮萍植株TP含量最高(0.58 g·kg-1),睡蓮根TP含量最高(0.47 g·kg-1);沉水植物中,伊樂(lè)藻莖葉TP含量最高(0.51 g·kg-1),苦草根最高(0.50 g·kg-1)。此外,蘆葦、狐尾藻、伊樂(lè)藻根TN含量高于莖葉,而其他水生植物則為莖葉高于根;睡蓮、蘆葦、香蒲、狐尾藻根TP含量高于莖葉,而其他水生植物則為莖葉高于根。
2.2 不同水生植物的氮磷吸收量
從表2可以看出,狐尾藻、蘆葦?shù)腘吸收量與其他植物差異顯著(P<0.05),香蒲、苦草、伊樂(lè)藻的P吸收量與其他植物差異顯著(P<0.05)。挺水植物中,蘆葦N吸收量最高(201.22 mg·m-2),其次為香蒲、水蔥;香蒲P吸收量最高(26.64 mg·m-2),其次為慈姑、蘆葦。浮水植物中,鳳眼蓮N吸收量最高(156.14 mg·m-2),睡蓮P吸收量最高(23.48 mg·m-2);沉水植物中,狐尾藻N吸收量最高(230.75 mg·m-2),苦草P吸收量最高(26.11 mg·m-2)。蘆葦、水蔥、睡蓮根部的N、P吸收量均高于莖葉部,而其他水生植物莖葉部的N、P吸收量均高于根部。表明植物氮磷累積量的差異主要來(lái)源于生物量的差異,也表明蘆葦、水蔥、睡蓮主要通過(guò)根部累積氮磷,其他水生植物的生長(zhǎng)中心是莖葉部,從莖葉部獲得的氮磷量高于根部。
2.3 不同水生植物對(duì)水體氮磷污染物的去除效果
從圖3可以看出,不同水生植物的氮磷去除率與CK之間表現(xiàn)顯著性差異(P<0.05)。氨氮去除率:挺水植物中蘆葦最高,達(dá)到98.56%,其次為千屈菜、香蒲;浮水植物中鳳眼蓮最高,達(dá)到95.63%;沉水植物中狐尾藻最高,達(dá)到97.94%。硝氮去除率:挺水植物中蘆葦最高,達(dá)到78.93%,其次為水蔥、香蒲;浮水植物中鳳眼蓮最高,達(dá)到76.01%;沉水植物中苦草最高,達(dá)到76.32%??偟コ剩和λ参镏刑J葦最高,達(dá)到80.22%,其次為香蒲、水蔥;浮水植物中鳳眼蓮最高,達(dá)到71.66%;沉水植物中狐尾藻最高,達(dá)到84.93%??偭兹コ剩和λ参镏邢闫炎罡?,達(dá)到81.36%,其次為水蔥、蘆葦;浮水植物中鳳眼蓮最高,達(dá)到80.58%;沉水植物中苦草最高,達(dá)到79.09%。
2.4 不同水生植物去除效果的相關(guān)因素與綜合評(píng)價(jià)
由表3可以看出,氨氮去除率與總氮去除率、全株氮吸收量呈極顯著正相關(guān)(P<0.01);硝氮去除率與凈增生物量呈顯著正相關(guān)(P<0.05);總氮去除率與全株氮吸收量呈極顯著正相關(guān)(P<0.01);總磷去除率與全株磷吸收量呈極顯著正相關(guān)(P<0.01)。
采用數(shù)學(xué)分析法-隸屬度函數(shù)法分別計(jì)算不同水生植物中總氮、總磷、氨氮、硝氮的去除率的具體隸屬度值,并將各植物、各指標(biāo)的去除率隸屬值進(jìn)行累加,綜合分析不同水生植物對(duì)水體氮磷的去除效果差異,由圖4可以看出,挺水植物中蘆葦、香蒲、水蔥去除效果較強(qiáng),浮水植物中鳳眼蓮、睡蓮去除效果較強(qiáng),沉水植物中狐尾藻、苦草去除效果較強(qiáng)。同時(shí)將水生植物去除效果強(qiáng)弱采用組間連接方法進(jìn)行系統(tǒng)聚類分析,蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物,伊樂(lè)藻、浮萍、菖蒲、慈姑為普通凈化植物。
3 討 論
3.1 不同挺水植物對(duì)模擬農(nóng)田退水氮磷的去除效果
挺水植物根在泥質(zhì)中生長(zhǎng),莖下部和基部在水中,莖、葉光合部分露出水面[19],因此挺水植物莖葉儲(chǔ)存更多N、P滿足光合作用的需要[20]。盡管根吸收P最多,但受生物量的影響,各植株P(guān)儲(chǔ)量仍以地上部分居多[21]。收獲挺水植物的地上部分,可以達(dá)到去除水體氮磷的目的。
研究表明,挺水植物蘆葦、水蔥等對(duì)生活污水[21]、煤礦廢水[22]、茅洲河中游污染水體[23]的總氮、總磷去除效果較好,與本研究的結(jié)果基本一致。本研究中,挺水植物對(duì)農(nóng)田退水的氨氮去除率達(dá)92.57%,對(duì)硝氮去除率達(dá)72.44%;總氮去除率達(dá)55.39%;總磷去除率達(dá)61.08%,其中蘆葦、香蒲、水蔥和千屈菜去除氮磷效果較為明顯。有研究表明挺水植物根系分泌物濃度高、泌氧能力強(qiáng),蘆葦[24]、香蒲[25]、水蔥[26]和千屈菜[27]通過(guò)改變根際相關(guān)微生物的豐度與群落結(jié)構(gòu),促進(jìn)了微生物硝化和反硝化作用,介導(dǎo)有機(jī)物降解并對(duì)植物吸收起到調(diào)控作用[28]。而且蘆葦、水蔥的根部氮磷吸收量高于莖葉部,香蒲、千屈菜的莖葉部氮磷吸收量高于根部,說(shuō)明蘆葦、水蔥主要依靠根部去除氮磷,而香蒲、千屈菜主要依靠莖葉部。
3.2 不同浮水植物對(duì)模擬農(nóng)田退水氮磷的去除效果
浮水植物是指根部生長(zhǎng)于底泥中,莖部在水中,而葉片漂浮在水面或者根莖葉植物體完全漂浮在水面,只有漂浮在水面上的植物器官具有光合作用,是去除水體氮磷能力較強(qiáng)的水生植物類型[29]。浮水植物去除水體N的途徑主要是植物吸收[30],另外微生物降解和底泥的吸附與截留同樣發(fā)揮著重要作用[29];去除水體P的途徑主要包括植物吸收、根系吸附以及物理沉淀[31]。
研究表明,浮水植物在媯水河污染水體中NH4+-N、TP的去除效果較好,其中植物磷吸收貢獻(xiàn)率較高,植物吸收對(duì)TP的去除起到關(guān)鍵作用[32]。鳳眼蓮對(duì)再生水氮磷去除率較高,主要由于其生物量大,增殖迅速,去除效果能夠持續(xù)[33]。本研究也證實(shí)了這一結(jié)果,但是鳳眼蓮是外來(lái)物種,具有入侵性,易引發(fā)次生環(huán)境問(wèn)題[34]。本研究發(fā)現(xiàn),睡蓮和浮萍對(duì)農(nóng)田退水的氨氮、硝氮、總氮、總磷去除率僅略低于鳳眼蓮,因此可采用睡蓮和浮萍代替鳳眼蓮凈化寧夏農(nóng)田退水氮磷污染。睡蓮的根部氮磷吸收量高于莖葉部,而鳳眼蓮的莖葉部氮磷吸收量高于根部,說(shuō)明睡蓮主要依靠根部去除氮磷,而鳳眼蓮主要依靠莖葉部。在寧夏引黃灌區(qū),浮水植物睡蓮對(duì)農(nóng)田退水氮磷去除效果較好。
3.3 不同沉水植物對(duì)模擬農(nóng)田退水氮磷的去除效果
沉水植物體整株沉沒(méi)于水層下面,莖、葉和根均具有吸收作用,將氮磷物質(zhì)同化成生長(zhǎng)所需的蛋白質(zhì)和核酸等結(jié)構(gòu)組成物質(zhì)[35]。沉水植物可以通過(guò)生長(zhǎng)繁殖吸收、促進(jìn)微生物代謝分解、改善沉積物理環(huán)境、抑制沉積物再懸浮等多種途徑降低沉積物中N、P含量或抑制N、P釋放通量,從而有效控制水體內(nèi)源負(fù)荷[36]。在一定范圍內(nèi),沉水植物的生物量越大,對(duì)水體中氮磷物質(zhì)的去除效果越好[37],沉水植物對(duì)NH4+-N的吸收能力顯著強(qiáng)于其對(duì)NO3--N的吸收能力[38],當(dāng)上覆水中磷濃度較高時(shí),沉水植物主要通過(guò)葉片吸收作用滿足植物生長(zhǎng)對(duì)磷的需求[39]。
研究表明,狐尾藻對(duì)模擬污染水體的總磷、氨氮去除效果顯著[40],對(duì)污染湖水磷吸收量較高,主要為根系吸收作用[41]。狐尾藻和苦草對(duì)富營(yíng)養(yǎng)化水體的TN、TP去除率較高[42],與本研究的結(jié)果基本一致。本研究中,沉水植物對(duì)農(nóng)田退水的氨氮去除率達(dá)96.67%,對(duì)硝氮去除率達(dá)69.72%,總氮去除率達(dá)66.21%,總磷去除率達(dá)77.42%。沉水植物狐尾藻、苦草的莖葉部氮磷吸收量高于根部,說(shuō)明它們均主要依靠莖葉部去除氮磷。在寧夏引黃灌區(qū),沉水植物狐尾藻和苦草對(duì)農(nóng)田退水水體氮磷去除效果較好。
3.4 不同水生植物去除效果的相關(guān)因子與綜合評(píng)價(jià)
植物能吸收水體氮磷,并通過(guò)生物量不斷增加、積累氮磷,因此可以通過(guò)收割植物的莖、葉和根達(dá)到去除水體氮磷污染物的目的,植物莖葉部氮磷含量越高越有利于去除氮磷[43]。浮水植物對(duì)富營(yíng)養(yǎng)化水體的磷去除量與植物磷積累量呈顯著正相關(guān)[44]。沉水植物對(duì)氮磷的去除效果主要受植物生物量大小的影響,二者呈顯著正相關(guān)[45]。本研究也發(fā)現(xiàn),水體中的氨氮、總氮去除率和總磷去除率分別與植物氮吸收量、磷吸收量呈極顯著正相關(guān)關(guān)系(P<0.01);硝氮去除率與植物凈增生物量呈顯著正相關(guān)(P<0.05)。
彭蕾等[46]和張倩妮等[18]針對(duì)生活污水不同污染物指標(biāo)的平均隸屬函數(shù)值對(duì)不同水生植物進(jìn)行聚類分析,后者運(yùn)用氨氮、總磷、化學(xué)需氧量、懸浮固體的平均隸屬函數(shù)值分析表明,高凈化能力植物為蘆葦、鳳眼蓮、香蒲;中等凈化能力植物為睡蓮、伊樂(lè)藻、水蔥、苦草、菖蒲、千屈菜、狐尾藻。本研究中,蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物。由于本研究運(yùn)用了總氮、總磷、氨氮、硝氮的平均隸屬函數(shù)值,因此聚類分析結(jié)果與張倩妮等[18]的研究結(jié)果有所不同;而且生活污水和農(nóng)田退水污染物種類、來(lái)源不同,因此水生植物凈化能力表現(xiàn)不同。
由于單一植物存在抗逆性差、凈化能力有限等問(wèn)題,而不同生態(tài)型水生植物組合具有更高的生物量和氮磷累積效應(yīng),對(duì)水體氮磷具有更強(qiáng)的吸收凈化作用[47-48]。而光照是決定沉水植物生長(zhǎng)發(fā)育的主要限制因素[49],浮水植物會(huì)對(duì)沉水植物的生長(zhǎng)空間形成較大影響[50]。因此根據(jù)本研究的結(jié)果,可采用凈化效果較好的挺水植物(蘆葦、香蒲、水蔥、千屈菜)與浮水植物(睡蓮)/沉水植物(狐尾藻、苦草)組配。在下一步研究中,將注重從營(yíng)養(yǎng)鹽去除能力、空間組合和景觀效果等方面[51]對(duì)不同生態(tài)型水生植物進(jìn)行優(yōu)化配置,開(kāi)展凈化效果與機(jī)理研究。
4 結(jié) 論
挺水植物蘆葦、香蒲氮磷去除率較高,浮水植物鳳眼蓮氮磷去除率較高,沉水植物狐尾藻、苦草氮磷去除率較高。蘆葦、水蔥和睡蓮主要通過(guò)根吸收積累水體氮磷,而其他水生植物主要通過(guò)莖、葉吸收氮磷從而增加生物量去除水體氮磷。水生植物氮磷吸收量越高,對(duì)水體氮磷去除能力越強(qiáng)。針對(duì)寧夏引黃灌區(qū)農(nóng)田退水氮磷污染物,蘆葦、香蒲和狐尾藻為高效凈化植物,苦草、水蔥、睡蓮和千屈菜為較高效凈化植物。
參考文獻(xiàn):
[1] YAN L, LYU Y L, FEN Q, et al. Total nitrogen and total phosphorus pollution reshaped the relationship between water supply and demand in the Huaihe River watershed, China[J]. Chinese Geographical Science,2023,33(3):512-530.
[2] SRINIVAS R, SINGH A P, DHADSE K, et al. An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem[J]. Journal of Cleaner Production,2020,246:118963.
[3] XUE L, DUAN J, HOU P, et al. Full time-space governance strategy and technology for cropland non-point pollution control in China[J]. Frontiers of Agricultural Science and Engineering, 2023,10(4):593-606.
[4] 陸紅飛,齊學(xué)斌,喬冬梅,等.基于文獻(xiàn)計(jì)量的黃河流域農(nóng)田灌排研究現(xiàn)狀[J].灌溉排水學(xué)報(bào),2020,39(10):25-34. LU H F, QI X B, QIAO D M, et al. Using bibliometrics to analyze research on irrigation and drainage in the yellow river basin[J]. Journal of Irrigation and Drainage,2020,39(10):25-34.
[5] 路鑫雨,徐惠風(fēng),文波龍,等.濕地植物對(duì)農(nóng)田退水的生理生態(tài)響應(yīng)[J/OL].分子植物育種,http://kns.cnki.net/kcms/ detail/46.1068.S.20230704. 1102.005.html. LU X Y, XU H F, WEN B L, et al. Physiological and ecological response of wetland plants to receding farmland water[J/OL]. Molecular Plant Breeding,http://kns.cnki.net/kcms/detail/ 46.1068.S.20230704.1102.005.html.
[6] 朱金格,張曉姣,劉鑫,等.生態(tài)溝-濕地系統(tǒng)對(duì)農(nóng)田排水氮磷的去除效應(yīng)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(2):405-411. ZHU J G, ZHANG X J, LIU X, et al. Removal of nitrogen and phosphorus from farmland drainage by ecological ditch-wetland system[J]. Journal of Agro-Environment Science,2019,38(2): 405-411.
[7] NSENGA M K, BO Z, KAVIDIA D M. Assessing the influence of different plant species in drainage ditches on mitigation of non-point source pollutants (N, P, and sediments) in the Purple Sichuan basin[J]. Environmental Monitoring and Assessment, 2017,189(6):267.
[8] 程浩淼,季書(shū),葛恒軍,等.生態(tài)溝渠對(duì)農(nóng)田面源污染的消減機(jī)理及其影響因子分析 [J].農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):42-52. CHENG H M, JI S, GE H J, et al. Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(21):42-52.
[9] SUPREETH M. Enhanced remediation of pollutants by microorganisms-plant combination[J]. International Journal of Environmental Science and Technology,2021,19(5):1-12.
[10] GERM M, SIM?I? T. Vitality of aquatic plants and microbial activity of sediment in an oligotrophic lake (Lake Bohinj, Slovenia)[J]. Journal of Limnology,2011,70(2):305-312.
[11] YANG J, PEI H G, LYU J P, et al. Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river[J]. Journal of Oceanology and Limnology,2022,40(3):1012-1026.
[12] LI Y, MA Y, WANG H, et al. Do alternative stable states exist in large shallow Taihu Lake, China?[J]. Journal of Oceanology and Limnology,2023,41(3):959-971.
[13] 王沛芳,婁明月,錢(qián)進(jìn),等.農(nóng)田退水凈污濕地對(duì)污染物的凈化效果及機(jī)理分析[J].水資源保護(hù),2020,36(5):1-10. WANG P F, LOU M Y, QIAN J, et al. Analysis of purification effect and mechanism of pollutant by the farmland drainage wetland[J]. Water Resources Protection,2020,36(5):1-10.
[14] 龔苗苗,蔡飛翔,姜培坤,等.沉水植物型生態(tài)凈化系統(tǒng)處理農(nóng)田退水的總磷去除動(dòng)力學(xué)研究[J].浙江農(nóng)林大學(xué)學(xué)報(bào), 2022,39(1):136-145. GONG M M, CAI F X, JIANG P K, et al. Kinetic modeling of total phosphorus removal from farmland drainage with submerged macrophyte-type ecological purification system[J]. Journal of Zhejiang A F University,2022,39(1):136-145.
[15] 秦沂樟,白靜,趙健,等.長(zhǎng)江流域農(nóng)田生態(tài)排水溝渠氮削減效應(yīng)研究[J/OL].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),http://kns.cnki.net/kcms/ detail/12.1347.S.20231225.1755.011.html. QIN Y Z, BAI J, ZHAO J, et al. Nitrogen removal effect of agricultural ecological drainage ditches in the Yangtze River basin, China[J]. Journal of Agro-Environment Science, http://kns. cnki.net/kcms/detail/12.1347.S.20231225.1755.011.html.
[16] 吳建強(qiáng),王敏,吳健,等.4種浮床植物吸收水體氮磷能力實(shí)驗(yàn)研究[J].環(huán)境科學(xué),2011,32(4):995-999. WU J Q, WANG M, WU J, et al. Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floatingbed[J]. Environmental Science,2011,32(4):995-999.
[17] ZHANG X B, LIU P, YANG Y S, et al. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes[J]. Journal of Environmental Sciences,2007,19(8):902-909.
[18] 張倩妮,陳永華,楊皓然,等.29種水生植物對(duì)農(nóng)村生活污水凈化能力研究[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2019,36(3):392-402. ZHANG Q N, CHEN Y H, YANG H R, et al. Study on the purification ability of 29 aquatic plants to rural domestic sewage[J]. Journal of Agricultural Resources and Environment, 2019,36(3):392-402.
[19] WETZEL R G. Structure and productivity of aquatic ecosystems. Limnology[M]. New York: Saunders College Publishing,1983.
[20] 汪昆侖.挺水植物對(duì)大石河下游水體的凈化及吸收動(dòng)力學(xué)實(shí)驗(yàn)研究[D]. 北京:北京市環(huán)境保護(hù)科學(xué)研究院,2021. WANG K L. Experimental study on purification and absorption kinetics of emergent plants in lower Dashi river[D]. Beijing: Beijing Academy of Environmental Protection Sciences,2021.
[21] 龐慶莊,郭建超,魏超,等.4種濕地植物對(duì)污水中氮磷的去除效能及其遷移規(guī)律[J].西北林學(xué)院學(xué)報(bào),2019,34(6):68-73. PANG Q Z, GUO J C, WEI C, et al. Migration regularity and removal efficiency of nitrogen and phosphorus by four different wetland plants[J]. Journal of Northwest Forestry University, 2019,34(6):68-73.
[22] 程麗芬,張欣.5種水生植物對(duì)煤礦廢水的適應(yīng)性及凈化效果[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2019,36(4):801-809. CHENG L F, ZHANG X. Adaptability and purification effect on coal mine wastewater with five aquatic plants[J]. Journal of Zhejiang A F University,2019,36(4):801-809.
[23] 李斌,李慧,吳基昌,等.12種水生植物對(duì)茅洲河污染水體的凈化研究[J].環(huán)境科學(xué)與技術(shù),2020,43(增刊1):151-158. LI B, LI H, WU J C, et al. Purification ability of 12 aquatic macrophytes to polluted water in the Maozhou River[J]. Environmental Science Technology,2020,43(Suppl.1):151-158.
[24] FANG J, ZHAO R, CAO Q, et al. Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China[J]. Plant and Soil,2019,443(1-2):473-492.
[25] 張義.香蒲和蘆葦垂直潛流人工濕地對(duì)再生水中氮的去除效果及影響機(jī)制[D].北京:中國(guó)林業(yè)科學(xué)研究院,2021. ZHANG Y. Wetland treating reclaimed water nitrogen removal effect and influencing mechanism for cattail and reed vertical subsurface flow constructed[D]. Beijing: Chinese Academy of Forestry,2021.
[26] 蔣旭瑤,吉喜燕,黃德英,等.不同植物類型復(fù)合垂直流人工濕地根系微生物群落結(jié)構(gòu)的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019,38(1):176-183. JIANG X Y, JI X Y, HUANG D Y, et al. Microbial community structure in the roots of three kinds of plants in integrated vertical flow constructed wetlands[J]. Journal of Agro-Environment Science,2019,38(1):176-183.
[27] 趙卉琳.耐鹽挺水植物去除氮磷的機(jī)制及根際氨氧化菌群特征分析[D].天津:天津大學(xué),2014. ZHAO H L. Removal mechanism of nitrogen and phosphorus by salt-tolerant emergent macrophyte and the community characteristics of rhizosphere ammonia-oxidizing microorganisms[D]. Tianjin: Tianjin University,2014.
[28] 楊桂英.大型濕地植物香蒲在砷污染條件下對(duì)磷的吸收分配及其生態(tài)機(jī)制[D].昆明:云南大學(xué),2020. YANG G Y. Effect of sediment arsenic pollution on phosphorus uptake and distribution in wetland macrophyte Typha angustifolia and their ecological mechanisms[D]. Kunming: Yunnan University, 2020.
[29] 鄔淑婷,周之棟,華建峰,等.浮水植物-底泥-微生物系統(tǒng)對(duì)富營(yíng)養(yǎng)化水體氮的凈化作用[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2021,37(10):1341-1351. WU S T, ZHOU Z D, HUA J F, et al. Study on the N purification of eutrophic water by floating plant-sediment-microbial system[J]. Journal of Ecology and Rural Environment,2021,37(10): 1341-1351.
[30] MD N, FAISAL M H A A, RANJAN S. Metal removal kinetics,bio-accumulation and plant response to nutrient availability in floating treatment wetland for storm water treatment[J]. Water, 2022,14(11):1683.
[31] NOZAILY F A, ALAERTS G, VEENSTRA S. Performance of duckweed- covered sewage lagoons-II. nitrogen and phosphorus balance and plant productivity[J]. Water Research, 2000,34(10):2734-2741.
[32] 林海,陶艷茹,董穎博,等.基于媯水河水體水質(zhì)凈化的浮水植物優(yōu)選[J].安全與環(huán)境學(xué)報(bào),2019,19(5):1685-1694. LIN H, TAO Y R, DONG Y B, et al. Optimal selection of floating plants based on water purification for Guishui River[J]. Journal of Safety and Environment,2019,19(5):1685-1694.
[33] 趙麗君,陳剛新,張文超,等.2種漂浮植物對(duì)再生水水質(zhì)凈化能力比較[J].環(huán)境工程,2019,37(6):58-63. ZHAO L J, CHEN G X, ZHANG W C, et al. Comparison of purification of reclaimed water quality by two kinds of floating plants[J]. Environmental Engineering,2019,37(6):58-63.
[34] 馮優(yōu),陳慶鋒,李金業(yè),等.水生植物對(duì)不同氮磷水平養(yǎng)殖尾水的綜合凈化能力比較[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(10): 2397-2408. FENG Y, CHEN Q F, LI J Y, et al. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater[J]. Journal of Agro-Environment Science,2020,39(10):2397-2408.
[35] WILHELM G, DORIS S. Influence of aquatic macrophytes on phosphorus cycling in lakes[J]. Hydrobiologia,1988,170(1): 245-266.
[36] 黃小龍,郭艷敏,張毅敏,等.沉水植物對(duì)湖泊沉積物氮磷內(nèi)源負(fù)荷的控制及應(yīng)用[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2019,35(12): 1524-1530. HUANG X L, GUO Y M, ZHANG Y M, et al. Controlling of internal phosphorus and nitrogen loading in lake sediment by submerged macrophytes and its application[J]. Journal of Ecology and Rural Environment,2019,35(12):1524-1530.
[37] LIU L, GUAN Y T, QIN T J, et al. Effects of water regime on the growth of the submerged macrophyte Ceratophyllum demersum at different densities[J]. Journal of Freshwater Ecology,2018,33(1):45-56.
[38] 楊東翰,李本行,張立秋,等.大型溞-沉水植物組合系統(tǒng)去除北京沙河水庫(kù)水與底泥污染物效果研究[J].環(huán)境科學(xué)學(xué)報(bào), 2021,41(1):255-262. YANG D H, LI B H, ZHANG L Q, et al. Study on the efficiencies of removing pollutants from water and sediment of Shahe Reservoir in Beijing by Daphnia magna submerged macrophytes system[J]. Acta Scientiae Circumstantiae,2021,41(1):255-262.
[39] MADSEN V T, CEDERGREEN N. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream[J]. Freshwater Biology,2002,47(2):283-291.
[40] 陸慶楠,賀宇欣,莊文化,等.粉綠狐尾藻凈水效果對(duì)氮磷濃度的響應(yīng)機(jī)制[J].中國(guó)農(nóng)村水利水電,2019(2):11-15. LU Q N, HE Y X, ZHUANG W H, et al. How green myriophyllum verticillatum’s water purification effect responds to nitrogen and phosphorus concentration[J]. China Rural Water and Hydropower,2019(2):11-15.
[41] CRAIG S S, MICHAEL S A. Phosphorus transfer from sediments by Myriophyllum spicatum[J]. Limnology and Oceanography, 1986,31(6):1312-1321.
[42] 伏桂仙,曹偉張,陶俊.12種水生植物對(duì)富營(yíng)養(yǎng)化水體的凈化效果[J].環(huán)境科學(xué)與技術(shù),2021,44(增刊2):308-315. FU G X, CAO W Z, TAO J. Purification effect of 12 aquatic plants on eutrophic water[J]. Environmental Science Technology, 2021,44(Suppl.2):308-315.
[43] 王子潮,左鋒,王文明,等.長(zhǎng)沙市洋湖人工濕地冬季去污效果與植物效應(yīng)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2022,42(2):98-107. WANG Z C, ZUO F, WANG W M, et al. The decontamination effect and plant effect of Yanghu constructed wetland in Changsha city in winter[J]. Journal of Central South University of Forestry Technology,2022,42(2):98-107.
[44] SARAH D, SHAHBAZ M A, ALLAH D, et al. Microcosm study on the potential of aquatic macrophytes for phytoremediation of phosphorus-induced eutrophication[J]. Sustainability, 2022,14(24):16415-16415.
[45] 丁玲,李羚君,李劍峰,等.沉水植物凈化人工水源湖原水中氮磷和懸浮物的試驗(yàn)研究[J].生態(tài)環(huán)境學(xué)報(bào),2018,27(1): 122-129. DING L, LI L J, LI J F, et al. Experimental studies on purification of nitrogen, phosphorus and suspended solids in raw water from an artificial source lake by submerged macrophytes[J]. Ecology and Environmental Sciences,2018,27(1):122-129.
[46] 彭蕾,湯春芳,陳永華,等.凈化生活污水的浮床植物篩選[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2020,40(5):162-170. PENG L, TANG C F, CHEN Y H, et al. Study on screening of floating bed plants to purify domestic sewage[J]. Journal of Central South University of Forestry Technology,2020,40(5): 162-170.
[47] 盧秀秀,劉云根,王妍,等.典型挺水植物應(yīng)用于濕地生態(tài)修復(fù)工程污染凈化效應(yīng)差異性研究[J].環(huán)境污染與防治, 2024,46(1):87-91,98. LU X X, LIU Y G, WANG Y, et al. Study on the difference of sterilization effect of typical water-holding plants applied to wetland ecological restoration projects[J]. Environmental Pollution Control,2024,46(1):87-91,98.
[48] 湯鵬.不同水生植物配置對(duì)微污染水體的凈化效果及相關(guān)機(jī)理研究[D].鄭州:鄭州大學(xué),2021. TANG P. Study on purification performance and mechanism of different aquatic plant configurations on micro-polluted water[D]. Zhengzhou: Zhengzhou University,2021.
[49] KHANDAY A S, YOUSUF R A, RESHI A Z, et al. Management of Nymphoides peltatum using water level fluctuations in freshwater lakes of Kashmir Himalaya[J]. Limnology, 2017,18(2):219-231.
[50] SAMUEL J L T, ANDREW F, DAVID T B. Quantifying the ecological impacts of alien aquatic macrophytes: a global meta- analysis of effects on fish, macroinvertebrate and macrophyte assemblages[J]. Freshwater Biology,2022,67(11):1847-1860.
[51] 唐炳然,蔡然,王瑞霖,等.基于文獻(xiàn)分析的我國(guó)人工濕地植物配置路線優(yōu)化[J].環(huán)境工程技術(shù)學(xué)報(bào),2022,12(3):905-915. TANG B R, CAI R, WANG R L, et al. Optimization of hydrophyte configuration route in constructed wetlands in China based on literature analysis[J]. Journal of Environmental Engineering Technology,2022,12(3):905-915.
[本文編校:吳 彬]