摘 要:【目的】揭示火災引起的土壤抗剪強度和理化性質變化以及對土壤侵蝕過程的響應,以便林區(qū)管理者更有效地對那些易受火災干擾的區(qū)域進行火后的規(guī)劃與管理。【方法】選取大興安嶺森林生態(tài)系統(tǒng)中的典型興安落葉松Larix gmelinii純林林地土壤,以未火燒樣地(CK)為對照,經(jīng)過調查后選取發(fā)生過輕度火燒的林地(L)和發(fā)生過重度火燒的林地(H)作為不同處理樣地,測定各處理樣地中土壤的抗剪強度和土壤理化性質,并挖取土壤剖面?!窘Y果】1)單因素分析結果表明,與未火燒對照樣地相比,重度火燒樣地土壤內聚力顯著增加了17.32%,內摩擦角顯著增加了29.28%,輕度火燒樣地較未火燒樣地無顯著變化;2)Mantel分析結果表明,土壤容重、孔隙、含水率和有機質是影響輕度火燒和重度火燒土壤抗剪強度大小的主要因素;3)隨機森林結果表明,不同火燒強度下土壤理化性質對土壤內聚力與內摩擦角影響貢獻度不同。對照樣地土壤內聚力:含水率(P<0.05)>有機質(P<0.05)>容重>孔隙度,對照樣地土壤內摩擦角:含水率(P<0.001)>容重(P<0.05)>有機質>孔隙度,輕度火燒樣地土壤內聚力:孔隙(P<0.001)>容重(P<0.001)>含水率>有機質,輕度火燒樣地土壤內摩擦角:容重(P<0.001)>含水率(P<0.05)>有機質>孔隙度,重度火燒樣地土壤內聚力:含水率(P<0.001)>孔隙度>有機質>容重,重度火燒樣地土壤內摩擦角:容重(P<0.001)>孔隙度(P<0.001)>含水率>有機質?!窘Y論】重度火災導致土壤侵蝕量激增,從而引起土層分布發(fā)生變化;輕度火災未導致土壤侵蝕量激增,且土層分布沒有發(fā)生顯著變化。
關鍵詞:火災;抗剪強度;侵蝕;大興安嶺
中圖分類號:S791.222 文獻標志碼:A 文章編號:1673-923X(2024)10-0036-10
基金項目:國家自然科學基金項目(32071777);中國科協(xié)青年托舉工程項目(YESS20210370);黑龍江省自然基金優(yōu)秀青年-聯(lián)合引導項目(LH2021C012)。
Variation of soil shear strength in Larix gmelinii forests under different fire severities and its effecting factors
HU Tongxina,b, GENG Qingyea,b, LI Guangxina,b, SHI Lina,b, SUN Longa,b
(a. College of Forestry; b. Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China)
Abstracts:【Objective】This study reveals fire-induced changes in soil shear strength and physicochemical properties as well as responses to soil erosion processes so that forest managers can more effectively plan and manage post-fire in areas that are vulnerable to fire disturbance.【Method】Selected pure forest floor soils of Greater Khingan Range (Larix gmelinii), a typical forest ecosystem in the Greater Khingan Range forest. The unburned control sites (CK) was used as a control, and after the survey, the forest sites that had experienced low severity burned (L) and the forest sites that had experienced high severity burned (H) were selected as the sites for the two different treatments, shear strength and soil physicochemical properties were determined for each treatment and soil profiles were dug.【Result】1) One-way analysis showed that soil cohesion significantly increased by 17.32% and angle of internal friction significantly increased by 29.28% in the high severity burned sites compared to the unburned control sites, and there was no significant change in the low severity burned sites compared to the unburned control sites; 2) Mantel analysis showed that soil bulk weight, pore space, water content, and organic matter were the main factors affecting the shear strength of both low and high severity burned soils; 3) different contributions of soil physicochemical properties to the effects of soil cohesion and internal friction angle under different burned severities. Soil cohesion in unburned control sites: SWC (P<0.05)>SOM (P<0.05)>BD>SP; Soil internal friction angle of unburned control sites: SWC (P<0.001)>BD (P<0.05)>SOM>SP; Soil cohesion in low severity burned sites: SP(P<0.001)>BD (P<0.001)>SWC>SOM; Soil internal friction angle of low severity burned sites: BD (P<0.001)>SWC(P<0.05)>SOM>SP; Soil cohesion in high severity burned sites: SWC (P<0.001)>SP>SOM>BD; Soil internal friction angle of high severity burned sites: BD (P<0.001)>SP (P<0.001)>SWC>SOM.【Conclusion】The highly burned sites have experienced more severe soil erosion and have indirectly led to changes in the distribution of soil layers. No serious soil erosion has occurred in the low severity burned sites, and there have been no significant changes in the distribution of soil layers.
Keywords: fire; shear strength; erosion; Greater Khingan Range
土壤侵蝕是一種全球性的環(huán)境問題[1],一直影響著世界各地的森林生態(tài)系統(tǒng)[2]。森林土壤侵蝕加劇的主要原因是保護性植被被破壞,其中包括土地利用變化、集約化耕作以及森林火災發(fā)生[3-6]。近幾十年來,由于氣候變暖以及土地利用方式的變化[7-8],火災對森林生態(tài)系統(tǒng)的干擾愈加明顯[9-10],不但影響碳儲量、水質和生態(tài)系統(tǒng)的穩(wěn)定性[11],而且野火后增強的徑流和侵蝕會演變成破壞性的洪水和泥石流,造成災難性的破壞和生命損失[12]。因此,森林火災對土壤侵蝕的影響也成為了眾多研究者們所關注的熱點。
火災直接消耗森林生態(tài)系統(tǒng)的地表植被和地被層[10],這可能是加劇土壤侵蝕的重要原因之一。早在20世紀90年代,Imeso等[11-13]利用火后模擬降雨試驗驗證了在森林植物和地被層大量減少后,森林的儲水、降雨截留和阻止地表徑流的能力顯著下降。21世紀初期,為應對火災對森林土壤的侵蝕作用,研究者們開始使用等高砍伐原木作為火后緩解徑流和侵蝕的保護措施,雖然人為森林砍伐措施能降低火后土壤侵蝕,但仍無法對其進行有效評估[14]?;鸷蠖唐趦葘τ甑螕魹R侵蝕與土壤表面覆蓋物和表層土壤的理化性質進行了評估,再次確定了森林植物和地被層減少帶來的降雨截留能力減弱會顯著增加雨滴擊濺侵蝕[15];同時發(fā)現(xiàn)中、高強度的火災可以直接通過高溫來破壞有機物和礦物的結合從而改變土壤本身的抗蝕性[16-17]。此外,土壤的滲透能力也因土壤團聚體的分解而降低,減少了土壤的孔隙度并造成土壤板結,進一步加劇了土壤侵蝕過程[18-20]。因此,對火災前后土壤理化參數(shù)的量化和相關分析也是確定火災對土壤侵蝕響應的有效辦法。
目前火災與土壤侵蝕相關的研究很少從土壤侵蝕的基礎力學角度上探究其主要影響因素,也沒有用到土力學指標來描述土壤侵蝕變化[21-22],因此本研究選用土壤抗剪強度指標來預測火后土壤侵蝕過程的變化,從物理角度描述火后土壤侵蝕的主要變化[23]。剪切變形本身就是土壤侵蝕的一種常見的破壞形式[24],了解抗剪強度特性是預測其抗侵蝕性和邊坡穩(wěn)定性的重要組成部分[25-26]??辜魪姸仁芏喾矫嬉蛩赜绊懀珙w粒尺寸、分布、容重和內聚力等土壤固有物理性質因素[25-28]會影響土壤抗剪強度的大小,改變土壤的抗蝕性;而土壤中的碳、氮、磷等土壤化學性質也會影響土壤的分離過程[27,29-31]。許多研究表明土壤剪切強度是表示土壤剝離過程和徑流通過期間土壤抗蝕性最合適的指標之一[32]。從土力學角度看,土壤水蝕是雨滴對土壤顆粒的擊濺剪切作用和徑流對土壤顆粒的沖刷剪切作用的綜合過程,因此將土體抗剪強度作為水土流失評價的重要指標是可行的[32–36]。
大興安嶺是我國唯一的寒溫帶針葉林區(qū),保存著較為良好的興安落葉松林。作為典型的火災多發(fā)區(qū)域和特有的“干-濕-干”變化演變的季節(jié)降水過程[37-38],其土壤侵蝕過程與林火有著密切的關系,因此本研究在大興安嶺畢拉河國家級自然保護區(qū)內開展。在此樣地中利用土壤抗剪強度這一土力學參數(shù)來探討不同火干擾強度下土壤的抗蝕性變化,以揭示未來林火增加背景下森林土壤侵蝕過程的變化規(guī)律。這將有助于了解不同程度的火干擾后森林土層變化以及火后引起土壤侵蝕的主要因素,以便林區(qū)管理者們更有效地對易受火災干擾的區(qū)域進行火后的規(guī)劃與管理。
1 材料和方法
1.1 研究區(qū)概況
研究區(qū)位于大興安嶺畢拉河國家級自然保護區(qū),地理坐標:123°04′29″~123°29′16″E,49°19′40″~49°38′30″N(圖1)。該地區(qū)屬中溫帶濕潤、半濕潤大陸性季風氣候。春季多風,降水稀少,氣溫多變;夏季溫和,降水集中;秋季降溫劇烈,霜期早;冬季漫長嚴寒。年平均溫度為-1.1 ℃,極端最高氣溫35.4 ℃,極端最低氣溫-46.0 ℃。年平均降水量為479.4 mm,侵蝕性降水主要集中在6—8月。主要土壤類型是暗棕壤,是由保護區(qū)內典型的針闊混交林區(qū)下發(fā)育而成,成土過程特點是森林腐殖質積累、弱酸性淋溶作用和暗棕色黏化層的形成[39]。保護區(qū)內興安落葉松Larix gmelinii為優(yōu)勢樹種,白樺Betula platyphylla、蒙古櫟Quercus mongolica為伴生樹種,林下灌木以興安杜鵑Rhododendron dauricum、杜香Rhododendron tomentosum、珍珠梅Sorbaria sorbifolia等為主。
1.2 試驗設計
本研究區(qū)在2017年5月2日發(fā)生特大森林火災,過火面積達11 500 hm2,其中輕度受害面積為8 898.19 hm2,占火燒跡地總面積的76.36%,重度受害面積為1 031.03 hm2,占總面積的8.88%[40];未受害區(qū)域的面積最小為906.57 hm2,占火燒跡地總面積的7.81%。在本次特大火災的過火區(qū)域中選擇坡度、坡位和坡向基本相同的興安落葉松林純林林地作為試驗樣地,并保證其樣地中林分和立地條件相近。經(jīng)過實地調查后,在未火燒的林地中設置對照未火燒樣地(CK);在受到火干擾后樹冠燒焦率<50%,樹木未全部死亡的林地中設置輕度火燒樣地(L);在喬木冠層基本被全部燒毀,樹冠熏黑高度> 5 m的林地中設置重度火燒樣地(H)[41];設置的樣地面積為10 m×10 m,每種處理設置3組重復,共計設置9個樣地。經(jīng)過前期調查,2種火燒樣地內植被恢復良好,重復樣地內植物的多樣性和生物量無顯著差異(表1)。
1.3 樣品采集與處理
于2022年5月在樣地內進行土壤剖面(1 m×1 m×0.6 m)的挖掘和取樣,發(fā)現(xiàn)在0~50 cm的表土層中,包括最上層地被層,3種不同火干擾下的土壤具有明顯不同的分層現(xiàn)象(圖2)。每個樣地設置4個采樣點(50 cm×50 cm),在每個采樣點上移除土壤地被物層,并在保證土壤的完整性的情況下使用環(huán)刀在0~10 cm的土層中收集樣品。因為本次試驗需使用原狀土(直剪試驗)進行試驗,所以使用削土刀與細剪將環(huán)刀上下平面的土和細根修剪,使其盡量保持平整,并在同一采樣點中用鋁盒采集相同土壤樣品(用于理化性質測定),最后將土樣包裹保鮮膜后一同低溫保存(4 ℃)并帶回實驗室,進行土壤抗剪強度和理化性質測定。
1.4 土壤理化性質的測定
土壤含水率(SWC)采用烘干法測定;土壤容重(BD)和孔隙度(SP)采用環(huán)刀法測定;土壤顆粒組成采用羅賓遜吸管法測定;土壤全氮(TN)采用開氏消煮法,后用AA3流動分析儀(BRAN+ LUEBBE,Jena,德國)測定含量,土壤有機質(SOM)測定采用HT1300總碳分析儀(Analytik Jena AG,Jena,德國)測定其有機質含量(SOM);土壤全磷(TP)采用AA3流動分析儀(BRAN+ LUEBBE,Jena,德國)測定含量[42]。
1.5 土壤抗剪強度的測定
1.6 數(shù)據(jù)分析
所有數(shù)據(jù)的正態(tài)性和方差齊性都在SPSS 25.0軟件中進行,并確定了不同對照之間土壤理化性質和抗剪強度指標的差異;基于Pearson相關性的mantel檢驗分析揭示了土壤抗剪強度與土壤理化性質之間的關系,其圖表呈現(xiàn)均基于R 4.2.3中的“corrplot”和“vegan”包完成;隨機森林分析基于R 4.2.3中“ggplot2”“tidyverse”“randomForest”“rfUtilities”“rfPermute”包,其結果表明了不同火燒強度下哪些參數(shù)是影響抗剪強度的主要參數(shù);在Origin 2023軟件中建立了基于土壤理化性質和抗剪強度的多元線性回歸方程公式(2),用來預測和估算受到不同火干擾強度的森林土壤的抗剪強度。
(SC/IFA)=α+β×SOM+ε×BD+γ×SP+ω×SWC。 (2)式中:SWC表示土壤含水率;SOM表示土壤有機質含量;BD表示土壤容重;SP表示土壤孔隙度;α、β、ε、γ和ω分別表示該方程的回歸系數(shù)。
2 結果與分析
2.1 不同火燒強度下的土壤理化性質
單因素方差分析結果表明(表2),相較CK處理,L處理顯著增加了土壤含水率和粉粒含量,分別增加了52.70%和14.58%,土壤全磷、有機質和砂粒含量較CK降低了21.09%、15.11%和14.58%;H處理中的全磷、有機質和黏粒含量較CK處理降低了10.80%、40.90%和32.09%。
2.2 不同火燒強度下的土壤抗剪強度
H處理的內聚力和內摩擦角率較CK處理增加了17.32%和29.82%;L處理內聚力相較CK降低了13.60%(圖3)。
2.3 不同火燒強度下土壤抗剪強度的影響因素
相關性矩陣分析結果(圖4)表明,土壤理化性質與土壤抗剪強度呈顯著相關性(P<0.05)。在CK處理下,土壤的孔隙度、含水率和有機質含量與內聚力呈顯著負相關關系,容重與土壤內聚力呈顯著正相關關系,土壤內摩擦角與土壤含水率、孔隙度和有機質呈顯著負相關關系;在L處理下,土壤的全氮、孔隙度、含水率和有機質含量與內聚力和內摩擦角呈顯著負相關關系,土壤容重與內聚力和內摩擦角呈顯著正相關關系;在H處理下,土壤內聚力與有機質、含水率和孔隙度呈顯著負相關關系,與土壤全氮含量呈顯著負相關關系,與容重呈顯著正相關關系,土壤的內摩擦角與含水率呈顯著負相關關系,與容重呈顯著正相關關系。土壤孔隙度、含水率、容重和有機質是土壤抗剪強度指標的主要影響因素。
為進一步探究不同火燒強度下土壤理化指標對土壤抗剪強度的影響,選用隨機森林分析(圖5),結果表明在CK處理中土壤含水率對預測土壤內聚力和內摩擦角均有顯著作用(P<0.05),土壤有機質和容重也是預測內聚力和內摩擦角的重要變量;土壤容重在L處理下的貢獻率有顯著提升(P<0.001),其土壤孔隙在預測內聚力時的貢獻率到達了最高點,含水率是預測內摩擦角的重要參數(shù);在H處理下,含水率再次成為影響土壤內聚力最主要因素(P<0.001),其他3個參數(shù)在預測內聚力的貢獻率均顯著下降,土壤容重和孔隙是影響內摩擦角變化的重要參數(shù)。
2.4 不同火燒強度下對土壤抗剪強度的預測
通過隨機森林和相關性矩陣分析發(fā)現(xiàn),在不同火燒強度下土壤抗剪強度指標與土壤理化性質的響應方式不同,且不同火燒強度下土壤理化指標對土壤抗剪強度影響的貢獻也不同,為了能夠更好地預測不同火燒強度下對土壤抗剪強度指標,將上述輕度和重度火燒處理的主要理化性質參數(shù)與2個抗剪強度指標分別進行多元線性回歸分析,以孔隙度、含水量、容重和有機質這4個基本參數(shù)構建的抗剪強度預測方程取得了較好的預測效果(表3),其中輕度火燒和重度火燒處理下的土壤內聚力和理化性質擬合的多元線性回歸方程表明,擬合模型的結果符合準確預測的要求(R2>0.5,P<0.01)。
3 討 論
3.1 不同火燒強度對土壤抗剪強度和土層分布的影響
重度森林火災的發(fā)生往往伴隨著大量的火災撲救作業(yè)和火后人為林地管理[45],進行的人工耕作和機械壓實提高了土壤的抗剪強度。此外,樣地所處位置氣候的干濕循環(huán)現(xiàn)象明顯,季節(jié)降雨過程呈“干—濕—干”變化演變,在一定程度上削弱了表層土壤的抗剪強度[38,46]?;鸷笏治g和風侵蝕將表層較為松散的土壤沖刷掉,使下層抗剪強度較高的土壤得以保存[29,47],從而再次提高了土壤的抗剪強度。低強度森林火災對土壤加熱的能力較低且對土壤的理化性質影響有限[48],包括土壤侵蝕[49]。火燒可以釋放枯落物中固化的養(yǎng)分,使其快速參與地球化學循環(huán)和生物小循環(huán)[50]。通過單因素方差分析可以看出,輕度火燒后的土壤與未火燒的土壤相比,抗剪強度參數(shù)無明顯差異,結合土壤剖面的野外觀測(圖1)結果發(fā)現(xiàn)淋溶層的土壤厚度并無顯著變化,地被層的厚度略微增加,輕度火燒未對森林土壤的土層分布產生顯著影響。輕度火燒導致森林地被層厚度增加和促進草本植物生長,也是生態(tài)系統(tǒng)提升土壤的自我保護能力。
3.2 不同火燒強度對土壤理化性質的影響
重度火災給森林系統(tǒng)帶來的影響和改變是顯著的[51]。本研究結果顯示:遭受重度火干擾后土壤的全磷、全氮、有機質和含水率均有不同程度的降低,其中土壤中土壤磷和粒徑分布的變化與以往的研究形成了鮮明的對比。雖然在以往研究中也發(fā)現(xiàn)高強度的燃燒會消耗大量的有機物質,但是其中的土壤黏粒含量和磷的含量并不會因為火燒而顯著減少[52-53],結合樣地調查發(fā)現(xiàn)本研究樣地的坡度較高于其他研究樣地,且火災降低了土壤地被層的保護能力,從而使其表面略微松散且營養(yǎng)物質含量和黏粒占比更高的上層土壤遭受雨滴擊濺侵蝕和徑流沖刷?;馃笕葜氐纳吆涂紫抖鹊慕档鸵惨馕吨寥莱炙芰τ兴陆礫54]。相對于重度火燒來說,輕度火燒能給土壤帶來的變化就有些微不足道,單因素方差分析結果顯示,輕度火燒土壤與未火燒土壤的整體數(shù)據(jù)差異并不顯著,可能由于其燃燒能力有限,溫度和持續(xù)時間都達不到改變土壤理化性質的條件[2,35]。
3.3 不同火燒強度對土壤侵蝕的影響
火災對森林表層土壤的影響是復雜的,最直接的影響就是植被覆蓋度和地被物的減少以及灰層的形成,間接減少了植物對降水的截流作用和土壤表面粗糙度[11,55],使更多的土壤表層裸露出來且受到雨滴濺蝕,不斷改變土壤結構,加劇了侵蝕過程[56]。森林火災對無機覆蓋物和植被結構產生影響的同時,還能通過改變土壤理化性質來影響侵蝕過程,特別是當發(fā)生中度到重度森林火災時,通過破壞有機物和礦物的結合來改變土壤結構,更有利于侵蝕的發(fā)生[20]。在重度火燒區(qū)域中發(fā)現(xiàn),其火后表層土壤和營養(yǎng)物質流失嚴重,土壤內聚力和容重顯著增加,不斷惡化地表植物的生存環(huán)境,加劇土壤侵蝕的發(fā)展。隨機森林分析和回歸分析結果表明,土壤含水率一直是影響火燒跡地中土壤抗剪強度的主要參數(shù),許多研究者對非飽和土含水率和抗剪強度指標的相關關系密切關注[29,33,35]。研究中發(fā)現(xiàn)火災會顯著增加土壤的斥水性[57],其原因是火燒導致有機礦物集合體塌陷和灰分堵塞土壤孔隙,從而造成土壤容重增加[58],并且會減少土壤含水率對土壤抗剪強度的影響,將孔隙和容重進一步提升為影響土壤抗剪強度的主要驅動因子[55]。多元線性回歸方程顯示土壤有機質含量對提高土壤穩(wěn)定性具有重要作用,火后土壤有機質減少的同時也減少了土壤孔隙,從而使土壤更容易發(fā)生板結和壓實。土壤有機質含量與孔隙和含水率呈正相關關系,與容重呈負相關關系,且經(jīng)歷重度火災后的土壤相對于輕度火災后的土壤有機質含量更低,水穩(wěn)性更差,導致其在降雨作用下更易發(fā)生侵蝕[33,58]。為改善火燒給森林土壤所帶來的侵蝕影響,許多研究還表明森林管理者們應使用一些能夠改善土壤條件的措施,比如對被侵蝕土壤添加一定量的生物炭會有效改善土壤養(yǎng)分條件[29,58],但是對于不同火燒強度后不同類型的土壤該如何施加生物炭,施加什么種類的生物炭,還需要更進一步的研究和探討。
在本研究中重度火燒區(qū)域土壤相對于未火燒區(qū)域而言,土壤內聚力和內摩擦角顯著增加,在土力學的角度意味著土壤抵抗剪切破壞能力增加。但結合土壤理化性質和樣地調查的綜合試驗發(fā)現(xiàn)重度火燒并不能顯著提升土壤的抗蝕性,并且不同的火燒強度會以不同方式改變影響土壤抗剪強度的主要驅動因子,這些影響可能不僅是由土壤理化性質的改變造成,似乎更多源于相互作用的生物機制。這些機制隨植被類型、火災特征和植物-土壤反饋作用的不同而變化,從多種方面來影響土壤侵蝕的進程。本研究探討了不同火燒強度對興安落葉松林土壤抗剪強度產生的不同影響及其影響因素,但研究對象僅涉及了單一土層,具有一定的空間局限性,隨著火燒強度的變化,其對土壤產生的影響也許不局限表面,對于更下層的土壤抗剪強度的影響仍需要持續(xù)關注。另外,本研究未根據(jù)不同火燒強度對土壤侵蝕的響應提出應對辦法,今后還需要開展能夠應對不同程度火災對興安落葉松林土壤侵蝕的研究,以便林區(qū)管理者更有效地對易受火災干擾的區(qū)域進行火后的規(guī)劃與管理。
參考文獻:
[1] 盧超,馬周加態(tài),李佳輝,等.凍融條件下土壤侵蝕阻力影響因素[J].水土保持學報,2023,37(6):25-33. LU C, MA Z J T, LI J H, et al. The factors influencing soil erosion resistance under freeze-thaw conditions[J]. Journal of Soil and Water Conservation,2023,37(6):25-33.
[2] KASTRIDIS A, STATHIS D, SAPOUNTZIS M, et al. Insect outbreak and long-term post-fire effects on soil erosion in mediterranean suburban forest[J]. Land,2022,11(6):911.
[3] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications,2017,8(1):2013.
[4] PANAGOS P, BORRELLI P, POESEN J. Soil loss due to crop harvesting in the European Union: a first estimation of an underrated geomorphic process[J]. The Science of the Total Environment,2019,664:487-498.
[5] SHAKESBY R A, BENTO C P M, FERREIRA C S S, et al. Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal[J]. Catena,2015,128:278-293.
[6] FERREIRA C S S, SEIFOLLAHI-AGHMIUNI S, DESTOUNI G, et al. Soil degradation in the European Mediterranean region:processes, status and consequences[J]. Science of the Total Environment,2022,805:150106.
[7] GARCíA-CARMONA M, GARCíA-ORENES F, MATAIXSOLERA J, et al. Salvage logging alters microbial community structure and functioning after a wildfire in a Mediterranean forest[J]. Applied Soil Ecology,2021,168:104130.
[8] FORD A E S, HARRISON S P, KOUNTOURIS Y, et al. Modelling human-fire interactions: combining alternative perspectives and approaches[J]. Frontiers in Environmental Science,2021,9:649835.
[9] CAON L, VALLEJO V R, RITSEMA C J, et al. Effects of wildfire on soil nutrients in Mediterranean ecosystems[J]. EarthScience Reviews,2014,139:47-58.
[10] SHAKESBY R A. Post-wildfire soil erosion in the Mediterranean: review and future research directions[J]. EarthScience Reviews,2011,105(3):71-100.
[11] IMESON A C, VERSTRATEN J M, van MULLIGEN E J, et al. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest[J]. Catena,1992,19(3):345-361.
[12] CUI X, ALAM M A, PERRY G L W, et al. Green firebreaks as a management tool for wildfires: lessons from China[J]. Journal of Environmental Management,2019,233:329-336.
[13] LUCAS-BORJA M E, de LAS HERAS J, MOYA NAVARRO D, et al. Short-term effects of prescribed fires with different severity on rainsplash erosion and physico-chemical properties of surface soil in Mediterranean forests[J]. Journal of Environmental Management,2022,322:116143.
[14] GIOVANNINI G, LUCCHESI S. Effect of fire on hydrophobic and cementing substances of soil aggregates[J]. Soil Science, 1983,136(4):231.
[15] GIOVANNINI G, LUCCHESI S, GIACHETTI M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility[J]. Soil Science,1988,146(4):255.
[16] FERNáNDEZ FILGUEIRA C, VEGA J, JIMéNEZ E, et al. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain)[J]. International Journal of Wildland Fire,2011,20:104-114.
[17] LARSEN I J, MACDONALD L H. Predicting postfire sediment yields at the hillslope scale: testing RUSLE and Disturbed WEPP[J]. Water Resources Research,2007,43(11):W11412.
[18] FERNáNDEZ C, VEGA J A, VIEIRA D C S. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models[J]. Land Degradation Development,2010,21(1):58-67.
[19] 張健樂,史東梅,劉義,等.土壤容重和含水率對紫色土坡耕地耕層抗剪強度的影響[J].水土保持學報,2020,34(3):162- 167,174. ZHANG, J L, SHI D M, LIU Y, et al. Effects of soil bulk density and water content on shear strength of cultivated-layer in purple soil sloping farmland[J]. Journal of Soil and Water Conservation, 2020,34(3):162-167,174.
[20] 林嘉輝,黃夢元,張莉婷,等.芒萁根系對崩崗紅土層土壤抗剪強度的影響[J].水土保持學報,2020,34(6):159-165. LIN J H, HUANG M Y, ZHANG L T, et al. Effects of dicranopteris dichotoma roots on soil shear strength of red soil layer in Benggang[J]. Journal of Soil and Water Conservation, 2020,34(6):159-165.
[21] WANG B, ZHANG G H. Quantifying the binding and bonding effects of plant roots on soil detachment by overland flow in 10 typical grasslands on the Loess Plateau[J]. Soil Science Society of America Journal,2017,81(6):1567-1576.
[22] HORN R. Stress–strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes[J]. Geoderma, 2003,116(1):77-88.
[23] WUDDIVIRA M N, STONE R J, EKWUE E I. Influence of cohesive and disruptive forces on strength and erodibility of tropical soils[J]. Soil and Tillage Research,2013,133:40-48.
[24] ASHWORTH A J, OWENS P R, ALLEN F L. Long-term cropping systems management influences soil strength and nutrient cycling[J]. Geoderma,2020,361:114062.
[25] KNAPEN A, POESEN J, GOVERS G, et al. Resistance of soils to concentrated flow erosion: a review[J]. Earth-Science Reviews,2007,80(1):75-109.
[26] FUJIWARA D, TSUJIKAWA N, OSHIMA T, et al. Estimation of resistance force at steady-state sinkage for cylindrical wheeltyped lunar/planetary exploration rovers with function of push–pull locomotion[J]. Robomech Journal,2020,7(1):38.
[27] ZHANG J, SHI D, JIN H, et al. Characteristics of cultivated layer soil shear strength for sloping farmland in response to soil erosion in the Three Gorges reservoir area, China[J]. Catena,2022,215: 106304.
[28] 周磊,易文,江偉健,等.降雨作用下微生物改良紅黏土邊坡穩(wěn)定性分析[J].中南林業(yè)科技大學學報,2023,43(7):179-188. ZHOU L, YI W, JIANG W J, et al. Stability analysis of microbially modified red clay slopes under rainfall[J]. Journal of Central South University of Forestry Technology,2023,43(7): 179-188.
[29] GENG R, ZHANG G H, HONG D L, et al. Response of soil detachment capacity to landscape positions in hilly and gully regions of the Loess Plateau[J]. Catena,2021,196:104852.
[30] WEI Y, WU X, XIA J, et al. The effect of water content on the shear strength characteristics of granitic soils in south China[J].Soil and Tillage Research,2019,187:50-59.
[31] 文慧,倪世民,王藝彤,等.贛南崩崗區(qū)不同植被類型粉砂質土壤抗剪強度及其影響因素[J].土壤學報,2022,59(6):1517-1526. WEN H, NI S M, WANG Y T, et al. A study on silty soil shear strength and its influencing factors in different vegetation types in benggang erosion area of southern Jiangxi[J]. Acta Pedologica Sinica,2022,59(6):1517-1526.
[32] 張曉明,丁樹文,蔡崇法.干濕效應下崩崗區(qū)巖土抗剪強度衰減非線性分析[J].農業(yè)工程學報,2012,28(5):241-245. ZHANG X M, DING S W, CAI C F. Effects of drying and wetting on nonlinear decay of soil shear strength in slope disintegration erosion area[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(5):241-245.
[33] MOODY J A, SMITH J D, RAGAN B W. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires[J]. Journal of Geophysical Research: Earth Surface,2005,110(F1).
[34] FOX D M, DARBOUX F, CARREGA P. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions[J]. Hydrological Processes,2007,21(17):2377-2384.
[35] 胡海清,魏書精,孫龍.大興安嶺2001—2010年森林火災碳排放的計量估算[J].生態(tài)學報,2012,32(17):5373-5386. HU H Q, WEI S J, SUN L. Estimating carbon emissions from forest fires during 2001 to 2010 in Daxing’anling mountain[J]. Acta Ecologica Sinica,2012,32(17):5373-5386.
[36] 李秀芬,郭昭濱,趙慧穎,等.大興安嶺氣候干濕變化及對森林火災的影響[J].應用氣象學報,2018,29(5):619-629. LI X F, GUO Z B, ZHAO H Y, et al. Change of dry and wet climate and its influence on forest fire in the Great Xing’an mountains[J]. Journal of Applied Meteorological Science, 2018,29(5):619-629.
[37] 黃明,黃杰.大興安嶺主要森林土壤類型的分析鑒別[C].內蒙古自治區(qū)第六屆自然科學學術年會優(yōu)秀論文集,2011:3. HUANG M, HUANG J. Analytical identification of major forest soil types in the Daxing’anling mountains[C]. Proceedings of the Sixth Annual Natural Science Conference of Inner Mongolia Autonomous Region,2011:3.
[38] 劉樹超,陳小中,覃先林,等.內蒙古畢拉河林場森林火災受害程度遙感評價[J].林業(yè)資源管理,2018(1):90-95,140. LIU S C, CHEN X Z, QIN X L, et al. Remote sensing assessment of forest fire damage degree in bilahe forest farm, Inner Mongolia[J]. Forest Resources Management,2018(1):90-95,140.
[39] SMIT I P J, ASNER G P, GOVENDER N, et al. An examination of the potential efficacy of high-intensity fires for reversing woody encroachment in savannas[J]. Journal of Applied Ecology, 2016,53(5):1623-1633.
[40] 孫龍,任玥霄,竇旭,等.火干擾對棋盤山油松林土壤碳氮及驅動因子的影響[J].中南林業(yè)科技大學學報,2023,43(7): 120-128. SUN L, REN Y X, DOU X, et al. Effects of fire disturbance on soil carbon, nitrogen and driving factors of Pinus tabuliformis forests in Qipan mountain[J]. Journal of Central South University of Forestry Technology,2023,43(7):120-128..
[41] ZHANG X, WANG Y, WANG Y, et al. Shear strengths of undisturbed and remolded soil under typical forests in Jinyun mountain, Chongqing city, southwest China[J]. Frontiers of Forestry in China,2007,2(3):305-309.
[42] 詹振芝,黃炎和,蔣芳市,等.礫石含量及粒徑對崩崗崩積體滲透特性的影響[J].水土保持學報,2017,31(3):85-90,95. ZHAN Z Z, HUANG Y H, JIANG F S, et al. Effects of content and size of gravel on soil permeability of the colluvial deposit in Benggang[J]. Journal of Soil and Water Conservation,2017,31(3): 85-90,95.
[43] 史東梅,蔣平,何文健,等.紫色土坡耕地生物埂土壤抗剪強度對干濕作用的響應[J].農業(yè)工程學報,2016,32(24):139-146. SHI D M, JIANG P, HE W J, et al. Response of soil shear strength of bio-embankments for slope farmland to dryingwetting effect in purple hilly area[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(24):139-146.
[44] 商麗娜,吳正方,楊青,等.火燒對三江平原濕地土壤養(yǎng)分狀況的影響[J].濕地科學,2004,2(1):54-60. SHANG L N, WU Z F, YANG Q, et al. The effects of fire on the nutrient status of wetland soil in Sanjiang Plain[J]. Wetland Science,2004,2(1):54-60.
[45] 錢達,張虎,何龍.火災區(qū)域林地植被變化分析—以大興安嶺和黃石公園地區(qū)為例[J].天津師范大學學報(自然科學版), 2019,39(3):60-68. QIAN D, ZHANG H, HE L. Vegetation changes in conflagration area: sase study of Da Hinggan mountains and Yellowstone National Park burned area[J]. Journal of Tianjin Normal University(Natural Science Edition),2019,39(3):60-68.
[46] PEREIRA J S, BADíA D, MARTí C, et al. Fire effects on biochemical properties of a semiarid pine forest topsoil at cmscale[J]. Pedobiologia,2023,96:150860.
[47] MORRIS R, BRADSTOCK R, DRAGOVICH D, et al. Environmental assessment of erosion following prescribed burning in the Mount Lofty Ranges, Australia[J]. International Journal of Wildland Fire,2013,23(1):104-116.
[48] NEARY D G, KLOPATEK C C, DEBANO L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management,1999,122(1):51-71.
[49] BEYERS J, BROWN J, BUSSE M, et al. Wildland fire in ecosystems effects of fire on soil and water[M]. General Technical Report, RMRS-GTR-42-vol. 4. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station,2005:42.
[50] GALANG M A, MARKEWITZ D, MORRIS L A. Soil phosphorus transformations under forest burning and laboratory heat treatments[J]. Geoderma,2010,155(3):401-408.
[51] RAISON R J, KHANNA P K, WOODS P V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests[J]. Canadian Journal of Forest Research,1985,15(4):657-664.
[52] BOYER W D, MILLER J H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands[J]. Forest Ecology and Management,1994,70(1): 311-318.
[53] GIRONA-GARCíA A, VIEIRA D C S, SILVA J, et al. Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis[J]. Earth-Science Reviews, 2021,217:103611.
[54] FERNáNDEZ C. Soil fire severity is more relevant than fire frequency in explaining soil, carbon and nitrogen losses and vegetation recovery after wildfire in NW Spain[J]. Journal of Environmental Management,2023,327:116876.
[55] DEBANO L F. The role of fire and soil heating on water repellency in wildland environments: a review[J]. Journal of Hydrology,2000,231-232:195-206.
[56] CERTINI G. Effects of fire on properties of forest soils: a review[J]. Oecologia,2005,143(1):1-10.
[57] CERTINI G, MOYA D, LUCAS-BORJA M E, et al. The impact of fire on soil-dwelling biota: a review[J]. Forest Ecology and Management,2021,488:118989.
[58] KAMMANN C, LINSEL S, G??LING J, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J]. Plant and Soil,2011,345:195-210.
[本文編校:吳 彬]