摘要:目的 探討毛蕊異黃酮(CA)對(duì)香煙煙霧(CS)誘導(dǎo)的小鼠氣道上皮細(xì)胞損傷及沉默蛋白3/超氧化物歧化酶2(SIRT3/SOD2)信號(hào)通路的影響。方法 將90只雄性BALB/c小鼠隨機(jī)分為對(duì)照(Control)組、CS組、CA低劑量處理組(CA-L組)、CA高劑量處理組(CA-H組)、CA高劑量處理+SIRT3抑制劑3-TYP組(CA-H+3-TYP組),每組18只。采用小動(dòng)物全身體積描記檢測(cè)系統(tǒng)檢測(cè)肺功能指標(biāo)潮氣量(TV)、呼氣峰流速(PEF);酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)血清炎性因子[白細(xì)胞介素(IL)-6、腫瘤壞死因子(TNF)-α]及氧化應(yīng)激[活性氧(ROS)、SOD]水平;HE染色觀察肺組織氣道上皮細(xì)胞損傷;免疫組化檢測(cè)氣道上皮細(xì)胞屏障相關(guān)蛋白[閉合蛋白(OCLN)、閉鎖小帶蛋白1(ZO-1)]表達(dá);蛋白免疫印跡檢測(cè)SIRT3/SOD2信號(hào)通路相關(guān)蛋白表達(dá)。結(jié)果 與Control組相比,CS組TV、PEF、MAN和SOD水平及OCLN、ZO-1、SIRT3、SOD2蛋白表達(dá)水平降低,MLI及IL-6、TNF-α、ROS水平升高(P<0.05);CS組較Control組肺組織結(jié)構(gòu)明顯破壞,肺泡增大明顯,肺泡周圍伴有炎性細(xì)胞浸潤(rùn),氣道上皮細(xì)胞脫落明顯。不同劑量CA均可減輕肺組織破壞,改善肺泡結(jié)構(gòu),減輕炎性細(xì)胞浸潤(rùn),減少氣道上皮細(xì)胞脫落,升高TV、PEF、MAN和SOD水平及OCLN、ZO-1、SIRT3、SOD2蛋白表達(dá)水平,降低MLI及IL-6、TNF-α、ROS水平,且高劑量CA的作用較低劑量CA顯著(P<0.05);SIRT3/SOD2信號(hào)通路抑制劑3-TYP可逆轉(zhuǎn)CA對(duì)CS誘導(dǎo)的小鼠氣道上皮細(xì)胞損傷的改善作用。結(jié)論 CA可改善CS誘導(dǎo)的小鼠氣道上皮細(xì)胞損傷,其作用機(jī)制與激活SIRT3/SOD2信號(hào)通路有關(guān)。
關(guān)鍵詞:毛蕊異黃酮;煙霧;沉默蛋白3/超氧化物歧化酶2;氣道上皮細(xì)胞損傷
中圖分類號(hào):R562.22 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240829
Ameliorating effect of calycosin regulating SIRT3/SOD2 signaling
pathway on airway epithelial cell damage in mice
NIE Jia, GUO Yongying, YU Xiangyan, PEI Yuzhen, LIU Yun, KANG Zenglu, SU Yinghao△
Department of Respiration, Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050013, China
△Corresponding Author E-mail: 824248669@qq.com
Abstract: Objective To investigate effects of calycosin (CA) on cigarette smoke (CS) induced airway epithelial cell" damage in mice and the sirtuin 3/superoxide dismutase 2 (SIRT3/SOD2) signaling pathway in mice. Methods A total of 90 mice were randomly separated into the control group, the cigarette smoke (CS) group, the CA low-dose treatment group (CA-L group), the CA high-dose treatment group (CA-H group) and the CA high-dose treatment plus SIRT3 inhibitor 3-TYP group (CA-H+3-TYP group), with 18 mice in each group. Tidal volume (TV) and peak expiratory flow rate (PEF) of lung function were detected by whole body plethysmography system. Serum levels of inflammatory factors [interleukin (IL) -6, tumor necrosis factor (TNF) -α] and oxidative stress indicators [reactive oxygen species (ROS), SOD] were detected by enzyme-linked immunosorbent assay (ELISA). The injury of airway epithelial cells in lung tissue was observed by HE staining. The expression levels of barrier related proteins (OCLN and ZO-1) in airway epithelial cells were detected by immunohistochemistry. Immunoblotting was applied to detect the expression of SIRT3/SOD2 signaling pathway related proteins. Results Compared with the control group, levels of TV, PEF, MAN and SOD and the expression levels of OCLN, ZO-1, SIRT3 and SOD2 were decreased in the CS group, while the levels of MLI, IL-6, TNF-α and ROS were increased (P<0.05). Compared with the control group, the lung tissue structure was significantly damaged, the alveolar enlargement was obvious, the surrounding alveolar was accompanied by inflammatory cell infiltration, and the airway epithelial cells were obviously shed in the CS group. Different doses of CA alleviated lung tissue destruction, improved alveolar structure, reduced inflammatory cell infiltration, reduced airway epithelial cell shedding, increased levels of TV, PEF, MAN, SOD and OCLN, ZO-1, SIRT3 and SOD2, and decreased levels of MLI, IL-6, TNF-α and ROS. The effect of high dose CA was more significant than that of low dose CA (P<0.05). SIRT3/SOD2 signaling pathway inhibitor 3-TYP partially reversed the ameliorative effect of CA on CS induced airway epithelial cell injury in mice. Conclusion CA can ameliorate CS induced airway epithelial cell damage in mice, and its mechanism is related to the activation of the SIRT3/SOD2 signaling pathway.
Key words: calycosin; smog; Sirtuin 3/superoxide dismutase 2; damage to airway epithelial cells
慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)是一種常見的慢性肺部疾病,主要表現(xiàn)為持續(xù)的呼吸道癥狀及氣流受限等引起的呼吸困難、咳嗽、咳痰等[1]。吸煙是引起COPD的常見危險(xiǎn)因素,即香煙煙霧(cigarette smoke,CS)進(jìn)入支氣管后可誘導(dǎo)氣道上皮細(xì)胞內(nèi)活性氧(reactive oxygen,ROS)產(chǎn)生,發(fā)生炎癥和過氧化應(yīng)激反應(yīng),導(dǎo)致氣道上皮細(xì)胞功能失調(diào),從而引發(fā)COPD[2]。目前主要通過吸入糖皮質(zhì)激素、抗生素、支氣管擴(kuò)張劑等藥物減輕氣道阻塞以緩解呼吸困難癥狀,但其治療效果并不明顯,且易引起免疫紊亂,造成二次感染[3]。明確吸煙所致COPD的發(fā)病機(jī)制,尋求安全高效的治療藥物對(duì)于COPD治療至關(guān)重要。毛蕊異黃酮(calycosin,CA)是一種黃酮類化合物,具有廣泛抗炎、抗氧化、抗腫瘤等作用,可降低炎性因子水平,減輕PM2.5所致的損傷[4]。沉默蛋白3/超氧化物歧化酶2(silencing protein 3/superoxide dismutase 2,SIRT3/SOD2)信號(hào)通路是一條線粒體相關(guān)抗氧化應(yīng)激通路,激活該通路可抑制ROS的產(chǎn)生,改善氧化應(yīng)激及線粒體功能,減輕煙草提取物(tobacco extract,CES)誘導(dǎo)的氣道上皮細(xì)胞損傷[5]。CA能否通過激活SIRT3/SOD2信號(hào)通路改善CS誘導(dǎo)的小鼠氣道上皮細(xì)胞損傷尚未可知。本研究旨在探討CA對(duì)CS誘導(dǎo)的小鼠氣道上皮細(xì)胞損傷及SIRT3/SOD2信號(hào)通路的影響,為COPD的治療尋求新策略。
1 材料與方法
1.1 主要材料 SPF級(jí)雄性BALB/c小鼠90只,3~4周齡,體質(zhì)量(20±2)g,購(gòu)自山東艾茂達(dá)康生命科學(xué)有限公司,生產(chǎn)許可號(hào)為SCXK(魯)20230010,使用許可證號(hào)為SYXK(冀)2023-008。CA購(gòu)自上海岑特生物科技有限公司;3-TYP購(gòu)自上海阿拉丁生化科技股份有限公司;白細(xì)胞介素(IL)-6、腫瘤壞死因子(TNF)-α酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒購(gòu)自武漢益普生物科技有限公司;ROS、SOD ELISA試劑盒購(gòu)自南京森貝伽生物科技有限公司;HE染色試劑盒購(gòu)自武漢伊萊瑞特生物科技股份有限公司;閉合蛋白(OCLN)、閉鎖小帶蛋白1(ZO-1)抗體購(gòu)自上??道噬锟萍加邢薰荆籗IRT3、SOD2抗體購(gòu)自上海晶抗生物工程有限公司;小動(dòng)物全身體積描記檢測(cè)系統(tǒng)(ZL-WBP)購(gòu)自安徽耀坤生物科技有限公司;顯微鏡(BH-2)購(gòu)自日本Olympus公司;光學(xué)顯微鏡(RX50型)購(gòu)自思科諾思生物科技(北京)有限公司;凝膠成像系統(tǒng)(WFH-103)北京泰澤嘉業(yè)科技發(fā)展有限公司。本研究已通過我院動(dòng)物倫理委員會(huì)審批(HBZY2023-YS-222-01)。
1.2 方法
1.2.1 小鼠實(shí)驗(yàn)分組與處理 采用隨機(jī)抽樣法將小鼠分為對(duì)照組(Control組)、CS組、CA低劑量處理組(CA-L組)、CA高劑量處理組(CA-H組)、CA高劑量處理+SIRT3抑制劑組(CA-H+3-TYP組),每組18只;除Control組小鼠暴露于空氣中,其余組小鼠在4支香煙的煙霧中持續(xù)暴露1 h,2次/d,持續(xù)8周[6];CA-L、CA-H組每日首次CS刺激前1 h分別腹腔注射12.5、25 mg/kg CA[4];CA-H+3-TYP組每日首次CS刺激前1 h腹腔注射25 mg/kg CA及50 mg/kg 3-TYP[7];Control組、CS組分別腹腔注射與CA-L、CA-H組等量的PBS溶液。
1.2.2 肺功能檢測(cè) 給藥結(jié)束后,采用小動(dòng)物全身體積描記檢測(cè)系統(tǒng)檢測(cè)小鼠肺功能,將小鼠置于檢測(cè)室適應(yīng)20 min后,在安靜狀態(tài)下采集肺功能指標(biāo)潮氣量(TV)、呼氣峰流速(PEF)。
1.2.3 ELISA檢測(cè)炎性因子及氧化應(yīng)激水平 肺功能檢測(cè)結(jié)束后,腹腔注射40 mL 30%戊巴比妥鈉麻醉小鼠并斷頭處死,取左肺組織。隨機(jī)抽取6只小鼠,左肺組織采用生理鹽水灌洗3次,再將3次支氣管肺泡灌洗液混勻后2 000 r/min離心15 min,取上清液,ELISA法檢測(cè)IL-6、TNF-α、ROS、SOD水平。余肺組織置于-80 ℃冰箱冷凍保存。
1.2.4 HE染色觀察肺組織病理變化 再次隨機(jī)抽取6只小鼠左肺組織,4%多聚甲醛固定后石蠟包埋,切片(厚4 μm),隨后脫蠟水化,HE染色,干燥密封。顯微鏡(×400)下觀察肺組織病理情況。每張切片隨機(jī)讀取6個(gè)肺泡視野,計(jì)算每個(gè)視野肺泡數(shù)(Na)、肺泡隔膜數(shù)(Ns),測(cè)量長(zhǎng)度(L)和面積(S),計(jì)算肺泡平均截距(MLI)=L/Ns,平均肺泡數(shù)(MAN)=Na/S[8]。
1.2.5 免疫組化檢測(cè)上氣道屏障相關(guān)蛋白表達(dá) 取1.2.4制備的左肺石蠟切片,常規(guī)脫蠟、水化,微波爐抗原修復(fù),PBS洗滌后采用山羊血清封閉,然后將切片與兔源多克隆OCLN(1∶800)、ZO-1(1∶800)一抗低溫共孵育過夜,次日PBS洗滌3次后再與山羊抗兔IgG抗體二抗室溫孵育30 min,再次洗滌,然后加入DAB顯色5 min,沖洗后蘇木精復(fù)染3 min,脫水透明封片,光鏡下(×400)觀察拍照,采用Image J軟件分析各蛋白平均光密度值。其中蛋白陽(yáng)性表達(dá)呈棕黃色。
1.2.6 蛋白免疫印跡檢測(cè)線粒體及SIRT3/SOD2信號(hào)通路相關(guān)蛋白表達(dá) 各組剩余6只小鼠左肺組織制成勻漿,與蛋白裂解液充分裂解,2 000 r/min離心10 min,收集上清液,BCA檢測(cè)蛋白濃度,熱水浴5 min后,采用10%十二烷基硫酸鈉-聚丙烯酰胺凝膠在80 V、50 mA條件下電泳15~20 min,再將電壓調(diào)至100 V、60 mA條件下電泳至溴酚染料到凝膠末端,轉(zhuǎn)PVDF膜,血清封閉,將封閉膜與SIRT3(1∶1 000)、SOD2(1∶1 000)一抗低溫反應(yīng)過夜,次日用PBS洗滌后加入山羊抗兔IgG二抗室溫反應(yīng)1 h,再次洗滌后加入ECL顯影,凝膠成像系統(tǒng)采集圖像,以β-actin為內(nèi)參,分析蛋白條帶灰度值,計(jì)算各蛋白相對(duì)表達(dá)量。
1.3 統(tǒng)計(jì)學(xué)方法 采用SPSS 20.0軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料以[[x] ±s]表示,多組間比較采用單因素方差分析,組間多重比較行LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 CA對(duì)CS誘導(dǎo)的小鼠肺功能的影響 與Control組相比,CS組TV、PEF降低(P<0.05);與CS組相比,CA-L、CA-H組TV、PEF依次升高(P<0.05);與CA-H組相比,CA-H+3-TYP組TV、PEF降低(P<0.05),見表1。
2.2 CA對(duì)CS誘導(dǎo)的小鼠肺泡灌洗液炎性因子及氧化應(yīng)激水平的影響 與Control組相比,CS組IL-6、TNF-α、ROS水平升高,SOD水平降低(P<0.05);與CS組相比,CA-L、CA-H組IL-6、TNF-α、ROS水平依次降低,SOD水平依次升高(P<0.05);與CA-H組相比,CA-H+3-TYP組IL-6、TNF-α、ROS水平升高,SOD水平降低(P<0.05),見表2。
2.3 CA對(duì)CS誘導(dǎo)的小鼠肺組織損傷的影" " " " " 響 Control組肺組織結(jié)構(gòu)清晰,肺泡結(jié)構(gòu)完整,氣道上皮細(xì)胞排列整齊,未見病理改變;CS組較Control組肺組織結(jié)構(gòu)明顯破壞,肺泡增大明顯,肺泡周圍伴有炎性細(xì)胞浸潤(rùn),氣道上皮細(xì)胞脫落明顯;CA-L、CA-H組較CS組肺組織破壞相對(duì)減輕,肺泡結(jié)構(gòu)基本完整,肺泡腔縮小,周圍炎性細(xì)胞浸潤(rùn)不明顯,氣道上皮細(xì)胞少量脫落;CA-H+3-TYP組較CA-H組肺組織破壞嚴(yán)重,肺泡腔擴(kuò)張、肺泡壁斷裂融合,大量炎性細(xì)胞浸潤(rùn)及氣道上皮細(xì)胞脫落,見圖1。與Control組相比,CS組MAN降低,MLI升高(P<0.05);與CS組相比,CA-L、CA-H組MAN依次升高,MLI依次降低(P<0.05);與CA-H組相比,CA-H+3-TYP組MAN降低,MLI升高(P<0.05),見表3。
2.4 CA對(duì)CS誘導(dǎo)的小鼠氣道上皮細(xì)胞間相關(guān)蛋白的影響 見圖2、表4。與Control組相比,CS組的OCLN、ZO-1蛋白表達(dá)水平降低(P<0.05);與CS組相比,CA-L、CA-H組的OCLN、ZO-1蛋白表達(dá)水平依次升高(P<0.05);與CA-H組相比,CA-H+3-TYP組的OCLN、ZO-1蛋白表達(dá)水平降低(P<0.05)。
2.5 CA對(duì)SIRT3/SOD2信號(hào)通路相關(guān)蛋白表達(dá)的影響 與Control組相比,CS組的SIRT3、SOD2蛋白表達(dá)水平降低(P<0.05);與CS組相比,CA-L、CA-H組的SIRT3、SOD2蛋白表達(dá)水平依次升高(P<0.05);與CA-H組相比,CA-H+3-TYP組的SIRT3、SOD2蛋白表達(dá)水平降低(P<0.05),見表5、圖3。
3 討論
COPD屬于高發(fā)病率和高病死率的慢性炎癥性呼吸系統(tǒng)疾病,尤其吸煙是其發(fā)病的主要危險(xiǎn)因素。CS通過誘導(dǎo)氣道上皮細(xì)胞發(fā)生炎癥、氧化應(yīng)激反應(yīng),促使氣道的上皮細(xì)胞損傷脫落,功能減弱或喪失,導(dǎo)致COPD的發(fā)生[9]。由于COPD嚴(yán)重威脅患者生命健康,且尚無特效治療藥物,因此尋求新的治療藥物成為目前的重點(diǎn)研究方向。CA是傳統(tǒng)中草藥黃芪中的主要活性成分,在炎癥相關(guān)性疾病方面已得到廣泛應(yīng)用。研究顯示,CA可通過抑制炎性因子水平改善呼吸道合胞病毒感染致肺炎小鼠肺損傷及炎癥反應(yīng)[10]。CA還可抑制炎癥反應(yīng)及細(xì)胞凋亡,減輕大鼠呼吸機(jī)相關(guān)性肺損傷[11]。本研究結(jié)果顯示,CA可升高TV、PEF、MAN,降低MLI,減少氣道上皮細(xì)胞脫落,提示CA對(duì)CS誘導(dǎo)的氣道上皮細(xì)胞損傷及小鼠肺功能具有一定的改善作用。
另外,有研究顯示,CS在氣道內(nèi)募集炎性細(xì)胞,釋放炎性因子TNF-α、IL-6等,同時(shí)促進(jìn)氣道上皮細(xì)胞線粒體內(nèi)ROS生成,導(dǎo)致氣道上皮細(xì)胞線粒體過氧化損傷,促進(jìn)COPD發(fā)展[12-13]。其中TNF-α作為炎癥反應(yīng)最早啟動(dòng)的因子之一,其可通過募集中性粒細(xì)胞、淋巴細(xì)胞、巨噬細(xì)胞,促進(jìn)炎性因子IL-1β、IL-6等釋放,加劇炎癥反應(yīng),還可通過促進(jìn)氣道上皮杯狀細(xì)胞增生及黏蛋白過度釋放,加重氣道阻塞,加劇COPD發(fā)生[12,14]。IL-6在誘發(fā)和維持呼吸道炎癥方面具有重要作用,是COPD患者反復(fù)發(fā)病的危險(xiǎn)因素,可用于預(yù)測(cè)COPD的加重頻率[15]。抑制炎性因子TNF-α、IL-6表達(dá)可在COPD的發(fā)生發(fā)展過程中發(fā)揮保護(hù)作用[16]。另外抑制TNF-α、IL-6水平及ROS生成,升高SOD水平,可抑制CS誘導(dǎo)的炎癥、氧化應(yīng)激反應(yīng),減少細(xì)胞凋亡,抑制氣道重塑及COPD發(fā)生[17]。本研究結(jié)果顯示,CA可降低TNF-α、IL-6水平及ROS生成,升高SOD水平,表明CA可通過抑制炎癥、氧化應(yīng)激反應(yīng),改善CS誘導(dǎo)的氣道上皮細(xì)胞損傷。
氣道上皮屏障可抵御空氣過敏原、污染物和病原體等有害物質(zhì)入侵,還可及時(shí)啟動(dòng)免疫應(yīng)答清除有害物質(zhì),維持氣道微環(huán)境穩(wěn)態(tài),而氣道上皮屏障破壞是引起氣道病理改變、促進(jìn)COPD發(fā)生發(fā)展的重要因素[18]。氣道上皮細(xì)胞間通過OCLN、ZO-1等緊密連接蛋白和黏附連接蛋白構(gòu)成完整的屏障,是呼吸系統(tǒng)與外界接觸的第一道天然屏障。CS可以直接在氣道上皮組織募集炎性細(xì)胞誘發(fā)炎癥反應(yīng),引起組織損傷,降低ZO-1、OCLN蛋白表達(dá)水平,破壞COPD小鼠上皮屏障[19]。有研究顯示,降低氧化應(yīng)激水平,減少對(duì)緊密連接相關(guān)蛋白OCLN、ZO-1等的損害,保護(hù)氣道上皮屏障,可減輕脂多糖(LPS)誘導(dǎo)的急性肺損傷小鼠氣道炎癥[20]。氣道上皮中屏障功能相關(guān)蛋白ZO-1表達(dá)水平升高,可以改善CS誘導(dǎo)的氣道上皮屏障功能障礙,達(dá)到治療COPD的目的[21]。本研究結(jié)果顯示,CA可升高OCLN、ZO-1蛋白表達(dá)水平,提示CA可通過保護(hù)氣道上皮屏障功能,減輕氣道上皮細(xì)胞損傷。
SIRT3/SOD2信號(hào)通路在CS引起的氣道上皮細(xì)胞損傷進(jìn)程中發(fā)揮重要作用。SIRT3主要存在于細(xì)胞線粒體內(nèi),其作為線粒體功能及氧化應(yīng)激的重要調(diào)節(jié)因子,可參與調(diào)控ROS和腺苷三磷酸(ATP)的產(chǎn)生、脂質(zhì)酸氧化和磷酸化等線粒體氧化途徑,以及相關(guān)轉(zhuǎn)錄因子去乙?;?,維持線粒體完整性[22]。CS主要通過抑制內(nèi)源性抗氧化基因SOD2的活性間接促進(jìn)氧化應(yīng)激,而SIRT3可通過調(diào)控SOD2去乙酰化,增強(qiáng)細(xì)胞抵抗氧化應(yīng)激的能力,進(jìn)而提高細(xì)胞的存活率。研究顯示,ROS/SIRT3/SOD2通路參與煙草煙霧誘導(dǎo)的非小細(xì)胞肺癌吉非替尼耐藥[23]。SIRT3過表達(dá)可阻止CES引起的氣道上皮線粒體氧化應(yīng)激和細(xì)胞損傷,參與COPD的發(fā)病機(jī)制[24]。SIRT3可以通過抑制自噬、氧化應(yīng)激及凋亡減輕H2O2誘導(dǎo)的肺泡Ⅱ型上皮細(xì)胞損傷[25]。本研究結(jié)果顯示,CA可升高SIRT3、SOD2蛋白表達(dá)水平,改善氣道上皮細(xì)胞損傷,因此推測(cè)其可能通過激活SIRT3/SOD2信號(hào)通路改善氣道上皮細(xì)胞損傷。另外,對(duì)CA高劑量處理CS誘導(dǎo)的小鼠進(jìn)行SIRT3抑制劑3-TYP處理發(fā)現(xiàn),其可逆轉(zhuǎn)CA對(duì)CS誘導(dǎo)的氣道上皮細(xì)胞損傷的改善作用,故再次證明CA可通過激活SIRT3/SOD2信號(hào)通路改善CS誘導(dǎo)的氣道上皮細(xì)胞損傷。
綜上所述,CA可改善CS誘導(dǎo)的氣道上皮細(xì)胞損傷,其作用機(jī)制與激活SIRT3/SOD2信號(hào)通路有關(guān)。但CA對(duì)CS誘導(dǎo)的COPD作用機(jī)制目前尚不清晰,且CA能否通過調(diào)控其他通路改善COPD尚未可知,故仍需進(jìn)一步實(shí)驗(yàn)驗(yàn)證。
參考文獻(xiàn)
[1] SIROCKO K T,ANGSTMANN H,PAPENMEIRE S,et al. Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster[J]. Environ Pollut,2022,309(1):119696-119706. doi:10.1016/j.envpol.2022.119696.
[2] 中華醫(yī)學(xué)會(huì)呼吸病學(xué)分會(huì)慢性阻塞性肺疾病學(xué)組,中國(guó)醫(yī)師協(xié)會(huì)呼吸醫(yī)師分會(huì)慢性阻塞性肺疾病工作委員會(huì). 慢性阻塞性肺疾病診治指南(2021年修訂版)[J]. 中華結(jié)核和呼吸雜志,2021,44(3):170-205. Chronic Obstructive Pulmonary Disease Group,Respiratory Medicine Branch,Chinese Medical Association,Working Committee of Chronic obstructive Pulmonary Disease,Respiratory Medicine Branch,Chinese Medical Doctor Association. Guidelines for diagnosis and treatment of chronic obstructive pulmonary disease (2021 revised edition)[J]. Chinese Journal of Tuberculosis and Respiratory,2021,44(3):170-205. doi:10.3760/cma.j.cn112147-20210109-00031.
[3] BRENNAN M,MCDONNELL M J,HARRISON M J,et al. Antimicrobial therapies for prevention of recurrent acute exacerbations of COPD (AECOPD):beyond the guidelines[J]. Respir Res,2022,23(1):58-68. doi:10.1186/s12931-022-01947-5.
[4] WANG C,LUO J,BAI X,et al. Calycosin alleviates injury in airway epithelial cells caused by PM 2.5 exposure via activation of AMPK signalling[J]. Evid Based Complement Alternat Med,2021,2021(1):8885716-8885724. doi:10.1155/2021/8885716.
[5] LI F,YE C,WANG X,et al. Honokiol ameliorates cigarette smoke-induced damage of airway epithelial cells via the SIRT3/SOD2 signalling pathway[J]. J Cell Mol Med,2023,27(24):4009-4020. doi:10.1111/jcmm.17981.
[6] AGHAPOUR M,RAEE P,MOGHADDAM S J,et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease:role of cigarette smoke exposure[J]. Am J Respir Cell Mol Biol,2018,58(2):157-169. doi:10.1165/rcmb.2017-0200TR.
[7] LIANG W,ZHAO C,CHEN Z,et al. Sirtuin-3 protects cochlear hair cells against noise-induced damage via the superoxide dismutase 2/reactive oxygen species signaling pathway[J]. Front Cell Dev Biol,2021,9(1):766512-766523. doi:10.3389/fcell.2021.766512.
[8] 張藍(lán)熙,田燕歌,朱麗華,等. 補(bǔ)肺益腎方通過調(diào)控Nrf2通路抗氧化應(yīng)激治療慢性阻塞性肺疾病機(jī)制[J]. 中華中醫(yī)藥雜志,2020,35(5):2374-2379. ZHANG L X,TIAN Y G,ZHU L H,et al. Mechanism of Bufei Yishhen formula in treating chronic obstructive pulmonary disease by regulating Nrf2 pathway against oxidative stress [J]. Chinese Journal of Traditional Chinese Medicine,2020,35(5):2374-2379.
[9] CHRISTENSON S A,SMITH B M,BAFADHEL M,et al. Chronic obstructive pulmonary disease[J]. Lancet,2022,399(10342):2227-2242. doi:10.1016/S0140-6736(22)00470-6.
[10] 王玉君,韓波妮,史艷平,等. 毛蕊異黃酮對(duì)呼吸道合胞病毒感染致肺炎模型小鼠的保護(hù)作用及機(jī)制研究[J]. 中藥材,2022,45(3):715-719. WANG Y J,HAN B N,SHI Y P,et al. Protective effect and mechanism of mullein isoflavone on respiratory syncytial virus induced pneumonia in mice [J]. Chinese Traditional Medicine,2022,45(3):715-719. doi:10.13863/j.issn1001-4454.2022.03.035.
[11] 岳琳瑩,趙永忠,楊曉金,等. 毛蕊異黃酮對(duì)大鼠呼吸機(jī)相關(guān)性肺損傷的影響及其與HB-EGF的關(guān)系[J]. 中華麻醉學(xué)雜志,2020,40(9):1142-1146. YUE L Y,ZHAO Y Z,YANG X J,et al. Effects of calydrin on ventilator associated lung injury in rats and its relationship with HB-EGF[J]. Chinese Journal of Anesthesiology,2020,40(9):1142-1146. doi:10.3760/cma.j.cn131073.20191130.00926.
[12] 趙術(shù)彤,丁運(yùn),李月川,等. 輕度慢性阻塞性肺疾病的病理特征及其與炎性因子的相關(guān)性[J]. 天津醫(yī)藥,2024,52(6):643-647. ZHAO S T,DING Y,LI Y C,et al. Pathological characteristics of mild chronic obstructive pulmonary disease and its correlation with inflammatory factors [J]. Tianjin Med J,2024,52(6):643-647. doi:10.11958/20231360.
[13] 侯亞儒,舒新樂,張霞,等. PARP-1抑制劑通過激活SIRT1-PGC-1α軸減輕慢性阻塞性肺疾病大鼠的炎癥和氧化應(yīng)激反應(yīng)[J]. 中國(guó)免疫學(xué)雜志,2023,39(12):2540-2544. HOU Y R,SHU X L,ZHANG X,et al. PARP-1 inhibitors reduce inflammation and oxidative stress in rats with chronic obstructive pulmonary disease by activating SIRT1-PGC-1α axis [J]. Chinese Journal of Immunology,2023,39(12):2540-2544. doi:10.3969/j.issn.1000-484X.2023.12.014.
[14] 聶進(jìn),劉代順,張建勇,等. 臍帶間充質(zhì)干細(xì)胞外泌體對(duì)慢性阻塞性肺疾病大鼠肺部炎癥的作用機(jī)制探討[J]. 天津醫(yī)藥,2023,51(12):1326-1331. NIE J,LIU D S,ZHANG J Y,et al. Effect of umbilical cord mesenchymal stem cell exosomes on pulmonary inflammation in rats with chronic obstructive pulmonary disease [J]. Tianjin Med J,2023,51(12):1326-1331. doi:10.11958/20230708.
[15] HUANG H,HUANG X,ZENG K,et al. Interleukin-6 is a strong predictor of the frequency of COPD exacerbation within 1 year[J]. Int J Chron Obstruct Pulmon Dis,2021,16(1):2945-2951. doi:10.2147/COPD.S332505.
[16] HUANG X,GUAN W,XIANG B,et al. MUC5B regulates goblet cell differentiation and reduces inflammation in a murine COPD model[J]. Respir Res,2022,23(1):11-22. doi:10.1186/s12931-021-01920-8.
[17] DANG X,HE B,NING Q,et al. Alantolactone suppresses inflammation,apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways[J]. Respir Res,2020,21(1):95-105. doi:10.1186/s12931-020-01358-4.
[18] CARLIER F M,DE FAYS C,PILETTE C. Epithelial barrier dysfunction in chronic respiratory diseases[J]. Front Physiol,2021,12(1):691227-691253. doi:10.3389/fphys.2021.691227.
[19] 江宇航,梅曉峰,賈利丹,等. 香煙煙霧誘導(dǎo)慢性阻塞性肺疾病模型小鼠氣道上皮屏障損傷的機(jī)制[J]. 中國(guó)病理生理雜志,2022,38(7):1297-1303. JIANG Y H,MEI X F,JIA L D,et al. Mechanism of airway epithelial barrier injury induced by cigarette smoke in mice model of chronic obstructive pulmonary disease [J]. Chinese Journal of Pathophysiology,2022,38(7):1297-1303. doi:10.3969/j.issn.1000-4718.2022.07.018.
[20] 楊學(xué)敏,張歡歡,宋立強(qiáng). 柚皮苷通過減輕氧化應(yīng)激降低急性肺損傷小鼠內(nèi)皮通透性的研究[J]. 現(xiàn)代藥物與臨床,2023,38(10):2389-2396. YANG X M,ZHANG H H,SONG L Q. Effects of naringin on endothelial permeability in mice with acute lung injury by alleviating oxidative stress [J]. Modern Medicine and Clinic,2023,38(10):2389-2396. doi:10.7501/j.issn.1674-5515.2023.10.002.
[21] SONG Y,F(xiàn)U W,ZHANG Y,et al. Azithromycin ameliorated cigarette smoke-induced airway epithelial barrier dysfunction by activating Nrf2/GCL/GSH signaling pathway[J]. Respir Res,2023,24(1):69-88. doi:10.1186/s12931-023-02375-9.
[22] WANG T,CAO Y,ZHENG Q,et al. SENP1-SIRT3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell,2019,75(4):823-834. doi:10.1016/j.molcel.2019.06.008.
[23] 訾亞婉,廖科,陳虹. 煙草煙霧通過ROS/Sirt3/SOD2通路誘導(dǎo)NSCLC細(xì)胞吉非替尼耐藥[J]. 中國(guó)肺癌雜志,2023,26(4):245-256. ZI Y W,LIAO K,CHEN H. Tobacco smoke induces gefitinib resistance in NSCLC cells through ROS/Sirt3/SOD2 pathway [J]. Chinese Journal of Lung Cancer,2023,26(4):245-256. doi:10.3779/j.issn.1009-3419.2023.106.05.
[24] ZHANG M,ZHANG Y,ROTH M,et al. Sirtuin 3 inhibits airway epithelial mitochondrial oxidative stress in cigarette smoke-induced COPD[J]. Oxid Med Cell Longev,2020,2020(1):7582980-7582991. doi:10.1155/2020/7582980.
[25] 廖貞亮,馮幫海,任穎聰,等. 沉默信息調(diào)節(jié)因子2相關(guān)酶3調(diào)控自噬減輕H2O2誘導(dǎo)的肺泡Ⅱ型上皮細(xì)胞凋亡[J]. 實(shí)用醫(yī)學(xué)雜志,2023,39(11):1389-1395. LIAO Z L,F(xiàn)ENG B H,REN Y C,et al. Silencing regulator 2 related enzyme 3 regulates autophagy and reduces H2O2-induced apoptosis of alveolar type Ⅱ epithelial cells [J]. Journal of Practical Medicine,2023,39(11):1389-1395. doi:10.3969/j.issn.1006-5725.2023.11.012.
(2024-06-27收稿 2024-07-23修回)
(本文編輯 陳麗潔)