摘要:目的 探討藁本內(nèi)酯(LIG)對食管癌細(xì)胞增殖、凋亡、血管生成擬態(tài)及Ras同源基因家族蛋白A(Rho A)/Rho關(guān)聯(lián)含卷曲螺旋結(jié)合蛋白激酶(ROCK)信號通路的影響。方法 用濃度為0、12.5、25、50、100、200 μmol/L LIG處理食管癌細(xì)胞EC-109,檢測細(xì)胞活性,篩選適宜濃度進(jìn)行后續(xù)實驗。將EC-109細(xì)胞分為對照組(Control組),LIG低、中、高濃度組(LIG-L、LIG-M、LIG-H組),LIG高濃度+RhoA激活劑Naciclasine組(LIG-H+Naciclasine組)。Edu檢測細(xì)胞增殖,流式細(xì)胞術(shù)檢測細(xì)胞凋亡;觀察血管生成擬態(tài);Western blot檢測細(xì)胞增殖、凋亡相關(guān)蛋白及RhoA、ROCK蛋白表達(dá),裸鼠移植瘤實驗驗證LIG對食管癌腫瘤生長的影響,免疫組化檢測移植瘤血管內(nèi)皮生長因子(VEGF)、RhoA、ROCK表達(dá)水平。結(jié)果 與Control組相比,LIG-L、LIG-M、LIG-H組EC-109細(xì)胞血管擬態(tài)管狀結(jié)構(gòu)依次減少,Edu陽性率、細(xì)胞周期蛋白(Cyclin) D1、細(xì)胞增殖核抗原(Ki67)、B細(xì)胞淋巴瘤/白血病-2(Bcl-2)、RhoA、ROCK表達(dá)依次降低,P21、細(xì)胞凋亡率、Bcl-2相關(guān)蛋白(Bax)、胱天蛋白酶(Caspase)-3表達(dá)依次升高(P<0.05)。RhoA激活劑Naciclasine可部分逆轉(zhuǎn)LIG對食管癌細(xì)胞增殖、凋亡和血管生成擬態(tài)的改善作用。裸鼠移植瘤實驗顯示,與Control組相比,LIG組裸鼠移植瘤生長減緩,腫瘤體積減小,RhoA、ROCK、VEGF表達(dá)水平降低(P<0.05)。結(jié)論 LIG通過抑制RhoA/ROCK信號通路抑制食管癌細(xì)胞的增殖及血管生成擬態(tài),促進(jìn)食管癌細(xì)胞凋亡。
關(guān)鍵詞:藁本內(nèi)酯;食管腫瘤;ρA GTP結(jié)合蛋白質(zhì);rho相關(guān)激酶類;細(xì)胞增殖;細(xì)胞凋亡;腫瘤移植
中圖分類號:R735.1 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240758
Effects of ligustilide regulating RhoA/ROCK signaling pathway on biological behavior of esophageal cancer cells
HAO Kaikai1, WANG Xiaomin2△, LIU Zheng1, LIU Dongyang3, LI Jing1
1 Department of Oncology, Handan Central Hospital, Hebei Province, Handan 056000, China; 2 Department of Imaging,
Affiliated Hospital of Hebei Engineering University; 3 Department of Thoracic Surgery,
Handan Central Hospital, Hebei Province
△Corresponding Author E-mail: E-mail:r61ejj@163.com
Abstract: Objective To investigate effects of ligustilide (LIG) on proliferation, apoptosis, angiogenic mimicry and Ras homolog gene family member A (RhoA)/Rho associated coiled coil containing protein kinase 1 (ROCK) signaling pathway in esophageal cancer cells. Methods Esophageal cancer cell line EC-109 was treated with LIG at concentrations of 0, 12.5, 25, 50, 100, and 200 μmol/L to detect cell activity, and the suitable concentration was selected for subsequent experiments. EC-109 cells were grouped into the control group, the LIG low, medium and high concentration groups (LIG-L, LIG-M and LIG-H groups), and the LIG-H+RhoA activator Naciclassine group (LIG-H+Naciclassine group). Edu was applied to detect cell proliferation, and flow cytometry was applied to detect cell apoptosis. Angiogenetic mimicry was observed. Western blot assay was applied to detect expression levels of proteins related to cell proliferation and apoptosis, and RhoA, ROCK proteins. Nude mouse tumor transplantation experiment was applied to verify the effect of LIG on the growth of esophageal cancer tumors. Immunohistochemistry was applied to detect expression levels of angiogenesis related factors (VEGF), RhoA and ROCK proteins in transplanted tumors. Results Compared with the control group, the vascular mimicry tubular structure of EC-109 cells decreased sequentially in the LIG-L group, the LIG-M group and the LIG-H group. The positive rate of Edu, the expression levels of Cyclin D1, Ki67, Bcl-2, RhoA and ROCK reduced in turn. P21, cell apoptosis rate, the expression of Bax and Caspase-3 increased in sequence (P<0.05). Naciclasine, RhoA activator, partially reversed the effect of LIG on cell proliferation, apoptosis and vasculogenic mimicry of esophageal cancer cells. Nude mouse transplantation tumor experiment showed that compared with the control group, the growth rate of transplanted tumor showed down, tumor volume decreased and the expression levels of RhoA, ROCK and VEGF decreased in the LIG group (P<0.05). Conclusion Ligustilide inhibits the proliferation and angiogenic mimicry of esophageal cancer cells by inhibiting RhoA/ROCK signaling pathway, and promotes the apoptosis of esophageal cancer cells.
Key words: ligustilide; esophageal neoplasms; rhoA GTP-binding protein; rho-associated kinases; cell proliferation; apoptosis; neoplasm transplantation
食管癌是全球常見的消化系統(tǒng)惡性腫瘤之一,其發(fā)病率與死亡率也在惡性腫瘤中居高不下[1]。食管癌早期不易被發(fā)現(xiàn),治療時多已為中晚期,導(dǎo)致治療效果不理想。目前主要通過食管切除、放療、化療和分子靶向藥物等多種方式進(jìn)行治療,雖然患者生存得到一定改善,但5年生存率依然較低[2]。尋求新的藥物對治療食管癌至關(guān)重要。由于中醫(yī)藥的不良反應(yīng)少,治療效果明顯而越來越受到關(guān)注[3]。藁本內(nèi)酯(LIG)是從當(dāng)歸、川芎等傘形科草本植物中提取出來的一種苯酞類化合物,具有鎮(zhèn)痛消炎、抗腫瘤、舒張血管等多種藥理學(xué)作用[4]。LIG可抑制癌癥相關(guān)成纖維細(xì)胞活化,促進(jìn)其凋亡[5]。Ras同源基因家族蛋白A(RhoA)/Rho關(guān)聯(lián)含卷曲螺旋結(jié)合蛋白激酶(ROCK)信號通路參與腫瘤的發(fā)展進(jìn)程,包括腫瘤的增殖、侵襲與轉(zhuǎn)移及癌細(xì)胞凋亡等,激活RhoA/ROCK信號通路能促進(jìn)喉癌細(xì)胞的增殖、侵襲及上皮間質(zhì)轉(zhuǎn)化[6]。LIG可否通過調(diào)控RhoA/ROCK信號通路抑制食管癌進(jìn)展尚未可知。本研究通過探討LIG對食管癌細(xì)胞增殖、凋亡、血管生成擬態(tài)及RhoA/ROCK信號通路的影響,以期為食管癌的治療提供新方向。
1 材料與方法
1.1 材料 食管癌細(xì)胞EC-109購自中國科學(xué)院上海細(xì)胞庫;SPF級4周齡BALB/c-nu雄性裸鼠20只購于濟(jì)南朋悅實驗動物繁育公司,生產(chǎn)許可證號:SCXK(魯)2022-0006;LIG(HPLC≥98.0%)購于上海源葉生物公司;RhoA激活劑Naciclasine購自北京百奧萊博科技有限公司;Edu細(xì)胞增殖試劑盒購于武漢伊萊瑞特生物公司;Annexin V-FITHCA/PI細(xì)胞凋亡試劑盒購于上海Share-Bio公司;兔源細(xì)胞增殖核抗原(Ki67)一抗購于美國Santa Cruz Biotechnology公司;兔源P21、兔源細(xì)胞周期蛋白D1(Cyclin D1)、兔源B細(xì)胞淋巴瘤/白血病-2(Bcl-2)、兔源Bcl-2相關(guān)X蛋白(Bax)一抗購自美國Cell Signaling Technology公司;兔源VEGF一抗購于上海碧云天。胱天蛋白酶(Caspase)-3抗體購自武漢博歐特生物有限公司。兔源RhoA、兔源ROCK一抗及HRP標(biāo)記的山羊抗兔二抗購于英國Abcam公司;DM IL LED型熒光顯微鏡購于德國Leica公司;ChemiDocXRS+型凝膠成像系統(tǒng)購于美國Thermo Fisher Scientific公司;FACSCalibur型流式細(xì)胞儀購自美國BD公司。
1.2 方法
1.2.1 細(xì)胞培養(yǎng) 將食管癌細(xì)胞EC-109接種于PRMI 1640培養(yǎng)基中(10%胎牛血清、100 U/mL青霉素、100 mg/L鏈霉素),培養(yǎng)在37 ℃、5%CO2細(xì)胞培養(yǎng)箱中。
1.2.2 細(xì)胞生存率實驗 待EC-109生長至對數(shù)生長期,分別用濃度為12.5、25、50、100、200 μmol/L LIG處理24 h,加入CCK-8檢測液繼續(xù)培養(yǎng)4 h,酶標(biāo)儀測光密度(OD)值,檢測細(xì)胞活性,篩選適宜濃度進(jìn)行后續(xù)實驗。
1.2.3 細(xì)胞分組與處理 將EC-109細(xì)胞分為對照組(Control組),LIG低、中、高濃度組(LIG-L、LIG-M、LIG-H組),LIG高濃度+Naciclasine組(LIG-H+Naciclasine組)[7];Control組只加入培養(yǎng)基;LIG-L、LIG-M、LIG-H組分別用25、50、100 μmol/L LIG處理EC-109細(xì)胞24 h;LIG-H+Naciclasine組用100 μmol/L LIG及30 μmol/L Naciclasine處理EC-109細(xì)胞24 h。
1.2.4 細(xì)胞增殖實驗 各組EC-109細(xì)胞接種于24孔板,加入Edu共培養(yǎng)2 h,4%多聚甲醛固定15 min,0.3% Triton X-100室溫孵育20 min,Click反應(yīng)液室溫避光孵育30 min,DAPI室溫避光孵育5~10 min,PBS充分洗滌后熒光顯微鏡下觀察結(jié)果,計算Edu陽性率。
1.2.5 細(xì)胞凋亡實驗 各組EC-109細(xì)胞用PBS清洗后加入緩沖液混勻,加入胰蛋白酶消化細(xì)胞,離心后收集細(xì)胞,Annexin V-FITC、PI試劑避光孵育,流式細(xì)胞術(shù)檢測細(xì)胞凋亡率。
1.2.6 血管生成擬態(tài)觀察 將各組EC-109細(xì)胞加入胰蛋白酶消化后接種在鋪有預(yù)冷的Matrigel培養(yǎng)基的24孔細(xì)胞培養(yǎng)板中,在37 ℃、5%CO2環(huán)境下培養(yǎng)12 h,倒置顯微鏡下觀察管狀結(jié)構(gòu)的完整程度并記錄數(shù)量。
1.2.7 Western blot 將各組EC-109細(xì)胞洗滌后,加入細(xì)胞裂解液裂解30 min,離心取上清,檢測各組EC-109細(xì)胞的蛋白濃度。取適量蛋白,加入緩沖液混勻水浴加熱,然后進(jìn)行凝膠電泳、轉(zhuǎn)PVDF膜、脫脂牛奶室溫封閉,加入一抗Cyclin D1、P21、Ki67、Bcl-2、Bax、Caspase-3、RhoA、ROCK孵育過夜,加入二抗室溫孵育,ECL顯影,Image J軟件分析計算蛋白相對表達(dá)量。
1.2.8 裸鼠移植瘤實驗 將EC-109細(xì)胞培養(yǎng)至對數(shù)生長期,加入緩沖液制成5×106/mL細(xì)胞懸液,接種于20只裸鼠右腋下皮下,每只0.1 mL,每天觀察腫瘤生長情況。當(dāng)腫瘤的最大直徑達(dá)到0.5 cm時,將裸鼠隨機(jī)抽樣分為對照組與LIG組,每組10只。LIG組灌胃29 mg/(kg·d)LIG,灌胃劑量根據(jù)大小鼠之間劑量換算而得[8]。對照組灌胃與LIG組等量的大豆油。每天觀察裸鼠生存狀態(tài),每2 d測量腫瘤體積,14 d后處死裸鼠,取出腫瘤組織,放入4%多聚甲醛中固定,制成石蠟切片,隨后脫蠟水化,加入VEGF、RhoA、ROCK一抗孵育過夜,加入二抗室溫孵育,加入DAB顯色、蘇木精染色,干燥密封,顯微鏡觀察,Image J軟件分析計算蛋白相對表達(dá)量。
1.3 統(tǒng)計學(xué)方法 采用SPSS 25.0軟件分析數(shù)據(jù),計量資料以均數(shù)±標(biāo)準(zhǔn)差([x] ±s)表示,2組間比較采用獨(dú)立樣本t檢驗,多組間比較采用單因素方差分析,組間多重比較用SNK-q檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 LIG對EC-109細(xì)胞存活率的影響 與Control相比,25、50、100、200 μmol/L LIG組EC-109細(xì)胞存活率降低(P<0.05);100、200 μmol/L LIG組EC-109細(xì)胞存活率比較差異無統(tǒng)計學(xué)意義(P>0.05);由此選擇25、50、100 μmol/L LIG進(jìn)行后續(xù)實驗,見圖1。
2.2 LIG對EC-109細(xì)胞增殖的影響 與Control組相比,LIG-L、LIG-M、LIG-H組EC-109細(xì)胞Edu陽性率,Cyclin D1、Ki67蛋白表達(dá)依次降低,P21蛋白表達(dá)依次升高(P<0.05);與LIG-H組相比,LIG-H+Naciclasine組EC-109細(xì)胞Edu陽性率,Cyclin D1、Ki67蛋白表達(dá)升高,P21蛋白表達(dá)降低(P<0.05),見圖2、3,表1。
2.3 LIG對EC-109細(xì)胞凋亡的影響 與Control組相比,LIG-L、LIG-M、LIG-H組EC-109細(xì)胞凋亡率,Bax、Caspase-3蛋白表達(dá)依次升高,Bcl-2蛋白表達(dá)依次降低(P<0.05);與LIG-H組相比,LIG-H+Naciclasine組細(xì)胞凋亡率,Bax、Caspase-3蛋白表達(dá)降低,Bcl-2蛋白表達(dá)升高(P<0.05),見圖4、5,表2。
2.4 LIG對EC-109細(xì)胞血管生成擬態(tài)的影響 與Control組相比,LIG-L、LIG-M、LIG-H組EC-109細(xì)胞血管擬態(tài)管狀結(jié)構(gòu)逐漸模糊,管狀結(jié)構(gòu)數(shù)量逐漸減少(P<0.05);與LIG-H組相比,LIG-H+Naciclasine組EC-109細(xì)胞血管擬態(tài)管狀結(jié)構(gòu)清晰且管狀結(jié)構(gòu)數(shù)量明顯增多(P<0.05),見圖6、表3。
2.5 LIG對RhoA/ROCK信號通路的影響 與Control組相比,LIG-L、LIG-M、LIG-H組EC-109細(xì)胞RhoA、ROCK蛋白表達(dá)依次降低(P<0.05);與LIG-H組相比,LIG-H+Naciclasine組EC-109細(xì)胞2種蛋白表達(dá)升高(P<0.05),見圖7、表3。
2.6 LIG對裸鼠移植瘤生長的影響 與Control組相比,LIG組裸鼠移植瘤生長減緩,腫瘤體積及質(zhì)量減小,見表4、5;RhoA、ROCK、VEGF蛋白表達(dá)降低(P<0.05),見表5、圖8。
3 討論
食管癌是食管上皮細(xì)胞的惡性腫瘤,主要受遺傳、吸煙及不良飲食習(xí)慣等影響。食管主要通過食管平滑肌的擴(kuò)張性運(yùn)動來運(yùn)送食物,當(dāng)癌癥發(fā)生時,患者飲食吞咽愈發(fā)困難,導(dǎo)致出現(xiàn)一系列并發(fā)癥,甚至死亡[9]。由于其早期發(fā)病隱匿,后期手術(shù)風(fēng)險大,尋找新型治療食管癌的藥物成為研究重點(diǎn)。
LIG作為中藥川芎、當(dāng)歸等傘形科植物的主要活性物質(zhì),對腫瘤的生長具有抑制作用[10]。研究顯示,LIG能夠促使骨肉瘤細(xì)胞G2/M期阻滯,抑制骨肉瘤細(xì)胞增殖與遷移,上調(diào)促凋亡蛋白Bax的表達(dá),下調(diào)抑凋亡蛋白Bcl-2表達(dá),促進(jìn)骨肉瘤細(xì)胞凋亡[11]。LIG還可以抑制非小細(xì)胞肺癌、膀胱癌等多種癌細(xì)胞的增殖,并促進(jìn)癌細(xì)胞凋亡[12-13]。食管癌細(xì)胞的異常增殖與凋亡阻滯是腫瘤發(fā)展的重要因素,細(xì)胞增殖相關(guān)蛋白CyclinD1、P21、Ki67與介導(dǎo)細(xì)胞凋亡通路的蛋白Bcl-2、Bax與Caspase-3均參與食管癌的發(fā)生發(fā)展,降低Cyclin D1、Ki67、Bcl-2的表達(dá)水平,升高Bax、Caspase-3的表達(dá)水平,可以抑制食管癌細(xì)胞的增殖,促進(jìn)食管癌細(xì)胞凋亡[14-15]。本研究顯示,LIG可下調(diào)Cyclin D1、Ki67、Bcl-2的表達(dá),上調(diào)P21、Bax、Caspase-3表達(dá),說明其可抑制食管癌細(xì)胞增殖,促進(jìn)食管癌細(xì)胞凋亡,抑制食管癌移植瘤生長,在食管癌中發(fā)揮抗腫瘤作用。
血管生成貫穿食管癌的進(jìn)展及轉(zhuǎn)移過程,影響腫瘤的發(fā)展進(jìn)程。VEGF可以增加血管通透性,促進(jìn)血管內(nèi)皮細(xì)胞增殖、遷移及新生血管形成,是血管生成的標(biāo)志物,對腫瘤的發(fā)展具有重要調(diào)節(jié)作用[16-17]。研究顯示,抑制VEGF表達(dá)可抑制腫瘤新生血管形成,阻礙腫瘤的生長[18]。VEGF與食管癌患者腫瘤轉(zhuǎn)移、分化程度和臨床分期均有一定相關(guān)性,可用于食管癌早期診斷及預(yù)后[19]。本研究顯示,LIG可下調(diào)VEGF表達(dá),減少管狀結(jié)構(gòu)數(shù)量,說明LIG可以抑制腫瘤新生血管形成,從而發(fā)揮抑制腫瘤生長的作用。
RhoA/ROCK信號通路參與多種疾病的發(fā)展進(jìn)程,尤其是腫瘤的進(jìn)展及轉(zhuǎn)移。RhoA屬于Ras超家族,激活RhoA可以通過調(diào)節(jié)肌動蛋白骨架影響肌動球蛋白的收縮性,從而激活下游靶基因,影響細(xì)胞的增殖與遷移[20]。絲氨酸/蘇氨酸激酶ROCK是RhoA下游關(guān)鍵靶基因,激活ROCK可以促使胞質(zhì)內(nèi)肌球蛋白磷酸化水平升高,促進(jìn)細(xì)胞的侵襲與遷移[21]。研究顯示,抑制RhoA/ROCK信號通路可以抑制胃癌的發(fā)生發(fā)展[22]。本研究顯示,LIG可以降低RhoA、ROCK表達(dá),推測其可能通過抑制RhoA/ROCK信號通路抑制食管癌細(xì)胞的增殖及血管生成擬態(tài),促進(jìn)食管癌細(xì)胞凋亡。而RhoA激活劑可以逆轉(zhuǎn)LIG對食管癌細(xì)胞增殖及血管生成擬態(tài)的抑制作用。另外,裸鼠移植瘤實驗顯示,LIG可以減緩移植瘤的生長,減小移植瘤體積,且降低RhoA、ROCK、VEGF蛋白表達(dá),說明LIG可以通過抑制RhoA/ROCK信號通路抑制食管癌細(xì)胞的增殖及血管生成擬態(tài),促進(jìn)食管癌細(xì)胞凋亡,抑制腫瘤新生血管形成,進(jìn)而抑制食管癌的進(jìn)展。
綜上所述,LIG通過抑制RhoA/ROCK信號通路抑制食管癌細(xì)胞的增殖及血管生成擬態(tài),促進(jìn)食管癌細(xì)胞凋亡。本研究仍存在局限性,LIG對食管癌的具體作用機(jī)制尚不清楚,其可能通過調(diào)控其他通路影響食管癌的發(fā)生發(fā)展,后續(xù)需要更多的研究加以驗證。
參考文獻(xiàn)
[1] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al. Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi:10.3322/caac.21660.
[2] WATANABE M,OTAKE R,KOZUKI R,et al. Recent progress in multidisciplinary treatment for patients with esophageal cancer[J]. Surg Today,2020,50(1):12-20. doi:10.1007/s00595-019-01878-7.
[3] 楊慧超,荀敬,姜曉琳,等. 中醫(yī)藥治療食管癌的作用機(jī)制研究進(jìn)展[J]. 中國中西醫(yī)結(jié)合外科雜志,2024,30(3):419-423. YANG H C,XUN J,JIANG X L,et al. Research progress on the mechanism of action of traditional Chinese medicine in the treatment of esophageal cancer[J]. Chinese Journal of Integrated Traditional and Western Medicine Surgery,2024,30(3):419-423. doi:10.3969/j.issn.1007-6948.2024.03.026.
[4] 李登輝,蔡潤茁,朱麗明,等. lncRNA HOTAIR靶向miR-126激活RhoA/ROCK通路促進(jìn)喉癌Hep-2細(xì)胞增殖、侵襲與EMT[J]. 現(xiàn)代腫瘤醫(yī)學(xué),2022,30(3):365-370. LI D H,CAI R Z,ZHU L M,et al. Activation of RhoA/ROCK pathway by lncRNA HOTAIR targeting miR-126 promotes proliferation,invasion and EMT of laryngeal carcinoma Hep-2 cells[J]. Modern Oncology Medicine,2022,30(3):365-370. doi:10.3969/j.issn.1672-4992.2022.03.001.
[5] HSU R J,PENG K Y,HSU W L,et al. Z-Ligustilide induces c-Myc-dependent apoptosis via activation of ER-stress signaling in hypoxic oral cancer cells[J]. Front Oncol,2022,12:824043. doi:10.3389/fonc.2022.824043.
[6] MA J,MEI J,LU J,et al. Ligustilide promotes apoptosis of cancer-associated fibroblasts via the TLR4 pathways[J]. Food Chem Toxicol,2020,135:110991. doi:10.1016/j.fct.2019.110991.
[7] 王紅云,王武亮. CHK1通過RhoA/ROCK信號通路對宮頸癌細(xì)胞放療敏感性的影響及機(jī)制研究[J]. 醫(yī)藥論壇雜志,2021,42(10):76-80. WANG H Y,WANG W L. Effect of CHK1 on radiotherapy sensitivity of cervical cancer cells through RhoA/ROCK signaling pathway and its mechanism[J]. Journal of Medical Forum,2021,42(10):76-80. doi:1672-3422(2021)10-0076-05.
[8] ALSHEHRI A F,KHODIER A E,AL-GAYYAR M M. Antitumor activity of ligustilide against ehrlich solid carcinoma in rats via inhibition of proliferation and activation of autophagy[J]. Cureus,2023,15(6):e40499. doi:10.7759/cureus.40499.
[9] 林布雷,肖軒. 西妥昔單抗聯(lián)合放療對食管癌患者血清腫瘤標(biāo)志物及新生血管指標(biāo)水平的影響[J]. 中外醫(yī)學(xué)研究,2023,21(19):161-164. LIN B L,XIAO X. Effects of cetuximab combined with radiotherapy on serum tumor markers and neovascularization in patients with esophageal cancer [J]. Chinese and Foreign Medical Research,2023,21(19):161-164. doi:10.14033/j.cnki.cfmr.2023.19.041.
[10] 何樹苗,陳元堃,曾奧,等. 藁本內(nèi)酯藥理作用及機(jī)制研究進(jìn)展[J]. 廣東藥科大學(xué)學(xué)報,2021,37(2):152-156. HE S M,CHEN Y K,ZENG A,et al. Pharmacological effects and mechanisms of ligustilide[J]. Journal of Guangdong Pharmaceutical University,2021,37(2):152-156. doi:10.16809/j.cnki.2096-3653.2020081202.
[11] 于冬冬. 藁本內(nèi)酯對骨肉瘤細(xì)胞凋亡的影響及其作用機(jī)制[J]. 中國醫(yī)科大學(xué)學(xué)報,2023,52(4):301-307.YU D D. Effect of ligustilide on apoptosis of osteosarcoma cells and its mechanism of action[J]. Journal of China Medical University,2023,52(4):301-307. doi:10.12007/j.issn.0258-4646.2023.04.003.
[12] JIANG X,ZHAO W,ZHU F,et al. Ligustilide inhibits the proliferation of non-small cell lung cancer via glycolytic metabolism[J]. Toxicol Appl Pharmacol,2021,410:115336. doi:10.1016/j.taap.2020.115336.
[13] YIN L,YING L,GUO R,et al. Ligustilide induces apoptosis and reduces proliferation in human bladder cancer cells by NFκB1 and mitochondria pathway[J]. Chem Biol Drug Des,2023,101(6):1252-1261. doi:10.1111/cbdd.14207.
[14] 張潔. 番茄堿通過AMPK/COX-2通路調(diào)控食管癌細(xì)胞凋亡的機(jī)制研究[J]. 中國臨床藥理學(xué)雜志,2023,39(16):2348-2352. ZHANG J. The mechanism of tomato line regulating apoptosis of esophageal cancer cells through AMPK/COX-2 pathway[J]. Chinese Journal of Clinical Pharmacology,2023,39(16):2348-2352. doi:10.13699/j.cnki.1001-6821.2023.16.015.
[15] 孫振峰,劉公哲,朱應(yīng)超,等. 木犀草素調(diào)控食管癌細(xì)胞生物學(xué)行為及其機(jī)制[J]. 中華實驗外科雜志,2022,39(2):287-290. SUN Z F,LIU G Z,ZHU Y C,et al. Luteolin regulates biological behavior of esophageal carcinoma cells and its mechanism [J]. Chinese Journal of Experimental Surgery,2022,39(2):287-290. doi:10.3760/cma.j.cn421213-20210713-01210.
[16] MABETA P,STEENKAMP V. The VEGF/VEGFR axis revisited:implications for cancer therapy[J]. Int J Mol Sci,2022,23(24):15585. doi:10.3390/ijms232415585.
[17] AHMAD A,NAWAZ M I. Molecular mechanism of VEGF and its role in pathological angiogenesis[J]. J Cell Biochem,2022,123(12):1938-1965. doi:10.1002/jcb.30344.
[18] MA J,CHEN X,CHEN Y,et al. Ligustilide inhibits tumor angiogenesis by downregulating VEGFA secretion from cancer-associated fibroblasts in prostate cancer via TLR4[J]. Cancers(Basel),2022,14(10):2406. doi:10.3390/cancers14102406.
[19] JOSHI R,QIN L,CAO X,et al. DLC1 SAM domain-binding peptides inhibit cancer cell growth and migration by inactivating RhoA[J]. J Biol Chem,2020,295(2):645-656. doi:10.1074/jbc.RA119.011929.
[20] 嚴(yán)鈴鈴,馮曉云,馬慶霞. VEGF聯(lián)合TRAP1、CEA在食管癌患者腫瘤轉(zhuǎn)移、分化、臨床分期中的臨床價值[J]. 國際檢驗醫(yī)學(xué)雜志,2023,44(18):2301-2304. YAN L L,F(xiàn)ENG X Y,MA Q X. The clinical value of VEGF combined with TRAP1 and CEA in tumor metastasis,differentiation and clinical staging in patients with esophageal cancer[J]. International Journal of Laboratory Medicine,2019,44(18):2301-2304. doi:10.3969/j.issn.1673-4130.2023.18.026.
[21] LIU D,XIA A D,WU L P,et al. IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway[J]. Cell Signal,2022,94:110313. doi:10.1016/j.cellsig.2022.110313.
[22] 廖山嬰,劉超,王蓓蓓,等. 復(fù)方斑蝥膠囊調(diào)控RhoA/ROCK信號通路抑制MNNG誘導(dǎo)的大鼠胃癌發(fā)生[J]. 中國中西醫(yī)結(jié)合雜志,2019,39(6):728-732. LIAO S Y,LIU C,WANG B B,et al. Compound cantharides capsules regulate RhoA/ROCK signaling pathway to inhibit the occurrence of MNNG-induced gastric cancer in rats[J]. Chinese Journal of Integrated Traditional and Western Medicine,2019,39(6):728-732. doi:10.7661/j.cjim.20181031.321.
(2024-06-11收稿 2024-07-19修回)
(本文編輯 李國琪)