摘要:目的 探究瑞馬唑侖(Rem)調(diào)節(jié)Toll樣受體4(TLR4)/髓樣分化因子88(MyD88)/核因子-κB(NF-κB)信號(hào)通路對(duì)燒傷大鼠腸上皮細(xì)胞凋亡的影響。方法 將造模成功的燒傷大鼠隨機(jī)分為模型組(Model組),藥物低、中、高劑量處理組(Rem-L組、Rem-M組、Rem-H組)和高劑量瑞馬唑侖+TLR4激活劑組(Rem-H+LPS組),另取健康的大鼠作對(duì)照組(Control組)。在對(duì)大鼠尾靜脈采血且行安樂死后取其腸組織樣本。酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)血清炎性因子白細(xì)胞介素(IL)-1β、IL-6水平;HE染色觀察腸組織形態(tài);TUNEL檢測(cè)試劑盒檢測(cè)細(xì)胞凋亡;免疫組化檢測(cè)緊密連接蛋白ZO-1、Occludin表達(dá);免疫印跡實(shí)驗(yàn)檢測(cè)凋亡蛋白Bax及TLR4/MyD88/NF-κB信號(hào)通路蛋白表達(dá)。結(jié)果 與Control組相比,Model組細(xì)胞排列紊亂,有炎癥表現(xiàn),IL-1β、IL-6水平、細(xì)胞凋亡率升高,Bax、TLR4、MyD88、p-NF-κB/NF-κB表達(dá)上調(diào),ZO-1、Occludin表達(dá)下調(diào)(P<0.05);與Model組比較,Rem-L、Rem-M、Rem-H組腸黏膜炎癥浸潤(rùn)逐漸減輕,IL-1β、IL-6水平、細(xì)胞凋亡率降低,Bax、TLR4、MyD88、p-NF-κB/NF-κB表達(dá)下調(diào),ZO-1、Occludin表達(dá)上調(diào),呈劑量依賴性(P<0.05);與Rem-H組相比,Rem-H+LPS組組織炎癥加重,IL-1β、IL-6水平、細(xì)胞凋亡率升高,Bax、TLR4、MyD88、p-NF-κB/NF-κB表達(dá)上調(diào),ZO-1、Occludin表達(dá)下調(diào)(P<0.05)。結(jié)論 Rem可能通過抑制TLR4/MyD88/NF-κB信號(hào)通路緩解燒傷大鼠腸上皮細(xì)胞的損傷,從而保護(hù)腸黏膜。
關(guān)鍵詞:燒傷;Toll樣受體4;髓樣分化因子88;NF-κB;細(xì)胞凋亡;瑞馬唑侖;腸上皮細(xì)胞
中圖分類號(hào):R644 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240667
Effect of remimazolam on apoptosis of intestinal epithelial cells in burned rats by regulating TLR4/MyD88/NF-κB signaling pathway
LONG Hua1, CHEN Yifei2, WANG Qingshu1
1 Department of Anesthesiology, Second People 's Hospital of Deyang City, Deyang 618000, China;
2 Department of Anesthesiology, Mianyang Central Hospital
Abstract: Objective To investigate the effect of remimazolam (Rem) on apoptosis of intestinal epithelial cells in burned rats by regulating Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. Methods The successfully constructed burned rat model was randomly divided into the model group, the Rem low dose treatment (Rem-L) group, the Rem medium dose treatment (Rem-M) group and the Rem high dose treatment (Rem-H) group, and Rem-H+TLR4 activator (LPS) group. Healthy rats were taken as the control group. After blood samples were collected from tail vein of rats and intestinal tissue samples were taken after euthanasia. Serum levels of inflammatory cytokines interleukin-1β and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). HE staining was applied to observe the morphology of intestinal tissue. TUNEL detection kit was used to detect apoptosis. Immunohistochemistry was used to detect the expression of tight junction proteins ZO-1 and Occludin. Immunoblotting experiments were used to detect the expression levels of apoptotic proteins Bax and TLR4/MyD88/NF-κB signaling pathway proteins. Results Compared with the control group, cell arrangement was disordered with inflammation, and IL-1β and IL-6 levels and apoptosis rate were increased, expression levels of Bax, TLR4, MyD88 and p-NF-κB/NF-κB were up-regulated, and expression levels of ZO-1 and Occludin were down-regulated in the model group (P<0.05). Compared with the model group, inflammatory infiltration of intestinal mucosa was gradually reduced in the Rem-L, Rem-M and Rem-H groups, the apoptosis rate, IL-1β and IL-6 levels were decreased, the expression levels of Bax, TLR4, MyD88 and p-NF-κB/NF-κB were down-regulated, and the expression of ZO-1 and Occludin was up-regulated in a dose-dependent manner (P<0.05). Compared with the Rem-H group, the tissue inflammation was aggravated, the apoptosis rate, levels of IL-1β and IL-6 were increased, expression levels of Bax, TLR4, MyD88 and p-NF-κB/NF-κB were up-regulated, and expression levels of ZO-1 and Occludin were down-regulatedin in the Rem-H+LPS group (P<0.05). Conclusion Remimazolam may alleviate the damage of intestinal epithelial cells in burned model rats by inhibiting TLR4/MyD88/NF-κB signaling pathway, thus protecting intestinal mucosa.
Key words: burns; Toll-like receptor 4; myeloid differentiation factor 88; NF-kappa B; apoptosis; Remimazolam; intestinal epithelial cells
燒傷是常見的創(chuàng)傷性損傷,嚴(yán)重影響患者的生活質(zhì)量,病死率較高。嚴(yán)重?zé)齻蟠傺滓蜃?、?yīng)激細(xì)胞因子、缺氧因子通過多種信號(hào)通路誘導(dǎo)腸道屏障功能障礙[1]。腸黏膜屏障是維持人體內(nèi)部環(huán)境穩(wěn)定的核心組織結(jié)構(gòu)。腸道黏液屏障是抵御病原微生物入侵的第一道防線,在維持內(nèi)部環(huán)境的穩(wěn)定方面起著重要作用[2]。緩解腸道黏膜損傷、減少全身炎癥反應(yīng)和控制氧化應(yīng)激負(fù)荷是治療嚴(yán)重?zé)齻闹匾椒āH瘃R唑侖(Rem)是一種靶向γ-氨基丁酸A(GABAa)受體的新型麻醉藥物,可以穩(wěn)定血流動(dòng)力學(xué),提供快速麻醉和覺醒,對(duì)呼吸產(chǎn)生的抑制作用較小,且代謝物無任何藥理作用[3]。研究發(fā)現(xiàn),瑞馬唑侖能通過降低脂多糖(LPS)誘導(dǎo)的腫瘤壞死因子(TNF)-α、白細(xì)胞介素(IL)-6和IL-1β等炎性因子的釋放而提高內(nèi)毒素血癥小鼠的存活率[4]。但瑞馬唑侖對(duì)燒傷大鼠腸上皮細(xì)胞凋亡的影響仍不清楚。Toll樣受體4(TLR4)是LPS的主要信號(hào)受體,髓樣分化因子88(MyD88)是響應(yīng)TLR4與LPS相互作用的關(guān)鍵下游信號(hào)蛋白,在LPS的作用下,核因子-κB(NF-κB)被TLR4-MyD88信號(hào)通路激活。NF-κB通路激活后IκBα被降解,p65磷酸化上調(diào),誘導(dǎo)p65從細(xì)胞質(zhì)向細(xì)胞核易位。這一系列的級(jí)聯(lián)反應(yīng)最終導(dǎo)致炎癥反應(yīng)激活和炎性因子的釋放[5]。有研究報(bào)道香蓮?fù)瑁╔LP)可能通過調(diào)節(jié)TLR4/MyD88/NF-κB信號(hào)通路治療潰瘍性結(jié)腸炎[6]。但瑞馬唑侖能否調(diào)節(jié)TLR4/MyD88/NF-κB信號(hào)通路對(duì)燒傷大鼠腸上皮細(xì)胞凋亡產(chǎn)生影響尚未可知。本研究著重探究瑞馬唑侖對(duì)燒傷大鼠腸上皮細(xì)胞凋亡的影響及其可能的作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物 108只雄性SPF級(jí)成年SD大鼠購自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司,動(dòng)物生產(chǎn)許可證號(hào):SCXK(魯)2022-0006。所有大鼠均飼養(yǎng)在濕度60%±5%,溫度(25±1)℃的受控環(huán)境中,光暗循環(huán)各12 h,并有足夠的食物和水。
1.2 主要試劑與儀器 瑞馬唑侖購自維克奇生物公司;TLR4激活劑LPS購自MCE公司;兔抗大鼠Bax、Occludin、TLR4、MyD88、NF-κB、p-NF-κB抗體購自Abcam公司。兔抗ZO-1抗體購自上海碧云天生物技術(shù)有限公司。辣根過氧化物酶標(biāo)記的二抗購自溫州科淼生物科技有限公司;山羊抗兔抗體購自廣東固康生物科技有限公司。大鼠IL-1β、IL-6酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒分別購自博研生物、江萊生物。一步法TUNEL細(xì)胞凋亡檢測(cè)試劑盒(綠色熒光)購自碧云天公司。Eppendorf Centrifuge5424R小型臺(tái)式冷凍離心機(jī)購自艾本德生物公司;SuPerMax 3000AL型多功能酶標(biāo)儀購自閃譜生物公司;LWD300-38LFT倒置顯微鏡購自北京測(cè)維光電儀器廠;冰凍切片機(jī)購自闊海醫(yī)療;Mini-PROTEAN? Tetra電泳儀購自美國(guó)伯樂公司。
1.3 造模及分組 以30 mg/kg戊巴比妥鈉腹腔麻醉所有大鼠,剪掉其背部毛發(fā),放置預(yù)制模板,將背部皮膚完全暴露于矩形開口,保護(hù)其余皮膚,據(jù)Walker-Mason燒傷模型[7],將大鼠背部皮膚浸入100 ℃沸水15 s,造成20%體表面積Ⅲ度燒傷(TBSAⅢ)動(dòng)物模型,燒傷完成后即刻干燥[8]。Control組大鼠的背部浸入37 ℃水15 s,完成后立即干燥。觀察3 h,檢查所有大鼠的燒傷程度。實(shí)驗(yàn)在成都紐瑞特醫(yī)療科技股份有限公司進(jìn)行,經(jīng)該公司動(dòng)物實(shí)驗(yàn)中心倫理委員會(huì)審核通過(2023-11263)。將造模成功的大鼠隨機(jī)抽樣分為模型組(Model組),藥物低、中、高劑量處理組(Rem-L組、Rem-M組、Rem-H組)和高劑量瑞馬唑侖+TLR4激活劑組(Rem-H+LPS組),每組18只,另取18只正常SD大鼠作為對(duì)照組(Control組)。參照文獻(xiàn)[9],Rem-L組、Rem-M組、Rem-H組大鼠連續(xù)7 d于腹腔分別注射5、10、20 mg·kg-1·d-1瑞馬唑侖;Rem-H+LPS組連續(xù)7 d腹腔注射20 mg·kg-1·d-1瑞馬唑侖及0.4 mg·kg-1·d-1 LPS[10];Control組與Model組連續(xù)7 d腹腔注射等量生理鹽水,以上各組均每天腹腔注射1次。
1.4 標(biāo)本收集 末次給藥結(jié)束后,對(duì)各組大鼠進(jìn)行尾靜脈采血,取血清,然后腹腔注射120 mg/kg戊巴比妥鈉將大鼠安樂死,手術(shù)切取腸組織樣本,去除腸系膜和脂肪,清洗后分為2份,一份用4%甲醛固定24 h;另一份用液氮冰凍,-80 ℃保存待用。
1.5 大鼠血清炎性因子水平檢測(cè) 使用ELISA試劑盒檢測(cè)大鼠血清IL-1β、IL-6水平,操作依據(jù)試劑盒步驟說明。
1.6 HE染色觀察腸黏膜組織形態(tài) 將各組大鼠腸組織用4%多聚甲醛固定24 h,然后用乙醇脫水、二甲苯透明,完成后包埋切片,切片厚度6 μm,蘇木素、伊紅染色,顯微鏡觀察。
1.7 TUNEL檢測(cè)細(xì)胞凋亡 將大鼠腸組織切片進(jìn)行脫蠟水化,加20 mg/L蛋白酶K消化20 min,PBS清洗,加50 μL的TUNEL工作液,37 ℃條件下進(jìn)行避光染色1 h,DAPI染色細(xì)胞核,在熒光顯微鏡下觀察樣本并進(jìn)行拍照保存,統(tǒng)計(jì)細(xì)胞凋亡率。
1.8 免疫組化檢測(cè)ZO-1、Occludin表達(dá) 將大鼠腸組織樣本進(jìn)行脫蠟及梯度乙醇水化,用胎牛血清封閉,加入ZO-1、Occludin抗體孵育,PBS清洗,加入二抗孵育,PBS清洗,DAB顯色,清洗后封片,顯微鏡下進(jìn)行觀察拍照,并進(jìn)行光密度(OD)值分析。
1.9 Western blot檢測(cè)Bax、TLR4、MyD88、NF-κB蛋白表" 達(dá) 用RIPA裂解液裂解各組大鼠腸組織樣本,孵育后以" " " " 12 000 r/min離心10 min,提取總蛋白,BCA法用于檢測(cè)蛋白濃度。使用十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)將蛋白分離,電轉(zhuǎn)膜,5%脫脂奶粉封閉,分別加入p-NF-κB、NF-κB、Bax、TLR4、MyD88對(duì)應(yīng)一抗,孵育過夜,加入二抗,室溫孵育2 h,ECL顯色,將β-actin作為內(nèi)參,分析各蛋白條帶表達(dá)量。
1.10 統(tǒng)計(jì)學(xué)方法 采用SPSS 25.0軟件進(jìn)行數(shù)據(jù)分析,符合正態(tài)分布的計(jì)量數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差[([x] ±s)]表示,多組間比較用單因素方差分析,組間多重比較用SNK-q檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 瑞馬唑侖對(duì)血清炎性因子表達(dá)水平的影" " "響 與Control組比較,Model組大鼠血清IL-1β、IL-6水平升高(P<0.05);與Model組比較,Rem-L、Rem-M、Rem-H組IL-1β、IL-6水平呈劑量依賴性降低(P<0.05);與Rem-H組相比,Rem-H+LPS組IL-1β、IL-6水平上升(P<0.05),見表1。
2.2 腸黏膜組織HE染色結(jié)果 Control組為正常腸組織,組織完整,結(jié)構(gòu)正常,未出現(xiàn)染色變化;與Control組相比,Model組細(xì)胞排列紊亂,有炎癥表現(xiàn);與Model組比較,Rem-L、Rem-M、Rem-H組腸黏膜炎癥浸潤(rùn)逐漸減輕;與Rem-H組相比,Rem-H+LPS組組織炎癥加重,見圖1。
2.3 瑞馬唑侖對(duì)大鼠腸上皮細(xì)胞凋亡的影響 凋亡細(xì)胞經(jīng)TUNEL染色顯示為綠色,Control組幾乎無凋亡細(xì)胞;與Control組比較,Model組細(xì)胞凋亡率升高,Bax表達(dá)上調(diào)(P<0.05);與Model組比較,Rem-L、Rem-M、Rem-H組細(xì)胞凋亡率逐漸降低,Bax表達(dá)下調(diào),呈劑量依賴性(P<0.05);與Rem-H組相比,Rem-H+LPS組細(xì)胞凋亡率明顯上升,Bax表達(dá)上調(diào)(P<0.05),見表2,圖2、3。
2.4 瑞馬唑侖對(duì)大鼠腸上皮細(xì)胞緊密連接蛋白的影響 與Control組比較,Model組細(xì)胞ZO-1、Occludin表達(dá)下調(diào)(P<0.05);與Model組比較,Rem-L、Rem-M、Rem-H組細(xì)胞ZO-1、Occludin表達(dá)呈劑量依賴性上調(diào)(P<0.05);與Rem-H組比較,Rem-H+LPS組ZO-1、Occludin表達(dá)下調(diào)(P<0.05),見表3、圖4。
2.5 瑞馬唑侖對(duì)TLR4/MyD88/NF-κB信號(hào)通路的影響 與Control組比較,Model組TLR4、MyD88、p-NF-κB/NF-κB表達(dá)上調(diào)(P<0.05);與Model組比較,Rem-L、Rem-M、Rem-H組TLR4、MyD88、p-NF-κB/NF-κB表達(dá)呈劑量依賴性下調(diào)(P<0.05);與Rem-H組相比,Rem-H+LPS組TLR4、MyD88、p-NF-κB/NF-κB表達(dá)上調(diào)(P<0.05),見圖5、表4。
3 討論
腸損傷是嚴(yán)重?zé)齻颊叩某R姴l(fā)癥。腸道血流量減少會(huì)導(dǎo)致腸道缺氧,胃腸道屏障功能破壞[11]。腸道受損會(huì)影響營(yíng)養(yǎng)物質(zhì)的吸收,導(dǎo)致患者營(yíng)養(yǎng)不良,是預(yù)后不良的重要因素[12]。因此,亟需明確嚴(yán)重?zé)齻竽c黏膜損傷和修復(fù)的機(jī)制,并開發(fā)有效的治療腸黏膜損傷的方法和藥物[13]。
瑞馬唑侖起效快,恢復(fù)時(shí)間短,手術(shù)成功率高,呼吸和血流動(dòng)力學(xué)波動(dòng)小,長(zhǎng)期輸注后積累較少,并且沒有嚴(yán)重的藥物相關(guān)不良反應(yīng),已被用于內(nèi)鏡檢查、手術(shù)、維持程序性鎮(zhèn)靜和全身麻醉[14]。瑞馬唑侖在許多炎癥疾病中的作用均有報(bào)道。研究發(fā)現(xiàn),瑞馬唑侖能夠通過3-磷酸肌醇依賴性蛋白激酶1(PDPK1)泛素化抑制NOD樣受體蛋白3(NLRP3)活性,從而減輕支氣管肺炎的炎癥[15]。Song等[16]研究證實(shí),瑞馬唑侖能夠減輕葉酸(FA)誘導(dǎo)的急性腎損傷(AKI)后的炎癥反應(yīng),抑制腎纖維化進(jìn)展。本研究采用5、10、20 mg·kg-1·d-1瑞馬唑侖治療燒傷大鼠后發(fā)現(xiàn)腸黏膜炎癥浸潤(rùn)減輕,炎性因子IL-1β、IL-6水平降低,說明瑞馬唑侖可能具有抗炎作用。Shi等[17]研究報(bào)道,瑞馬唑侖可以提高缺氧復(fù)氧(H/R)誘導(dǎo)后的肝細(xì)胞活力并抑制肝細(xì)胞凋亡。本研究發(fā)現(xiàn),使用不同劑量的瑞馬唑侖處理燒傷大鼠后,細(xì)胞凋亡率降低,Bax蛋白表達(dá)下調(diào),提示瑞馬唑侖能夠抑制燒傷大鼠腸上皮細(xì)胞凋亡。本研究還發(fā)現(xiàn),燒傷大鼠通過瑞馬唑侖治療后緊密連接蛋白ZO-1、Occludin表達(dá)水平上升,說明瑞馬唑侖能夠上調(diào)緊密連接蛋白表達(dá),緩解細(xì)胞通透性損傷。以上研究結(jié)果表明瑞馬唑侖具有腸道保護(hù)和抗炎的作用。
LPS是TLR4的激動(dòng)劑,可與TLR4結(jié)合,通過MyD88通路激活NF-κB。激活的NF-κB通過釋放TNF-α、IL-1β、IL-6等促炎細(xì)胞因子觸發(fā)炎癥反應(yīng)[18]。研究發(fā)現(xiàn),多種藥物能夠通過抑制TLR4/MyD88/NF-κB信號(hào)通路的激活,沉默TLR4可以減少滅活表皮葡萄球菌(ISE)誘導(dǎo)的角膜上皮細(xì)胞中的IL-12、TNF-α、C-C類趨化因子9的分泌[19];靈芝多糖能通過抑制TLR4/MyD88/NF-κB信號(hào)傳導(dǎo)緩解內(nèi)毒素血癥,并明顯改善腸道屏障功能[20];右美托咪定通過抑制TLR4/MyD88/NF-κB信號(hào)傳導(dǎo)改善大鼠腸道缺血再灌注損傷和人結(jié)腸癌細(xì)胞系細(xì)胞的剝奪/復(fù)氧損傷[21]。本研究發(fā)現(xiàn),燒傷大鼠經(jīng)腹腔注射瑞馬唑侖處理后,其TLR4、MyD88、p-NF-κB/NF-κB蛋白表達(dá)水平降低,提示瑞馬唑侖可能抑制TLR4/MyD88/NF-κB信號(hào)通路,使用TLR4激活劑可逆轉(zhuǎn)瑞馬唑侖對(duì)燒傷大鼠的腸上皮細(xì)胞保護(hù)作用,證實(shí)瑞馬唑侖可能通過抑制TLR4/MyD88/NF-κB信號(hào)通路改善燒傷大鼠腸上皮細(xì)胞凋亡以及炎癥損傷。
綜上所述,瑞馬唑侖可減緩燒傷大鼠腸上皮組織細(xì)胞的炎癥損傷,抑制腸上皮細(xì)胞凋亡,發(fā)揮腸道保護(hù)和抗炎作用,其作用機(jī)制可能通過抑制TLR4/MyD88/NF-κB信號(hào)通路激活實(shí)現(xiàn)。本研究也存在局限性,無法確定造模前大鼠胃腸道狀態(tài)是否正?;虼嬖诓町?,需下一步實(shí)驗(yàn)驗(yàn)證。
參考文獻(xiàn)
[1] ZHOU B,BA T,WANG L,et al. Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response[J]. Burns,2022,48(5):1213-1220. doi:10.1016/j.burns.2021.11.009.
[2] WU D,SU S,ZHA X,et al. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice[J]. Redox Biol,2023,59:102581. doi:10.1016/j.redox.2022.102581.
[3] SHI M,CHEN J,LIU T,et al. Protective effects of Remimazolam on cerebral ischemia/reperfusion injury in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis[J]. Drug Des Devel Ther,2022,16:413-423. doi:10.2147/DDDT.S344240.
[4] 肖錦亮,汪威廉,但家朋. 瑞馬唑侖調(diào)節(jié)EPAC1/RAP1信號(hào)通路對(duì)急性心肌梗死大鼠心肌損傷的影響[J]. 天津醫(yī)藥,2024,52(5):475-480. XIAO J L,WANG W L,DAN J P. Effects of remazolam on myocardial injury in rats with acute myocardial infarction by regulating EPAC1/RAP1 signaling pathway[J]. Tianjin Med J,2024,52(5):475-480. doi:10.11958/20230890.
[5] SHI P,ZHU W,F(xiàn)U J,et al. Avicularin alleviates acute liver failure by regulation of the TLR4/MyD88/NF-κB and Nrf2/HO-1/GPX4 pathways to reduce inflammation and ferroptosis[J]. J Cell Mol Med,2023,27(21):3326-3338. doi:10.1111/jcmm.17905.
[6] DAI Y,LU Q,LI P,et al. Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway[J]. J Ethnopharmacol,2023,300:115690. doi:10.1016/j.jep.2022.115690.
[7] BRANDENBURG K S,WEAVER A J J R,QIAN L,et al. Development of pseudomonas aeruginosa biofilms in partial-thickness burn wounds using a Sprague-Dawley rat model[J]. J Burn Care Res,2019,40(1):44-57. doi:10.1093/jbcr/iry043.
[8] 溫海玲,孟祥熙,楊景哲,等. 馬錢苷通過內(nèi)質(zhì)網(wǎng)應(yīng)激途徑抑制燒傷大鼠腸上皮細(xì)胞凋亡發(fā)揮腸黏膜結(jié)構(gòu)保護(hù)作用的機(jī)制[J]. 實(shí)用醫(yī)學(xué)雜志,2022,38(11):1353-1358.WEN H L,MENG X X,YANG J Z,et al. The mechanism of loganin inhibiting the apoptosis of intestinal epithelial cells in burned rats through endoplasmic reticulum stress pathway to protect the structure of intestinal mucosa[J]. Chinese Journals of Practical Medicine,2022,38(11):1353-1358. doi:10.3969/j.issn.1006-5725.2022.11.010.
[9] 王德勇,涂英兵,袁娟,等. 基于PERK/Nrf2/HO-1信號(hào)通路研究瑞馬唑侖對(duì)心肌缺血再灌注損傷大鼠鐵死亡的影響[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2023,23(23):4427-4433. WANG D Y,TU Y B,YUAN J,et al. The effect of remazolam on ferroptosis in rats with myocardial ischemia-reperfusion injury was studied based on PERK/Nrf2/HO-1 signaling pathway[J]. Progress of Modern Biomedicine,2023,23(23):4427-4433. doi:10.13241/j.cnki.pmb.2023.23.005.
[10] 王東亞,喬丹,陳煒佳,等. 瑞馬唑侖對(duì)顱腦損傷大鼠腦組織損傷及TLR4/MyD88/NF-κB通路的影響[J]. 河北醫(yī)學(xué),2024,30(2):177-182.WANG D Y,QIAO D,CHEN W J,et al. The effect of remazolam on brain tissue injury and TLR4/MyD88/NF-κB pathway in rats with craniocerebral injury[J]. Hebei Medicine,2024,30(2):177-182. doi:10.3969/j.issn.1006-6233.2024.02.01.
[11] LUCK M E,LI X,HERRNREITER C J,et al. IL-27 promotes intestinal barrier integrity following ethanol intoxication and burn injury[J]. Immunohorizons,2022,6(8):600-613. doi:10.4049/immunohorizons.2200032.
[12] CHEN X,ZHANG P,ZHANG Y,et al. Potential effect of glutamine in the improvement of intestinal stem cell proliferation and the alleviation of burn-induced intestinal injury via activating YAP:a preliminary study[J]. Nutrients,2023,15(7):1766. doi:10.3390/nu15071766.
[13] ZHANG W,LIAO Y,LOU J,et al. CircRNA_Maml2 promotes the proliferation and migration of intestinal epithelial cells after severe burns by regulating the miR-93-3p/FZD7/Wnt/β-catenin pathway[J]. Burns Trauma,2022,10:tkac009. doi:10.1093/burnst/tkac009.
[14] HU Q,LIU X,WEN C,et al. Remimazolam:an updated review of a new sedative and anaesthetic[J]. Drug Des Devel Ther,2022,16:3957-3974. doi:10.2147/DDDT.S384155.
[15] YANG M,LI L. Remimazolam attenuates inflammation in bronchopneumonia through the inhibition of NLRP3 activity by PDPK1 ubiquitination[J]. Chem Biol Drug Des,2024,103(1):e14438. doi:10.1111/cbdd.14438.
[16] SONG J,YU W,CHEN S,et al. Remimazolam attenuates inflammation and kidney fibrosis following folic acid injury[J]. Eur J Pharmacol,2024,966:176342. doi:10.1016/j.ejphar.2024.176342.
[17] SHI Y,DENG H,ZHANG Z,et al. Remimazolam protects the liver from ischemia-reperfusion injury by inhibiting the MAPK/ERK pathway[J]. BMC Anesthesiol,2024,24(1):251. doi:10.1186/s12871-024-02641-3.
[18] ZHU Y,HAN Q,WANG L,et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway[J]. J Ethnopharmacol,2023,301:115763. doi:10.1016/j.jep.2022.115763.
[19] WU L,DU L,JU Q,et al. Silencing TLR4/MyD88/NF-κB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE[J]. Inflammation,2021,44(2):633-644. doi:10.1007/s10753-020-01363-1.
[20] GUO C,GUO D,F(xiàn)ANG L,et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon[J]. Carbohydr Polym,2021,267:118231. doi:10.1016/j.carbpol.2021.118231.
[21] YANG J,WU Y,XU Y,et al. Dexmedetomidine resists intestinal ischemia-reperfusion injury by inhibiting TLR4/MyD88/NF-κB signaling[J]. J Surg Res,2021,260:350-358. doi:10.1016/j.jss.2020.11.041.
(2024-05-28收稿 2024-08-11修回)
(本文編輯 李國(guó)琪)