摘要:核盤菌是一種全球性的破壞性植物病原真菌,其引起的菌核病造成了油菜等作物的嚴(yán)重減產(chǎn)。目前核盤菌病害防控主要依賴化學(xué)殺菌劑,過(guò)度施用不僅容易造成環(huán)境污染而且會(huì)增加致病真菌的抗藥性。然而,基于RNAi的宿主誘導(dǎo)基因沉默(HIGS)技術(shù)提供了一種新型有效且環(huán)境友好的菌核病防治方法。因此,筆者重點(diǎn)闡述了HIGS技術(shù)的基本原理、潛在靶標(biāo)的篩選方法以及該技術(shù)在菌核病防治中的實(shí)際應(yīng)用研究進(jìn)展,討論了應(yīng)用HIGS技術(shù)防治菌核病的優(yōu)缺點(diǎn)并對(duì)該技術(shù)的未來(lái)發(fā)展進(jìn)行了展望。
關(guān)鍵詞:宿主誘導(dǎo)的基因沉默;菌核??;靶位點(diǎn)篩選;抗病性
中圖分類號(hào):S432.1 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-060X(2024)11-0102-05
Research Progress on the Application of Host-Induced Gene Silencing in the Control of
Sclerotinia sclerotiorum
CAO Jian-cheng,NONG Jie-ying,CHEN Yi,XIA Shi-tou
(Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University,
Changsha" 410128, PRC)
Abstract:Sclerotinia sclerotiorum is a global destructive plant pathogenic fungus. Sclerotinia disease caused by Sclerotinia sclerotiorum has resulted in severe yield reduction in crops such as rapeseed. Currently, the control of S. sclerotiorum primarily relies on chemical fungicides. However, excessive usage of these fungicides could not only cause environmental pollution but also increase the fungicide resistance of pathogenic fungus. RNA interference (RNAi)-based host-induced gene silencing (HIGS) technology offers a novel, effective and environmentally friendly approach for controlling fungal diseases in crops. Hence, the basic principles of HIGS, methods for target site selection, as well as the research progress on its application in controlling plant sclerotinia diseases were reviewed in this paper. Additionally, the advantages and disadvantages as well as future development of this technology were also discussed.
Key words: host-induced gene silencing; Sclerotinia sclerotiorum; target site screening; disease resistance
核盤菌(Sclerotinia sclerotiorum)是一種全球性的破壞性植物病原真菌,可以感染700種以上植物,其中包括油菜、大豆和向日葵等重要油料作物以及多種蔬菜[1],造成嚴(yán)重的經(jīng)濟(jì)損失。核盤菌可引起軟腐病、濕腐病、猝倒病和核盤菌莖腐病等60種以上病害[2]。我國(guó)多種作物受到核盤菌引起的菌核病的危害,其中油菜受危害最為嚴(yán)重。
因抗性資源缺乏,采用經(jīng)典的育種方法難以獲得具有顯著抗核盤菌特性的種質(zhì)資源[3],因此,菌核病防治目前仍是一項(xiàng)艱巨的任務(wù),主要依賴于化學(xué)殺菌劑,這樣不僅容易造成環(huán)境污染而且會(huì)增加致病真菌的抗藥性。已有報(bào)道稱在田間發(fā)現(xiàn)了對(duì)多菌靈和菌核凈具有抗性的核盤菌分離株[4]。
宿主誘導(dǎo)基因沉默(Host-induced gene silencing,HIGS)技術(shù)是探索作物抗病分子遺傳學(xué)的有效工具,目前已成功應(yīng)用于大麥[5-6]、小麥[7]、大豆[8]、玉米[9]和香蕉[10]等多種作物,通過(guò)HIGS技術(shù)開發(fā)轉(zhuǎn)基因植物可能成為一種新型有效且環(huán)境友好的菌核病防治方法。因此,筆者重點(diǎn)闡述了植物病原體中宿主誘導(dǎo)基因沉默的一般機(jī)制,總結(jié)了當(dāng)前HIGS防治菌核病的潛在靶標(biāo)的篩選方法和實(shí)際應(yīng)用研究進(jìn)展,最后討論了應(yīng)用HIGS技術(shù)防治菌核病的優(yōu)缺點(diǎn),并對(duì)該技術(shù)的未來(lái)發(fā)展進(jìn)行了展望。
1 HIGS的基本原理
RNA干擾(RNAi)是一種在真核生物中高度保守的轉(zhuǎn)錄后基因沉默機(jī)制,這一機(jī)制在植物、動(dòng)物和真菌中普遍存在,并以其高效性和特異性在多個(gè)領(lǐng)域發(fā)揮著重要作用[11]。RNA干擾的主要特征之一是產(chǎn)生長(zhǎng)度為21~30個(gè)核苷酸的小RNA,這些小RNA能夠通過(guò)序列特異性指導(dǎo)轉(zhuǎn)錄基因沉默(TGS)和轉(zhuǎn)錄后基因沉默(PTGS)。其中,PTGS涉及細(xì)胞質(zhì)中mRNA的識(shí)別和沉默,而TGS則涉及RNA介導(dǎo)的啟動(dòng)子區(qū)DNA甲基化,從而抑制特定基因的表達(dá)[12]。RNAi能夠?qū)е驴赡娴耐椿蛞种芠13],最早是在矮牽牛中過(guò)表達(dá)查爾酮合成酶基因的研究中發(fā)現(xiàn)的。通常情況下,Dicer或Dicer-like(DCL)蛋白識(shí)別雙鏈RNA,并將其加工成更小的RNA。Dicer生成的siRNA被整合到RNA誘導(dǎo)沉默復(fù)合體(RISC)中,這種多組分蛋白質(zhì)復(fù)合體包含Argonaute蛋白(AGO),該蛋白具有sRNA結(jié)合結(jié)構(gòu)域和RNA內(nèi)切酶活性,由ATP依賴的siRNA雙鏈解旋觸發(fā)[14]。siRNA整合到RISC中后,過(guò)客鏈被降解,引導(dǎo)鏈與靶mRNA序列結(jié)合,進(jìn)而刺激內(nèi)切酶切割或抑制翻譯[14]。
隨著RNAi機(jī)制研究的不斷深入,有學(xué)者發(fā)現(xiàn)外源雙鏈RNA(dsRNA)在大腸桿菌中的表達(dá)能夠?qū)е乱云錇槭车男沱愲[桿線蟲實(shí)現(xiàn)特定基因的沉默[15],這種現(xiàn)象被稱為跨界RNAi。隨后,越來(lái)越多的研究證實(shí)了RNAi信號(hào)在宿主和病原體之間的自然雙向傳遞。在植物中,dsRNA或RNAi構(gòu)建體的表達(dá)已被用來(lái)沉默入侵病毒基因[16-18],這一技術(shù)被稱為宿主誘導(dǎo)基因沉默(HIGS)。HIGS技術(shù)是利用RNAi機(jī)制,在寄主植物中表達(dá)與病原菌關(guān)鍵基因互補(bǔ)的小RNA分子(如siRNA),這些小RNA分子進(jìn)入病原菌細(xì)胞后,特異性識(shí)別并降解病原體的靶基因mRNA,從而干擾靶基因的表達(dá)。目前已構(gòu)建了多種HIGS載體,用于將長(zhǎng)dsRNA以及發(fā)夾序列通過(guò)反向重復(fù)基因或反向啟動(dòng)子序列引入植物基因組。外源dsRNA或發(fā)夾序列被引入植物基因組后,被內(nèi)切酶Dicer酶切割成siRNA,這些siRNA被系統(tǒng)性運(yùn)輸?shù)秸婢?xì)胞,從而實(shí)現(xiàn)真菌基因的沉默(圖1)。
2 HIGS靶標(biāo)的篩選
成功的HIGS策略的關(guān)鍵步驟是鑒定病原體中合適的靶基因[19]。為將HIGS技術(shù)有效應(yīng)用于作物保護(hù),必須確定和評(píng)估合適的真菌基因靶標(biāo)。傳統(tǒng)殺菌劑的生物合成途徑靶標(biāo)可作為HIGS的重要靶標(biāo)。廣泛使用的脫甲基抑制劑(DMI)類殺菌劑(如戊唑醇、三唑酮和咪鮮胺)通過(guò)抑制細(xì)胞色素P450依賴性羊毛甾醇14α-脫甲基酶(CYP51),從而靶向麥角固醇生物合成途徑。研究表明,經(jīng)過(guò)分子改造以表達(dá)dsRNA的轉(zhuǎn)基因擬南芥和大麥品系,可以直接沉默真菌的3種CYP51轉(zhuǎn)錄剪輯本,從而有效提高宿主對(duì)禾谷鐮刀菌的抗性[6]。苯并咪唑等傳統(tǒng)殺菌劑的另一個(gè)作用靶點(diǎn)是微管蛋白的形成過(guò)程,特別是β-TUB基因家族成員已被證明是通過(guò)RNAi控制各種真菌病原體的殺菌劑的有效靶點(diǎn)[20]。通過(guò)RNAi技術(shù)在宿主體內(nèi)表達(dá)與β2-微管蛋白基因互補(bǔ)的dsRNA,可有效提高大豆對(duì)炭疽病的抗性[21]。
推斷HIGS有效真菌靶標(biāo)的另一種方法是選擇在附著胞、吸器或感染早期階段優(yōu)先表達(dá)的基因。這樣可以在至關(guān)重要的感染早期階段就抑制真菌生長(zhǎng),從而增強(qiáng)抗性。Yin等[22]研究表明,通過(guò)HIGS靶向優(yōu)先在吸器中表達(dá)的真菌基因而非組成性表達(dá)的基因時(shí),能更有效地提高大麥對(duì)條銹病的抗性。Yin等[23]篩選了86個(gè)優(yōu)先在吸器中表達(dá)的潛在小麥柄銹病菌靶標(biāo),發(fā)現(xiàn)其中10個(gè)基因表現(xiàn)出對(duì)病害癥狀的抑制作用,并且這種抑制作用與靶標(biāo)轉(zhuǎn)錄本豐度的降低相關(guān);進(jìn)一步研究表明,蛋白激酶A(PsCPK1)亞基在感染的早期階段(接種后18 h)顯著上調(diào),病毒介導(dǎo)的PsCPK1瞬時(shí)沉默導(dǎo)致附著胞發(fā)育減少約50%[24]。
效應(yīng)因子在植物與病原菌的互作中發(fā)揮了至關(guān)重要的作用。因此,真菌分泌的效應(yīng)因子也可作為HIGS的重要靶標(biāo)。在小麥中,白粉病抗性基因座Pm3受到SvrPm3 a1/f1(一種白粉病真菌的RNase樣效應(yīng)物)的抑制,從而削弱了Pm3抗性基因?qū)φ婢淖R(shí)別。在經(jīng)過(guò)分子改造以表達(dá)針對(duì)RNase樣效應(yīng)物SvrPm3 a1/f1的hpRNA編碼轉(zhuǎn)基因的小麥植株中,觀察到顯著的mRNA敲低現(xiàn)象,并且小麥植株對(duì)白粉病的抗性得到部分恢復(fù)[25]。在小麥中,PR2基因編碼β-1,3-葡聚糖酶(EC3.2.1.39)[26],該酶通過(guò)水解真菌細(xì)胞壁的β-葡聚糖來(lái)幫助防御真菌病原體。在小麥條銹病菌(Pst)中,真菌milRNA Pst-milR1被發(fā)現(xiàn)是介導(dǎo)真菌感染小麥的重要毒力因子,它能誘導(dǎo)PR2基因表達(dá)沉默[27]。此外,HIGS可以靶向真菌Pst-milR1的前體RNA序列,從而賦予植物對(duì)病原體的抗性。
RNA測(cè)序數(shù)據(jù)也可用于指導(dǎo)HIGS靶基因的選擇。已發(fā)表的轉(zhuǎn)錄組數(shù)據(jù)結(jié)合廣泛使用的dsRNA處理不僅可以加速有效靶標(biāo)的篩選過(guò)程,還能為HIGS技術(shù)在農(nóng)業(yè)病害防治中的應(yīng)用提供更多的理論基礎(chǔ)和實(shí)踐指導(dǎo)。在篩選油菜菌核病防治靶點(diǎn)時(shí),研究人員挑選了一系列與致病性相關(guān)的基因家族,例如活性氧反應(yīng)、轉(zhuǎn)錄和宿主定植以及其他病原菌類似的致病必需基因,對(duì)59個(gè)靶標(biāo)基因進(jìn)行篩選,最終發(fā)現(xiàn)其中20個(gè)基因能夠顯著減輕病害癥狀[28]。Donaldson等[29]通過(guò)噴霧法測(cè)試了一系列針對(duì)桃金娘銹病致病菌(Austropuccinia psidii)構(gòu)建的dsRNA轉(zhuǎn)化株對(duì)致病菌的抑制作用,發(fā)現(xiàn)細(xì)胞色素P450單加氧酶(CYP450)、28S核糖體RNA(28S rRNA)、β-微管蛋白(β-TUB)、翻譯延伸因子1-α(EF1-α)、絲裂原活化蛋白激酶(MAPK)、乙酰輔酶A轉(zhuǎn)移酶(ATC)、甘氨酸裂解系統(tǒng)-H(GCS-H)以及3個(gè)未表征但在吸器中上調(diào)的基因可作為該病原菌的防治靶標(biāo)。在這10個(gè)靶標(biāo)基因中,有8個(gè)在離體葉片侵染測(cè)定中顯著減緩了附著胞的發(fā)育,其中28S rRNA、β-TUB和EF1-α被確定為3個(gè)最有希望的靶標(biāo)[29]。
3 HIGS技術(shù)在菌核病防治中的應(yīng)用
幾丁質(zhì)合酶基因(CHS)編碼的幾丁質(zhì)是大多數(shù)真菌細(xì)胞壁的主要成分,在生長(zhǎng)和發(fā)育的各個(gè)階段組裝而成,為細(xì)胞提供結(jié)構(gòu)支持和保護(hù)。幾丁質(zhì)生物合成過(guò)程也是抗真菌藥物的作用靶點(diǎn)之一[30]。
Andrade等[31]首次證明HIGS介導(dǎo)的CHS能夠增強(qiáng)煙草T1代對(duì)菌核病的抗性。硫氧還蛋白-1(Thioredoxin-1,Trx1)是一種巰基-二硫鍵氧化還原酶,在細(xì)胞內(nèi)氧化還原狀態(tài)的調(diào)控及抵抗氧化應(yīng)激損傷過(guò)程中發(fā)揮重要作用?。SsTrx1參與核盤菌的致病性和氧化應(yīng)激耐受性等生理過(guò)程,構(gòu)建基于SsTrx1的HIGS載體,并將其轉(zhuǎn)移到擬南芥和本氏煙草中可顯著提高宿主對(duì)核盤菌的抗性[32]。Qin等[33]發(fā)現(xiàn)SsCak1缺失會(huì)導(dǎo)致菌絲體缺陷,從而影響菌核發(fā)育、附著胞形成和宿主滲透等過(guò)程,進(jìn)而使核盤菌的毒力完全喪失,通過(guò)HIGS載體將SsCak1作為控制的潛在目標(biāo),可有效降低感染期間核盤菌中SsCak1的表達(dá)量,從而降低核盤菌的侵染能力。SsSte12是核盤菌中進(jìn)化保守的絲裂原活化蛋白激酶(MAPK)級(jí)聯(lián)的一員,控制菌絲生長(zhǎng)、菌核發(fā)育、復(fù)合附著胞形成、毒力和菌絲融合,使用宿主表達(dá)的雙鏈RNA靶向SsSte50可大大降低核盤菌對(duì)本氏煙葉和轉(zhuǎn)基因擬南芥植物的毒力[34]。核盤菌草酰乙酸乙酰水解酶(Ssoha1)是核盤菌重要致病因子草酸的調(diào)控基因,Rana等[35]通過(guò)構(gòu)建Ssoah1的HIGS載體并將其轉(zhuǎn)化到擬南芥中,轉(zhuǎn)基因擬南芥株系致病性檢測(cè)結(jié)果表明,與非轉(zhuǎn)基因擬南芥相比,3種T3轉(zhuǎn)化體對(duì)核盤菌的抗性顯著增強(qiáng),轉(zhuǎn)基因株系的壞死區(qū)域中Ssoah1的表達(dá)同時(shí)減少,草酸積累隨之增加。以豆莢斑駁病毒為載體,通過(guò)宿主誘導(dǎo)的Ssoha1基因沉默可減輕大豆菌核病的發(fā)病程度[36]。在擬南芥表達(dá)靶向核菌ABHYDROLASE-3的發(fā)夾(hp)RNA,并通過(guò)宿主誘導(dǎo)的基因沉默可顯著減緩核盤菌感染[37];在油菜中組成性表達(dá)發(fā)夾(hp)RNA分子,以沉默核盤菌中的ABHYRDOLASE-3,通過(guò)葉片、莖和整株植物感染試驗(yàn),證明HIGS可保護(hù)油菜免受核盤菌感染[38]。此外,通過(guò)HIGS靶向沉默核盤菌的SsCnd1[39]、SsGAP1[40]、SsCCS[41]、SsPac1和SsSmk1[42]等一系列靶標(biāo)基因,均證明HIGS技術(shù)在植物病害防治中極具潛力。
4 HIGS技術(shù)的優(yōu)勢(shì)和挑戰(zhàn)
近年來(lái),通過(guò)HIGS技術(shù)已成功揭示了許多植物病原體的基因功能,并利用其開展作物病害防治工作,取得了一定進(jìn)展。與其他植物病害控制方法相比,HIGS具有多種潛在優(yōu)勢(shì)。首先,HIGS提供了一種有效的作物保護(hù)策略,可替代昂貴且對(duì)環(huán)境不友好的化學(xué)藥劑。其次,與傳統(tǒng)的R基因相比,基于HIGS的抗性可更持久,因?yàn)閭鹘y(tǒng)R基因賦予的抗性通常會(huì)因病原體Avr基因的補(bǔ)償突變迅速被克服。此外,HIGS可用于控制給定作物的多種疾病,并且可輕松設(shè)計(jì)新的HIGS靶標(biāo)基因以同步共同進(jìn)化的病原體。
盡管具有這些優(yōu)勢(shì),但帶有HIGS轉(zhuǎn)基因的農(nóng)作物目前尚未允許進(jìn)入市場(chǎng),可能是因?yàn)镠IGS技術(shù)需要轉(zhuǎn)基因作為輔助手段[43]?,F(xiàn)階段對(duì)轉(zhuǎn)基因作物的嚴(yán)格立法延緩了基于HIGS的作物改良手段的推廣應(yīng)用。但隨著公眾對(duì)轉(zhuǎn)基因技術(shù)的逐步認(rèn)可,相信在不久的未來(lái)有望迎來(lái)新機(jī)遇。由于HIGS技術(shù)依賴于siRNA從宿主植物成功移動(dòng)到病原體,因此某些病原體可能不適合使用此方法進(jìn)行操作,脫靶效應(yīng)是HIGS技術(shù)需要面對(duì)的另一個(gè)挑戰(zhàn)。如果未正確選擇目標(biāo)區(qū)域,由此產(chǎn)生的功能冗余和mRNA的不完全沉默可能會(huì)導(dǎo)致策略失敗。此外,病原體可能僅在植物的根和果實(shí)等特定部位引起疾病,而HIGS系統(tǒng)可能無(wú)法特異性地靶向這些組織。Cai等[44]研究表明,外泌體樣的細(xì)胞外囊泡參與生物體間的siRNA運(yùn)輸。然而,目前有關(guān)這方面的知識(shí)仍然較為欠缺,尚不清楚所有植物-微生物相互作用是否都依賴于相同的機(jī)制。對(duì)跨界RNA沉默基本機(jī)制的進(jìn)一步研究,也是促進(jìn)HIGS技術(shù)在疾病控制領(lǐng)域簡(jiǎn)化應(yīng)用的基礎(chǔ)。
通過(guò)人工合成SiRNA并噴施在植物表面,待植物吸收后也可以起到沉默病原體基因的效果,這一方案被稱為噴霧誘導(dǎo)基因沉默(Spray-induced gene silencing,SIGS)。與目前的疾病控制方法相比,SIGS可持續(xù)且環(huán)保,并且提供了一種適用于收獲前和收獲后作物保護(hù)的快速方法。作為一種非轉(zhuǎn)基因方法,SIGS可能更容易被消費(fèi)者接受。此外,由于SIGS針對(duì)特定基因,會(huì)降低脫靶效應(yīng),并且可針對(duì)特定害蟲或病原體定制噴霧劑以增強(qiáng)特異性。然而,由于RNA在自然環(huán)境中較易降解,SIGS對(duì)植物的作用可能僅持續(xù)數(shù)天,并且保護(hù)性RNA劑量可能受植物攝取限制,因此可能需要定期多次施用sRNA,或者受dsRNA大小的限制,需要進(jìn)行尺寸優(yōu)化。此外,還應(yīng)注意,真核微生物和細(xì)胞類型吸收dsRNA的效率可能因真菌或卵菌物種而異;某些遞送方法(例如高壓噴灑dsRNA)可能無(wú)法產(chǎn)生預(yù)期的基因沉默。為了克服這些問(wèn)題,需開發(fā)新方法,例如使用細(xì)菌生產(chǎn)siRNA。
目前為止,化學(xué)手段仍然是防治菌核病最直接有效的方法。然而,公眾對(duì)化學(xué)藥品過(guò)度使用的擔(dān)憂日益加劇,以及殺菌劑抗性菌株的普遍出現(xiàn),導(dǎo)致迫切需要新的替代方法。HIGS技術(shù)不僅為基因功能研究提供了新方法,也為菌核病防治提供了一種新的環(huán)境友好型的工具。隨著越來(lái)越多植物和病原體基因組序列的公布,設(shè)計(jì)針對(duì)靶標(biāo)的HIGS將變得更加容易。CRISPR/Cas9編輯技術(shù)的最新發(fā)展可與HIGS相結(jié)合,使作物具有更持久的抗病性[45]。因此,基于RNAi的HIGS將有望成為防治菌核病的一個(gè)重要工具,從而推動(dòng)現(xiàn)代有機(jī)和可持續(xù)農(nóng)業(yè)的發(fā)展。
參考文獻(xiàn):
[1] BOLAND G J,HALL R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology,1994,16(2):93-108.
[2] PURDY L H. Sclerotinia sclerotiorum:history,diseases and symptomatology,host range,geographic distribution,and impact[J]. Phytopathology,1979,69(8):875-880.
[3] WANG Z,BAO L L,ZHAO F Y,et al. BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape[J]. Frontiers in Plant Science,2019,10:91.
[4] WANG Y,HOU Y P,CHEN C J,et al. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China[J]. Australasian Plant Pathology,2014,43(3):307-312.
[5] NOWARA D,GAY A,LACOMME C,et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. The Plant Cell,2010,22(9):3130-3141.
[6] KOCH A,KUMAR N,WEBER L,et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(48):19324-19329.
[7] PANWAR V,MCCALLUM B,BAKKEREN G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus[J]. Plant Molecular Biology,2013,81(6):595-608.
[8] KONG L G,SHI X,CHEN D,et al. Host-induced silencing of a nematode chitin synthase gene enhances resistance of soybeans to both pathogenic Heterodera glycines and Fusarium oxysporum[J]. Plant Biotechnology Journal,2022,20(5):809-811.
[9] RARUANG Y,OMOLEHIN O,HU D F,et al. Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions[J]. Frontiers in Microbiology,2020,11:754.
[10] GHAG S B,SHEKHAWAT U K S,GANAPATHI T R. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana[J]. Plant Biotechnology Journal,2014,12(5):541-553.
[11] BAULCOMBE D. RNA silencing in plants[J]. Nature,2004,431:356-363.
[12] DE FELIPPES F F. Gene regulation mediated by microRNA-triggered secondary small RNAs in plants[J]. Plants,2019,8(5)):112.
[13] NAPOLI C,LEMIEUX C,JORGENSEN R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J]. The Plant Cell,1990,2(4):279-289.
[14] WATERHOUSE P M,WANG M B,LOUGH T. Gene silencing as an adaptive defence against viruses[J]. Nature,2001,411:834-842.
[15] TIMMONS L,F(xiàn)IRE A. Specific interference by ingested dsRNA[J]. Nature,1998,395:854.
[16] GUO H S,GARCíA J A. Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene:involvement of a gene-silencing mechanism[J]. Molecular Plant-Microbe Interactions,1997,10(2):160-170.
[17] QU J,YE J,F(xiàn)ANG R X. Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology,2007,81(12):6690-6699.
[18] DUAN C G,WANG C H,F(xiàn)ANG R X,et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants[J]. Journal of Virology,2008,82(22):11084-11095.
[19] KOCH A,KOGEL K H. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing[J]. Plant Biotechnology Journal,2014,12(7):821-831.
[20] ZHAO Z T,LIU H Q,LUO Y P,et al. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life[J]. Scientific Reports,2014,4:6746.
[21] GU K X,SONG X S,XIAO X M,et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pesticide Biochemistry and Physiology,2019,153:36-46.
[22] YIN C T,JURGENSON J E,HULBERT S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici[J]. Molecular Plant-Microbe Interactions:MPMI,2011,24(5):554-561.
[23] YIN C T,DOWNEY S I,KLAGES-MUNDT N L,et al. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia[J]. BMC Genomics,2015,16(1):579.
[24] QI T,ZHU X G,TAN C L,et al. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f.sp. tritici enhances resistance of wheat to stripe rust[J]. Plant Biotechnology Journal,2018,16(3):797-807.
[25] SCHAEFER L K,PARLANGE F,BUCHMANN G,et al. Cross-Kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat[J]. Frontiers in Plant Science,2020,11:253.
[26] LI W L,F(xiàn)ARIS J D,MUTHUKRISHNAN S,et al. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum[J]. Theoretical and Applied Genetics,2001,102(2):353-362.
[27] WANG B,SUN Y F,SONG N,et al. Puccinia striiformis f.sp. tritici microRNA-like RNA 1 (Pst-milR1),an important pathogenicity factor of Pst,impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene[J]. The New Phytologist,2017,215(1):338-350.
[28] MCLOUGHLIN A G,WYTINCK N,WALKER P L,et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea[J]. Scientific Reports,2018,8:7320.
[29] DONALDSON M E,SAVILLE B J. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis[J]. Molecular Microbiology,2013,89(1):29-51.
[30] RUIZ-HERRERA J,SAN-BLAS G. Chitin synthesis as target for antifungal drugs[J]. Current Drug Targets Infectious Disorders,2003,3(1):77-91.
[31] ANDRADE C M,TINOCO M L P,RIETH A F,et al. Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum[J]. Plant Pathology,2016,65(4):626-632.
[32] RANA K,DING Y J,BANGA S S,et al. Sclerotinia sclerotiorum Thioredoxin1(SsTrx1)is required for pathogenicity and oxidative stress tolerance[J]. Molecular Plant Pathology,2021,22(11):1413-1426.
[33] QIN L,NONG J Y,CUI K,et al. SsCak1 regulates growth and pathogenicity in Sclerotinia sclerotiorum[J]. International Journal of Molecular Sciences,2023,24(16):12610.
[34] TIAN L,LI J,XU Y,et al. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control[J]. The Plant Journal:for Cell and Molecular Biology,2024,118(2):324-344.
[35] RANA K,YUAN J H,LIAO H M,et al. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence[J]. Microbiological Research,2022,258:126981.
[36] MCCAGHEY M,SHAO D D,KURCEZEWSKI J,et al. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean[J]. Frontiers in Plant Science,2021,12:677631.
[37] WALKER P L,ZIEGLER D J,GIESBRECHT S,et al. Control of white mold(Sclerotinia sclerotiorum)through plant-mediated RNA interference[J]. Scientific Reports,2023,13:6477.
[38] WYTINCK N,ZIEGLER D J,WALKER P L,et al. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus[J]. PLoS One,2022,17(8): e0261102.
[39] DING Y J,CHEN Y G,YAN B Q,et al. Host-induced gene silencing of a multifunction gene Sscnd1 enhances plant resistance against Sclerotinia sclerotiorum[J]. Frontiers in Microbiology,2021,12:693334.
[40] XU Y,TAN J Y,LU J X,et al. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea[J]. Plant Biotechnology Journal,2024,22(1):262-277.
[41] 柴亞茹,丁一娟,周思鈺,等. HIGS-SsCCS轉(zhuǎn)基因擬南芥的菌核病抗性鑒定[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(4):761-770.
[42] PANT P,KAUR J. Control of Sclerotinia sclerotiorum via an RNA interference(RNAi)-mediated targeting of SsPac1 and SsSmk1[J]. Planta,2024,259(6):153.
[43] SANTALA J,VALKONEN J P T. Sensitivity of small RNA-based detection of plant viruses[J]. Frontiers in Microbiology,2018,9:939.
[44] CAI Q,QIAO L L,WANG M,et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science,2018,360(6393):1126-1129.
[45] IQBAL A,KHAN R S,ALI KHAN M,et al. Genetic engineering approaches for enhanced insect pest resistance in sugarcane[J]. Molecular Biotechnology,2021,63(7):557-568.
(責(zé)任編輯:王婷)