摘要: 基于修正Timoshenko梁理論,建立黏彈性Pasternak地基上修正Timoshenko梁的橫向振動控制方程,運用回傳射線矩陣法推導出黏彈性Pasternak地基上兩端簡支修正Timoshenko梁自振頻率和衰減系數(shù)的解析解,結(jié)合二分法和黃金分割法計算了經(jīng)典邊界條件下黏彈性Pasternak地基上修正Timoshenko梁的自振特性,對比分析了考慮剪切變形引起的轉(zhuǎn)動慣量、梁長及不同的邊界條件對結(jié)構(gòu)自振特性的影響。研究表明:黏彈性Pasternak地基上修正Timoshenko梁的各階自振頻率和衰減系數(shù)小于經(jīng)典Timoshenko梁的各階自振頻率和衰減系數(shù);梁越短,剪切變形引起的轉(zhuǎn)動慣量對結(jié)構(gòu)自振頻率和衰減系數(shù)的影響越大,且對高階的影響明顯大于低階;邊界約束條件越強,振動能量衰減越明顯。
關(guān)鍵詞: 黏彈性Pasternak地基;"修正Timoshenko梁;"回傳射線矩陣法;"解析解;"邊界條件
中圖分類號: TU471+.2;"TU348 """文獻標志碼: A """文章編號: 1004-4523(2024)08-1330-09
DOI:10.16385/j.cnki.issn.1004-4523.2024.08.007
引""言
黏彈性地基梁在土木工程領(lǐng)域應(yīng)用廣泛[1?2],如機場、鐵路、公路、高層建筑基礎(chǔ)中均有涉及。而結(jié)構(gòu)的自振特性是反映結(jié)構(gòu)動力特性的重要物理量,通過對其進行準確高效的研究不僅對結(jié)構(gòu)設(shè)計和施工計算提供理論基礎(chǔ),而且對避免發(fā)生共振、疲勞問題和對結(jié)構(gòu)的減振有重要的幫助,因此,地基梁的動力學特性在工程領(lǐng)域及學術(shù)界備受關(guān)注[3?5]。
目前各種地基上經(jīng)典的Timoshenko梁研究較為豐富,Malekzadeh等[6]采用微積分法研究了彈性地基上Timoshenko梁的自振特性的數(shù)值解;彭麗等[7?9]運用復模態(tài)方法研究了Pasternak地基上Timoshenko梁的自振特性及任一初始激勵條件下外激勵的響應(yīng);余云燕等[10]"求解了黏彈性Pasternak地基上Timoshenko梁在不同的約束條件下單跨及兩跨連續(xù)地基梁的自振頻率、衰減系數(shù)和模態(tài)。這些理論雖然有較大的研究空間,但梁在高跨比比較大、局部懸空、局部高度承載情況下,由于未考慮剪切變形引起轉(zhuǎn)動慣量的影響,導致經(jīng)典Timoshenko梁存在撓度關(guān)于時間的四階導數(shù)項、第二頻譜、物理意義不明確等問題,使計算結(jié)果有較大偏差。因此,陳镕等[11]對傳統(tǒng)的Timoshenko梁的運動方程進行了修正,發(fā)現(xiàn)修正Timoshenko梁對高頻段有較大影響,指出考慮梁剪切變形引起的轉(zhuǎn)動慣量后,時間的四階導數(shù)項自然會消失;夏桂云[12]利用固有頻率和臨界頻率的關(guān)系論證了Timoshenko梁產(chǎn)生第二頻譜的原因,通過實例驗證Timoshenko梁第二頻譜的存在,因此,準確、合理地對其進行計算具有重要的意義。吳曉等[13]應(yīng)用Timoshenko梁修正理論推導了泡沫鋁合金梁的自振頻率表達式,并求解了在簡諧荷載作用下強迫振動的解析解;王家樂等[14]基于修正Timoshenko梁理論,采用復模態(tài)分析法推導多種邊界條件下彈性地基梁振動超越方程及模態(tài)函數(shù);Li等[15]推導出分數(shù)階標準固體黏彈性地基上修正Timoshenko梁的運動控制方程,得到了自振頻率的解析解;徐梅玲等[16]采用分離變量法,給出Euler梁模型相對于修正Timoshenko梁模型的誤差計算公式。但上述研究未充分考慮地基土體顆粒之間相互剪切的連續(xù)性,也未分析剪切變形引起的轉(zhuǎn)動慣量、梁長及邊界條件對黏彈性地基上修正Timoshenko梁自振頻率、衰減系數(shù)和模態(tài)的影響。
本文將修正Timoshenko梁理論與黏彈性Pasternak地基進行組合,建立新的黏彈性地基梁振動控制方程,運用回傳射線矩陣法解耦,得到黏彈性Pasternak地基中兩端簡支修正Timoshenko梁自振頻率和衰減系數(shù)的解析解,對比分析了考慮剪切變形引起的轉(zhuǎn)動慣量、梁長和不同的邊界條件對結(jié)構(gòu)自振特性的影響。從而為黏彈性地基梁振動分析和計算提供理論基礎(chǔ)。
1 振動控制方程及方程的解
對圖1取微段隔離體,其受力情況如圖2所示。
根據(jù)達朗貝爾原理,對微段隔離體建立豎向力及力矩平衡略去高階項,得:
2 經(jīng)典邊界條件下的自振頻率及模態(tài)求解
2.1 兩端簡支條件下黏彈性地基梁的自振頻率方程
以兩端簡支的黏彈性修正Timoshenko梁為例,運用回傳射線矩陣法推導自振頻率方程,其自由振動的邊界條件為:
2.2 其他邊界條件下黏彈性地基梁的自振頻率方程
固定?簡支邊界條件下黏彈性Pasternak地基上修正Timoshenko梁,其自由振動的邊界條件為:
3 算例分析
黏彈性Pasternak地基上修正Timoshenko梁計算模型如圖1所示,修正Timoshenko梁的計算參數(shù)如表1所示,土體的計算參數(shù)參考文獻[17]中的數(shù)值,如表2所示。
3.1 不同梁理論對黏彈性Pasternak地基梁自振特性的影響
由表3可知,黏彈性Pasternak地基上經(jīng)典Timoshenko梁和修正Timoshenko梁理論第1階自振頻率相同,第2階之后,隨著階數(shù)的增大,兩者頻率值的差距逐漸增大,并且修正Timoshenko梁的各階自振頻率小于經(jīng)典Timoshenko梁的各階自振頻率。當梁長l=30 m時,高跨比為0.05,其7,8階自振頻率相對誤差為0.58%和0.85%,當梁長l=6 m時,高跨比為0.25,其7,8階自振頻率相對誤差分別為9.28%和10.13%。從相對誤差的角度來看,在黏彈性Pasternak地基上考慮剪切變形引起轉(zhuǎn)動慣量的修正Timoshenko梁與不考慮其影響的經(jīng)典Timoshenko梁自振頻率計算結(jié)果在高跨比比較大的高頻段振動有較大偏差。所以在涉及黏彈性地基梁具體工程計算中,在梁對高跨比比較大的高頻段計算結(jié)果有重大影響的分析中(諸如沖擊等問題),應(yīng)采用修正Timoshenko梁理論。
由表4可知,黏彈性Pasternak地基上經(jīng)典Timoshenko梁和修正Timoshenko梁理論第1階衰減系數(shù)相同,第2階之后,隨著階數(shù)的增大,兩者衰減系數(shù)值的差距逐漸增大,并且修正Timoshenko梁的各階衰減系數(shù)小于經(jīng)典Timoshenko梁的各階衰減系數(shù)。梁長為6 m時,第2階衰減系數(shù)相對誤差值與梁長為30 m時第6階衰減系數(shù)相對誤差值相等,且梁長為6 m時,其7,8階衰減系數(shù)相對誤差分別高達41.97%和43.66%。所以在工程實踐中涉及振動能量損耗控制時,應(yīng)考慮剪切變形引起轉(zhuǎn)動慣量的影響,否則會帶來較大偏差。
圖3和4為不同梁長情況下黏彈性Pasternak地基上經(jīng)典Timoshenko梁與修正Timoshenko梁的前6階模態(tài)。從圖3和4可知,l=30 m時,黏彈性Pasternak地基上經(jīng)典Timoshenko梁與修正Timoshenko梁的第1階振型曲線之間的差距最大,振型峰值相同,從第2階開始,隨著階數(shù)的增大,其振型曲線之間的差距逐漸減小,但振型峰值逐漸增大。l=6 m相對于l=30 m的短梁,黏彈性Pasternak地基上經(jīng)典Timoshenko梁與修正Timoshenko梁振型峰值增大得越明顯,表明梁越短,考慮剪切變形引起轉(zhuǎn)動慣量的修正Timoshenko梁對振型峰值的影響越大。所以在工程結(jié)構(gòu)抗震計算中,按照修正Timoshenko梁設(shè)計是偏于安全的。
3.2 邊界條件對黏彈性Pasternak地基上修正Timoshenko梁自振特性的影響
黏彈性Pasternak地基上修正Timoshenko梁的各項物理參數(shù)采用表1和2中的數(shù)值,通過回傳射線矩陣法,結(jié)合二分法和黃金分割法,計算了黏彈性Pasternak地基上修正Timoshenko梁在不同邊界條件下前8階自振頻率和衰減系數(shù)的數(shù)值解如表5所示。
由表5可知,五種邊界條件下黏彈性Pasternak地基上修正Timoshenko梁的前8階自振頻率由大到小依次排序為:自由?自由gt;固定?自由gt;固定?固定gt;固定?簡支gt;簡支?簡支;衰減系數(shù)由大到小依次排序為:固定?固定gt;固定?簡支gt;固定?自由gt;簡支?簡支gt;自由?自由,表明約束越強,振動能量衰減越明顯。
圖5為五種邊界條件下黏彈性Pasternak地基上修正Timoshenko梁的前6階模態(tài)。由圖5可見,將各節(jié)點處的位移歸一化處理后,其振型峰值變化并沒有統(tǒng)一的規(guī)律,但不同邊界條件下的振型曲線差異十分明顯。
4 結(jié)""論
將回傳射線矩陣法推廣至黏彈性地基梁的振動分析中,求解了黏彈性Pasternak地基中兩端簡支修正Timoshenko梁自振頻率和衰減系數(shù)的解析解,對比分析了考慮剪切變形引起的轉(zhuǎn)動慣量、梁長和不同的邊界條件對結(jié)構(gòu)自振特性的影響。得出以下結(jié)論:
(1)黏彈性Pasternak地基上修正Timoshenko梁的各階自振頻率和衰減系數(shù)小于經(jīng)典Timoshenko梁的各階自振頻率和衰減系數(shù);梁越短,對黏彈性Pasternak地基上修正Timoshenko梁自振頻率和衰減系數(shù)的影響就越大,所以在黏彈性地基梁具體工程計算中涉及振動能量損耗控制時,或在梁對高跨比比較大的高頻段計算結(jié)果有重大影響的分析中(諸如沖擊等問題),應(yīng)采用考慮剪切變形引起轉(zhuǎn)動慣量的修正Timoshenko梁理論,否則會帶來較大偏差。
(2)梁越短,考慮剪切變形引起轉(zhuǎn)動慣量的修正Timoshenko梁對振型峰值的影響越大。所以在工程結(jié)構(gòu)抗震計算中,按照修正Timoshenko梁設(shè)計是偏于安全的。
(3)不同邊界條件下黏彈性Pasternak地基上修正Timoshenko梁的前8階自振頻率大小關(guān)系為:自由?自由gt;固定?自由gt;固定?固定gt;固定?簡支gt;簡支?簡支;其衰減系數(shù)大小關(guān)系為:固定?固定gt;固定?簡支gt;固定?自由gt;簡支?簡支gt;自由?自由,表明約束越強,振動能量衰減越明顯。
(4)運用回傳射線矩陣法可以求解埋置結(jié)構(gòu)的高階自振頻率、模態(tài)等動力參數(shù),列式統(tǒng)一,求解穩(wěn)定,易于編程,且具有較高的計算效率和精度,從而為工程實踐及工程設(shè)計提供理論基礎(chǔ)。
參考文獻:
[1] 白海峰. 基于連續(xù)彈性地基梁的軌枕靜力響應(yīng)研究[J]. 鐵道工程學報,"2007,24(5):"22-27.
BAI Haifeng. Research on the static response of tie on continuous elastic grade beam[J]. Journal of Railway Engineering Society,"2007,"24(5):"22-27.
[2] 劉飛禹,"吳杰杰,"陳江,"等. 考慮水平摩阻的Pasternak路基基層及路面變形分析[J]. 中國公路學報,"2019,"32(5):"38-46.
LIU Feiyu,"WU Jiejie,"CHEN Jiang,"et al. Analysis of pavement and subbase on Pasternak foundation considering horizontal friction[J]. China Journal of "Highway and Transport,"2019,"32(5):"38-46.
[3] Calim F F. Dynamic analysis of beams on viscoelastic foundation[J]. European Journal of Mechanics,"A:"Solid,"2009,"28(3):"469-476.
[4] Attarnejad R,"Shahba A,"Semnani S J. Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation[J]. Arabian Journal for Science and Engineering,"2010,"35(2B):"125-132.
[5] Ding H,"Chen L Q,"Yang S P. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[J]. Journal of Sound and Vibration,"2012,"331(10):"2426-2442.
[6] Malekzadeh P,"Karami G,"Farid M. DQEM for free vibration analysis of Timoshenko beams on elastic foundations[J]. Computational Mechanics,"2003,"31(3-4):"219-228.
[7] 彭麗,"丁虎,"陳立群. 黏彈性三參數(shù)地基梁橫向自由振動[J]. 振動與沖擊,"2014,"33(1):"101-105.
PENG Li,"DING Hu,"CHEN Liqun. Transverse free vibration of a beam resting on a three-parameter viscoelastic foundation[J]. Journal of Vibration and Shock,"2014,"33(1):"101-105.
[8] 彭麗,"丁虎,"陳立群. 黏彈性Pasternak地基梁振動的復模態(tài)分析[J]. 振動與沖擊,"2013,"32(2):"143-146.
PENG Li,"DING Hu,"CHEN Liqun. Complex modal analysis for vibrations of a beam on a viscoelastic Pasternak foundation[J]. Journal of Vibration and Shock,"2013,"32(2):"143-146.
[9] 彭麗,"丁虎,"陳立群.黏彈性三參數(shù)地基上Timoshenko梁橫向自由振動[J]. 噪聲與振動控制,"2013,"33(5):"107-110.
PENG Li,"DING Hu,"CHEN Liqun. Transverse free vibration of a Timoshenko beam rested on transverse free vibration of a Timoshenko beam rested on three-parameter viscoelastic foundation[J].Noise and Vibration Control,"2013,"33(5):107-110.
[10] 余云燕,"付艷艷,"張偉. 黏彈性Pasternak地基上兩跨連續(xù)Timoshenko梁橫向自振特性分析[J]. 振動與沖擊,"2023,"42(11):"1-10.
YU Yunyan,"FU Yanyan,"ZHANG Wei. Analysis of transverse natural frequency of two-span continuous Timoshenko beam on viscoelastic Pasternak foundation[J]. Journal of Vibration and Shock,"2023,"42(11):"1-10.
[11] 陳镕,"萬春風,"薛松濤,"等. Timoshenko梁運動方程的修正及其影響[J]. 同濟大學學報,"2005,"33(6):"711-715.
CHEN Rong,"WAN Chunfeng,"XUE Songtao,"et al. Modification of motion equation of Timoshenko beam and its effect[J]. Journal of Tongji University,"2005,"33(6):"711-715.
[12] 夏桂云. Timoshenko梁的第二頻譜分析[J]. 湖南大學學報,"2021,"48(11):"142-149.
XIA Guiyun. Analysis on the second frequency spectrum of Timoshenko beam[J]. Journal of Hunan University,"2021,"48(11):"142-149.
[13] 吳曉,"孫晉,"黃翀,"等. 用Timoshenko梁修正理論研究泡沫金屬鋁合金梁的動力響應(yīng)[J]. 振動與沖擊,"2011,"30(1):"124-127.
WU Xiao,"SUN Jin,"HUANG Chong,"et al. Dynamic responses of a metal aluminum alloy beam with Timoshenko beam theory[J]. Journal of Vibration and Shock,"2011,"30(1):"124-127.
[14] 王家樂,"夏桂云. Winkler地基上修正Timoshenko梁振動分析[J]. 振動與沖擊,"2020,"39(3):"30-37.
WANG Jiale,"XIA Guiyun. Vibration analysis for a modified Timoshenko beam on Winkler elastic foundation[J]. Journal of Vibration and Shock,"2020,"39(3):"30-37.
[15] Li M L ,"Wei P J ,"Zhou X L. Wave propagation and free vibration of a Timoshenko beam mounted on the viscoelastic Pasternak foundation modeled by fraction-order derivatives[J]. Mechanics of Time-Dependent Materials,"2023,"27(4):"1209-1223.
[16] 徐梅玲,"葉茂,"付明科,"等. 修正Timoshenko 梁自由振動及Euler 梁誤差分析[J]. 科學技術(shù)與工程,"2015,"15(15):"88-94.
XU Meiling,"YE Mao,"FU Mingke,"et al. Systematic modal analysis of simply supported beam based on the modified motion equation of Timoshenko[J]. Science Technology and Engineering,"2015,"15(15):"88-94.
[17] Kargarnovin M H,"Younesian D,"Thompson D J,"et al. Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[J]. Computers and Structures,"2005,"83(23-24):"1865-1877.
Analysis of transverse free vibration characteristics of modified Timoshenko beam on viscoelastic Pasternak foundction
LIU Wei WANG Guo-bin ZHAO Zhi-peng ZHAO Xiao-jun
(1.School of Civil Engineering,"Lanzhou University of Information Technology,"Lanzhou 730300,China;2.Geotechnical Engineering Research Institute,"Xi’an University of Technology,"Xi’an 710048,China)
Abstract: Based on the modified Timoshenko beam theory,"the transverse vibration governing equation of the modified Timoshenko beam on the viscoelastic Pasternak foundation is established. The analytical solutions of the natural frequency and attenuation coefficient of the modified Timoshenko beam simply supported at both ends in the viscoelastic Pasternak foundation are derived with the reverberation-ray matrix method. The natural vibration characteristics of the modified Timoshenko beam on the viscoelastic Pasternak foundation under classical boundary conditions are calculated by dichotomy and golden section method. The effects of moment of inertia caused by shear deformation,"beam length and different boundary conditions on the natural vibration characteristics of the structure are compared and analyzed. The results show that the natural frequency and attenuation coefficient of the modified Timoshenko beam on the viscoelastic Pasternak foundation are smaller than those of the classical Timoshenko beam;"the shorter the beam,"the more significant the influence of the moment of inertia caused by shear deformation on the natural frequency and attenuation coefficient of the structure,"and the influence on the higher order is obviously greater than that on the low order;"the stronger the boundary constraint condition,"the more obvious the vibration energy attenuation.
Key words: viscoelastic Pasternak foundation;"modified Timoshenko beam;"reverberation-ray matrix method;"analytical solution;"boundary condition
作者簡介: 柳""偉(1990—),男,碩士,講師。E-mail:"279339776@qq.com。