摘要:【目的】基于代謝組學(xué)和蛋白組學(xué)聯(lián)合分析廣東煙區(qū)沙泥田與紫色土烤煙上部葉物質(zhì)代謝和蛋白表達(dá)差異,為減少沙泥田煙葉掛灰提供參考依據(jù)?!痉椒ā恳钥竞蟛灰讙旎业淖仙翢熑~(對(duì)照)和烤后易掛灰的沙泥田煙葉為研究對(duì)象,選擇2種土壤類(lèi)型煙葉上部葉欠熟、尚熟、成熟和過(guò)熟4個(gè)時(shí)期的鮮煙葉樣品,測(cè)定多酚氧化酶(PPO)活性;再以成熟時(shí)期煙葉進(jìn)行代謝組學(xué)和蛋白組學(xué)聯(lián)合分析,鑒定沙泥田上部成熟煙葉中的差異代謝物和差異表達(dá)蛋白,并分析篩選影響沙泥田上部煙葉褐變的關(guān)鍵通路?!窘Y(jié)果】上部葉成熟過(guò)程中,紫色土煙葉PPO活性極顯著低于沙泥田煙葉(Plt;0.01),且二者在成熟時(shí)期差值最大。從2種土壤類(lèi)型成熟時(shí)期煙葉樣品中共篩選出差異代謝物129個(gè),差異表達(dá)蛋白1314個(gè),差異代謝物、差異表達(dá)蛋白均以上調(diào)為主;差異代謝物的聚類(lèi)和KEGG代謝通路分析主要富集到酪氨酸代謝、苯丙氨酸—酪氨酸—色氨酸生物合成、苯丙素生物合成等通路上。差異表達(dá)蛋白的GO功能注釋和KEGG信號(hào)通路富集分析主要富集到苯丙素生物合成、酪氨酸代謝、異喹啉生物堿生物合成和植物激素信號(hào)傳導(dǎo)等過(guò)程。多酚類(lèi)物質(zhì)生物合成過(guò)程中,沙泥田煙葉差異表達(dá)蛋白苯丙氨酸解氨酶、4-香豆酸輔酶A連接酶、羥基肉桂酰輔酶A莽草酸酯/奎寧酸羥基肉桂酰轉(zhuǎn)移酶下調(diào);差異代謝物阿魏酸、松柏醇、芥子醇下調(diào)。脫落酸生物合成和代謝過(guò)程中,沙泥田煙葉差異表達(dá)蛋白八氫番茄紅素脫氫酶、玉米黃質(zhì)環(huán)氧化酶、9-順式環(huán)氧類(lèi)胡蘿卜素雙加氧酶、黃氧素脫氫酶下調(diào);差異代謝物紅花菜豆酸、二氫紅花菜豆酸下調(diào)。【結(jié)論】與紫色土烤煙上部葉相比,沙泥田烤煙上部葉生長(zhǎng)過(guò)程中更易受環(huán)境脅迫,導(dǎo)致煙葉素質(zhì)下降,脫落酸合成增加,激素信號(hào)激活,酚類(lèi)代謝增強(qiáng),PPO活性上升,在烘烤過(guò)程中易導(dǎo)致酶促褐變更加劇烈,從而造成烤后煙葉易掛灰。
關(guān)鍵詞:烤煙;沙泥田;上部葉;掛灰;差異代謝物;差異表達(dá)蛋白
中圖分類(lèi)號(hào):S572文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)10-2926-12
Analysis of the causes of ash hanging in flue-cured tobacco upperleaves in sandy mud field in Guangdong tobacco-growing areasbased on metabolomics and proteomics
YANG Qing-yue1,2,LIU Lan3,WANG Song-feng2*,WANG Xiao-bin4,YAO Yuan-hua3,WANG Ai-hua2,F(xiàn)AN Miao-miao3,LI Wei2,SONG Zhao-peng1,WANG Hang3*
(1College of Tobacco Science,Henan Agricultural University,Zhengzhou,Henan 450002,China;2Tobacco ResearchInstitute,Chinese Academy of Agricultural Sciences/Key Laboratory of Tobacco Biology and Processing,Ministry ofAgriculture and Rural Affairs,Qingdao,Shandong 266101,China;3Guangdong Institute of Tobacco Sciences,Shaoguan,Guangdong 512029,China;4Guangdong Tobacco Company,China National TobaccoCorporation,Guangzhou,Guangdong 510627,China)
Abstract:【Objective】Based on the combined analysis of metabolomics and proteomics,the differences in material metabolism and protein expression of flue-cured tobacco upper leaves in sandy mud field and pruple soil of Guangdongtobacco-growing areas were analyzed to provide reference for reducing ash deposition of tobacco leaves in sandy mudfield.【Method】Purple soil flue-cured tobacco leaves that were less prone to ash hanging after curing(control)and sandy mud field flue-cured tobacco leaves that were prone to ash hanging after curing were used as the research objects.Thefresh tobacco leaves of the upper leaves of the 2 soil types at 4 stages of before maturity,just mature,mature and over-mature were selected to determine the activity of polyphenol oxidase(PPO).Subsequently,a combined metabolomic and proteomic analysis was conducted on mature tobacco leaves to identify differential metabolites and differentially ex-pressed proteins present in mature upper leaves from sandy mud fields.Additionally,this study aimed to analyze andscreen for key pathways influencing browning in these upper tobacco leaves grown in sandy mud field.【Result】Duringthe maturation of the upper leaves,the PPO activity of the purple soil tobacco leaves was extremely significantly lowerthan that of the sandy mud field tobacco leaves(rlt;0.01),and the difference between the two was the largest during the maturation period.A total of 129 differential metabolites and 1314 differentially expressed proteins were screened fromthe mature tobacco samples of the 2 soil types,and the differential metabolites and differentially expressed proteins were mainly up-regulated.The clustering of differential metabolites and KEGG metabolic pathway analysis were mainly en-riched in tyrosine metabolism,phenylalanine-tyrosine-tryptophan biosynthesis,phenylpropanoid biosynthesis.GOfunc-tional annotation and KEGG signal pathway enrichment analysis of differentially expressed proteins were mainly enrichedin phenylpropanoid biosynthesis,tyrosine metabolism,isoquinoline alkaloids biosynthesis and plant hormone signaltransduction.During the biosynthesis of polyphenols,the differentially expressed proteins of phenylalanine ammonialyase,4-coumaric acid coenzyme A ligase and hydroxycinnamoyl coenzyme A shikimate/quinic acid hydroxycinnamoyltransferase were down-regulated in sandy mud field tobacco leaves.The differentially expressed proteins of phytoene de-saturase,zeaxanthin epoxidase,9-cis-epoxycarotenoid dioxygenase andxanthooxin dehydrogenase were down-regulatedin sandy mud field tobacco leaves.Differential metabolites phaseic acid and dihydrophaseic acid were down-regulated.【Conclusion】Compared with the flue-cured tobacco upper leaves in purple soil,the flue-cured tobacco upper leaves insandy mud field are more susceptible to environmental stress during the growth process,resulting in a decrease in the quality of tobacco leaves,an increase in abscisic acid synthesis,activation of hormone signals,enhancement of phenolic metabolism,and an increase in PPO activity.During the curing process,it is easy to lead to more severe enzymatic browning,resulting in easy ash hanging of cured tobacco leaves.
Key words:flue-cured tobacco;sandy mud field;upper leaves;ash hanging;differential metabolites;differentially expressed proteins
Foundation items:Science and Technology Key Project of China National Tobacco Corporation(110202102007);Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(ASTIP-TRIC03);Technology Project of Guangdong Tobacco Company of China National Tobacco Corporation(2021440000240145)
0引言
【研究意義】廣東煙區(qū)為我國(guó)濃香型烤煙產(chǎn)區(qū)之一,植煙土壤類(lèi)型主要有沙泥田和紫色土。該煙區(qū)約有50%以上的烤煙種植在沙泥田中,但與紫色土種植的煙葉不同,沙泥田種植的煙葉烤后易掛灰,且上部葉掛灰現(xiàn)象表現(xiàn)更突出,致使烤后煙葉質(zhì)量下降(王軍等,2015;王行等,2023)。烤后煙葉正表面形成灰色或褐色細(xì)微斑點(diǎn)的現(xiàn)象稱(chēng)為掛灰。煙葉掛灰除與鮮煙素質(zhì)有關(guān)外,也可能受土壤狀況影響。沙泥田土壤酸化明顯,部分礦物質(zhì)營(yíng)養(yǎng)元素缺乏,可能使煙株體內(nèi)的生理功能紊亂,造成相關(guān)化合物大量積累;此外,其土壤粉粒含量高,質(zhì)地較疏松,加之廣東煙區(qū)降水時(shí)空分布不均及煙葉生長(zhǎng)后期易出現(xiàn)連續(xù)高溫情況,煙葉為緩解環(huán)境脅迫而增強(qiáng)相關(guān)生理活動(dòng),導(dǎo)致煙葉素質(zhì)下降(王軍等,2016;王行等,2023)。因此,研究影響沙泥田煙葉易掛灰的關(guān)鍵因素,對(duì)提高廣東煙區(qū)烤煙質(zhì)量具有重要意義?!厩叭搜芯窟M(jìn)展】影響烤煙上部葉掛灰的首要因素是煙葉素質(zhì),有研究表明,煙葉生長(zhǎng)過(guò)程中受到的非生物脅迫會(huì)導(dǎo)致其鮮煙素質(zhì)和烤后煙葉質(zhì)量下降(Li etal.,2021;Begum etal.,2021)。脫落酸(ABA)可緩解植物非生物脅迫并調(diào)節(jié)其生長(zhǎng)發(fā)育,當(dāng)植物受到非生物脅迫時(shí),ABA含量上升(Yang et al.,2011)。ABA生物合成途徑分為C15直接途徑和C40間接途徑。在C40間接途徑中,9-順式環(huán)氧類(lèi)胡蘿卜素雙加氧酶(NCED)、玉米黃質(zhì)環(huán)氧化酶(ZEP)是其關(guān)鍵酶。ABA代謝途徑主要為由細(xì)胞色素P450單加氧酶(CYP707A)介導(dǎo)的ABA 8'位甲基羥基化和由葡萄糖基轉(zhuǎn)移酶介導(dǎo)的螯合2條途徑(Chen et al.,2020)。酚類(lèi)化合物是茄科植物中廣泛存在的重要次生代謝產(chǎn)物,參與多種非生物脅迫反應(yīng)(Wang et al.,2024)。已有研究表明,植物可通過(guò)增強(qiáng)酚類(lèi)物質(zhì)代謝來(lái)緩解環(huán)境脅迫(Ampofoetal.,2020;Kohler et al.,2020;Zhang et al.,2021)??緹熒喜咳~掛灰主要是由烘烤過(guò)程中酶促褐變導(dǎo)致(Sui et al.,2023)。前人研究發(fā)現(xiàn),可通過(guò)降低或抑制多酚氧化酶(PPO)活性(Maioli et al.,2020;Ma et al.,2023;Song et al.,2023),也可通過(guò)提高抗氧化酶活性或降低酚類(lèi)和醌類(lèi)物質(zhì)含量來(lái)減輕煙葉或食品的褐變程度(Li etal.,2023a)。隨著研究深入,多組學(xué)聯(lián)合分析已成為植物學(xué)研究的重要手段之一(黃亞成等,2023)。Tang等(2020)通過(guò)代謝組學(xué)和基因表達(dá)分析,發(fā)現(xiàn)延緩富士蘋(píng)果褐變過(guò)程中,金絲桃苷可能是抑制褐變的關(guān)鍵多酚,較高的抗氧化酶活性也起重要作用。Tong等(2024)利用代謝組學(xué)和轉(zhuǎn)錄組學(xué)研究生姜的褐變機(jī)制,推測(cè)綠原酸和阿魏酸在PPO和過(guò)氧化物酶(POD)的催化作用下發(fā)生聚合反應(yīng),從而加劇生姜的木質(zhì)化,使生姜發(fā)生褐變。【本研究切入點(diǎn)】烘烤中煙葉掛灰屬于褐變反應(yīng),目前,通過(guò)調(diào)節(jié)PPO活性和酚類(lèi)物質(zhì)代謝來(lái)降低酶促褐變的研究主要集中在食品方面,而基于多組學(xué)聯(lián)合分析烤煙褐變的研究較少,也尚無(wú)針對(duì)廣東沙泥田煙葉褐變機(jī)理研究的相關(guān)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)代謝組學(xué)與蛋白組學(xué)手段,研究廣東煙區(qū)沙泥田與紫色土成熟烤煙上部葉代謝物和蛋白表達(dá)差異與功能注釋?zhuān)诰蛴绊憻熑~褐變的關(guān)鍵過(guò)程,為減少?gòu)V東煙區(qū)沙泥田煙葉掛灰提供參考依據(jù)。
1材料與方法
1.1試驗(yàn)材料
供試烤煙品種為粵煙97,由廣東省煙草科學(xué)研究所提供。
1.2樣品采集
試驗(yàn)在廣東省南雄市廣東省煙草科學(xué)研究所試驗(yàn)基地進(jìn)行。以烤后不易掛灰的紫色土煙葉(對(duì)照,Z)和烤后易掛灰的沙泥田煙葉(S)為研究對(duì)象,依據(jù)GB/T 23219—2008《烤煙烘烤技術(shù)規(guī)程》,采集2種土壤類(lèi)型煙葉上部葉欠熟、尚熟、成熟、過(guò)熟4個(gè)時(shí)期的鮮煙葉樣品進(jìn)行PPO活性測(cè)定;再以成熟時(shí)期樣品進(jìn)行代謝組學(xué)和蛋白組學(xué)分析,樣品采集后立即用液氮速凍,保存在-80℃冰箱中,分析前進(jìn)行預(yù)混,各處理煙葉用液氮研磨成粉末,放入試管中做好標(biāo)記,每項(xiàng)分析均設(shè)3個(gè)生物學(xué)重復(fù)。
1.3 PPO活性測(cè)定
PPO活性使用蘇州格銳思生物科技有限公司生產(chǎn)的試劑盒(GO113F/48樣),采用分光光度法測(cè)定。
1.4廣泛靶向代謝組學(xué)分析
1.4.1代謝物提取將各樣品置于凍干機(jī)(Scientz-100F)中真空冷凍干燥;利用研磨儀(MM400,Retsch)研磨樣品至粉末狀(30 Hz,1.5 min);使用電子天平(RADWAGAS 60/220.R2)稱(chēng)取50 mg樣品粉末,溶解于1000μL的70%甲醇內(nèi)標(biāo)提取液中,不足50 mg的樣本,按每50 mg樣本加入1000μL提取液的比例加入;再加入500μL石油醚,渦旋5min,靜置分層,4℃條件下以12000 r/min離心10 min。移取全部提取液過(guò)0.22μm PTFE濾膜至棕色進(jìn)樣瓶玻璃內(nèi)襯管內(nèi),-20℃保存?zhèn)溆谩?/p>
1.4.2檢測(cè)條件使用超高效液相色譜(UHPLC)和三重四級(jí)桿質(zhì)譜(QQQ)聯(lián)用進(jìn)行代謝組學(xué)分析。液相條件主要包括:色譜柱Agilent SB-C18(1.8μm,2.1 mm×100 mm);流動(dòng)相A相為超純水(加入0.1%的甲酸),B相為乙腈(加入0.1%的甲酸);洗脫梯度:0 min B相比例為5%,9 min內(nèi)B相比例線(xiàn)性增加到95%,并維持在95%1 min;隨后,在1.1 min(10~11.1 min)內(nèi)將B相比例降為5%,并以5%平衡至14min;流速0.35 mL/min;柱溫40℃;進(jìn)樣量2μL。質(zhì)譜條件主要包括:電噴霧離子源(ESI)溫度550℃;離子噴霧電壓(IS)5500 V(正離子模式)/-4500 V(負(fù)離子模式);離子源氣體I(GSI)、氣體II(GSII)和氣簾氣(CUR)分別設(shè)置為50、60和25psi,碰撞誘導(dǎo)電離參數(shù)設(shè)置為高。QQQ掃描使用MRM模式,并將碰撞氣體(氮?dú)猓┰O(shè)置為中等。通過(guò)進(jìn)一步的去簇電壓(DP)和碰撞能(CE)優(yōu)化,完成各個(gè)MRM離子對(duì)的DP和CE。根據(jù)每個(gè)時(shí)期內(nèi)洗脫的代謝物,在每個(gè)時(shí)期監(jiān)測(cè)一組特定的MRM離子對(duì)。
1.4.3代謝組學(xué)分析通過(guò)超高效液相色譜串聯(lián)質(zhì)譜(UHPLC-MS/MS)對(duì)樣品中代謝物進(jìn)行鑒定。相關(guān)數(shù)據(jù)進(jìn)行多變量統(tǒng)計(jì)分析,采用無(wú)監(jiān)督主成分分析(PCA)對(duì)2個(gè)樣本的總體方差進(jìn)行剖析。代謝組學(xué)分析包括3個(gè)生物學(xué)重復(fù),采用變量重要性投影(VIP)≥1和差異倍數(shù)(Fold Change,F(xiàn)C)≥2、FC≤0.5及rlt;0.05來(lái)篩選差異代謝物。
1.5 4D-DIA定量蛋白組學(xué)分析
試驗(yàn)樣本進(jìn)行總蛋白的提取、胰酶酶解、UHPLC-MS/MS上機(jī)檢測(cè),再對(duì)下機(jī)數(shù)據(jù)進(jìn)行歸一化處理。隨后用MaxQuant搜索煙草全基因組信息數(shù)據(jù)庫(kù)(Uniprot),得到蛋白定性定量結(jié)果。顯著性差異表達(dá)蛋白篩選以差異倍數(shù)FCgt;1.2倍(上調(diào)gt;1.2倍或下調(diào)lt;0.8倍)且rlt;0.05為標(biāo)準(zhǔn),得到比較組間的上調(diào)和下調(diào)蛋白數(shù)目。采用亞細(xì)胞結(jié)構(gòu)預(yù)測(cè)軟件CELLO對(duì)所有差異表達(dá)蛋白進(jìn)行亞細(xì)胞定位分析。采用Blast2Go(https://www.blast2go.com/)對(duì)差異表達(dá)蛋白進(jìn)行GO功能注釋?zhuān)饕譃?類(lèi):生物過(guò)程(Bio-logical process,BP),分子功能(Molecular function,MF)和細(xì)胞組分(Cellular component,CC)。通過(guò)KEGG通路數(shù)據(jù)庫(kù)對(duì)蛋白進(jìn)行解析注釋。差異表達(dá)蛋白通過(guò)Fisher精確檢驗(yàn)方法進(jìn)行KEGG信號(hào)通路富集分析。
1.6統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2024和SPSS 24.0進(jìn)行統(tǒng)計(jì)分析,利用LSD法、Duncan’s法進(jìn)行多重比較分析處理間差異顯著性,采用Origin 2024作圖。
2結(jié)果與分析
2.1 2種土壤類(lèi)型煙葉PPO活性比較
如圖1所示,隨著煙葉成熟進(jìn)程的推移,2種土壤類(lèi)型煙葉PPO活性均表現(xiàn)出先升后降的變化趨勢(shì),在成熟時(shí)期達(dá)最大值,各時(shí)期沙泥田煙葉PPO活性均極顯著高于紫色土煙葉(rlt;0.01,下同),且二者在成熟時(shí)期差值最大。
2.2 2種土壤類(lèi)型煙葉差異代謝物篩選
為更清楚展現(xiàn)2種土壤類(lèi)型煙葉代謝組學(xué)差異,選取成熟時(shí)期煙葉進(jìn)行對(duì)比分析。PCA分析結(jié)果(圖2)顯示,沙泥田煙葉與紫色土煙葉在第一主成分(PC1)上分離顯著,可用于后續(xù)分析。在所檢測(cè)樣本中,以VIPgt;1和rlt;0.05為依據(jù)進(jìn)行篩選,共篩選出129個(gè)差異代謝物,其中91個(gè)代謝物上調(diào)、38個(gè)代謝物下調(diào)(圖3-A和圖3-B)。
2.3 2種土壤類(lèi)型煙葉差異代謝物聚類(lèi)和KEGG代謝通路富集分析
對(duì)2種土壤類(lèi)型煙葉進(jìn)行聚類(lèi)分析,結(jié)果(圖4-A)顯示,下調(diào)差異代謝物主要為D-果糖-6-磷酸(MWS 2442)、D-葡萄糖醛酸(pme3705)、D-蔗糖酸(Zmyn 000108)等糖類(lèi)物質(zhì)和3-O-甲基槲皮素(Lmmn00 4912)、山茶苷A(Xmyp004945)等黃酮類(lèi)物質(zhì)以及脫落酸(Lmtn004049)、2-氨基異丁酸(pme3017)等有機(jī)酸類(lèi)物質(zhì);上調(diào)差異代謝物主要是咖啡酰腐胺(pmb0323n)、N-阿魏酰腐胺(Lmlp003161)、去甲基煙堿(mws1379)等生物堿酚胺類(lèi)物質(zhì)和L-哌啶酸(MWS0811)、L-蘋(píng)果酸(mws0275)、反式烏頭酸(pme3009)等有機(jī)酸類(lèi)物質(zhì)以及棉黃素-3-O-蕓香糖苷(Lmmp002796)、楊梅素-3-O-蕓香糖苷(Lmsp 003729)等黃酮類(lèi)物質(zhì)。KEGG代謝通路富集分析結(jié)果(圖4-B)顯示,差異代謝物共富集到47條代謝通路上,其中顯著富集的有5條,分別為酪氨酸代謝(Tyrosine metabolism,ko00350)、苯丙氨酸—酪氨酸—色氨酸生物合成(Phenylalanine,tyrosine andtryptophan biosynthesis,ko00400)、苯丙素生物合成(Phenylpropanoid biosynthesis,ko00940)、異喹啉生物堿生物合成(Isoquinoline alkaloids biosynthesis,ko00950)和植物次生代謝產(chǎn)物的生物合成(Bio-synthesis of various plant secondary metabolites,ko00990)??梢?jiàn),不同土壤類(lèi)型煙葉差異代謝物主要富集在多酚類(lèi)物質(zhì)的合成通路中,其中,酪氨酸代謝、苯丙氨酸—酪氨酸—色氨酸生物合成、苯丙素生物合成等通路在煙草多酚類(lèi)物質(zhì)的合成中起重要調(diào)控作用,對(duì)煙葉酶促褐變反應(yīng)具有重要影響。
2.4 2種土壤類(lèi)型煙葉差異表達(dá)蛋白鑒定
采用基于4D-DIA定量蛋白組學(xué)方法,選取成熟時(shí)期煙葉進(jìn)行蛋白組學(xué)比較分析。PCA分析結(jié)果(圖5)顯示,2組樣品在PC1上分離顯著,可用于后續(xù)分析。鑒定共獲得7428個(gè)蛋白,以FCgt;1.2倍或lt;0.8倍且rlt;0.05為依據(jù)共篩選出1314個(gè)差異表達(dá)蛋白,其中767個(gè)上調(diào)、547個(gè)下調(diào)(圖6-A和圖6-B)。
2.5 2種土壤類(lèi)型煙葉差異蛋白功能注釋
為了解差異表達(dá)蛋白在細(xì)胞內(nèi)的分布,對(duì)其進(jìn)行亞細(xì)胞定位分析,結(jié)果(圖7)表明,306個(gè)差異表達(dá)蛋白能進(jìn)行亞細(xì)胞定位分析,其中,189個(gè)上調(diào)、117個(gè)下調(diào)。189個(gè)上調(diào)差異表達(dá)蛋白主要位于細(xì)胞膜(Cell membrane,39.7%,75個(gè))、參與分泌的細(xì)胞器(Secreted,22.8%,43個(gè))和內(nèi)質(zhì)網(wǎng)(Endoplasmicreticulum,11.1%,21個(gè))。117個(gè)下調(diào)差異表達(dá)蛋白主要定位于細(xì)胞核(Nucleus,40.2%,47個(gè))、細(xì)胞膜(Cell membrane,39.3%,46個(gè))和細(xì)胞質(zhì)(Cytoplasm,17.9%,21個(gè))。
為評(píng)估差異表達(dá)蛋白對(duì)生理過(guò)程的影響,采用Blast2Go對(duì)其進(jìn)行GO功能注釋和解析。其中,差異表達(dá)蛋白數(shù)占總差異表達(dá)蛋白數(shù)較多的條目為生物過(guò)程中的細(xì)胞過(guò)程(Cellular process,9.6%)、代謝過(guò)程(Metabolic process,9.5%);細(xì)胞組分中的細(xì)胞部分(Cell part,10.5%)、細(xì)胞器(Organelle,6.9%);分子功能中的催化活性(Catalytic activity,10.7%)、結(jié)合(Binding,8.8%)等(圖8-A)。分別在3類(lèi)GO功能條目中篩選出r值最小的前20個(gè)GO條目,可看出其生物過(guò)程類(lèi)別主要富集在響應(yīng)脅迫(Response to stress,GO:0006950)等條目(圖8-B);細(xì)胞組分類(lèi)別主要富集在胞外區(qū)(Extracellular region,GO:0005576)、外部封裝結(jié)構(gòu)(External encapsulating structure,GO:0030312)、細(xì)胞壁(Cell wall,GO:0005618)等條目(圖8-C);分子功能類(lèi)別主要富集在水解酶活性(Hydrolase activity,hydrolyzing O-glycosyl com-pounds/hydrolase activity,acting on glycosyl bonds;GO:0004553/GO:0016798)、氧化還原酶活性(Oxi-doreductase activity,acting on peroxide as acceptor,GO:0016684)、過(guò)氧化物酶活性(Peroxidase activity,GO:0004601)、抗氧化活性(Antioxidant activity,GO:0016209)等條目(圖8-D)。說(shuō)明沙泥田上部成熟煙葉對(duì)周?chē)h(huán)境存在脅迫響應(yīng),使其部分蛋白顯著富集在抗逆性方面。對(duì)2種土壤類(lèi)型煙葉的差異表達(dá)蛋白進(jìn)行KEGG富集分析,篩選出r值最小的前20個(gè)途徑,主要富集在苯丙素生物合成、酪氨酸代謝、異喹啉生物堿生物合成和植物激素信號(hào)傳導(dǎo)(Plant hormone signal transduction)等通路(圖8-E)。其中,酪氨酸代謝、異喹啉生物堿生物合成途徑中多酚氧化酶(PPO,EC:1.10.3.1)、天冬氨酸轉(zhuǎn)氨酶(GOT2,EC:2.6.1.1)均下調(diào),與煙葉PPO活性表現(xiàn)一致。
2.6 2種土壤類(lèi)型煙葉多酚類(lèi)物質(zhì)生物合成分析
將2種土壤類(lèi)型煙葉差異代謝物和差異表達(dá)蛋白注釋到KEGG通路中進(jìn)行聯(lián)合分析,差異物質(zhì)富集程度前3的通路分別為氨基糖和核苷酸糖代謝(Amino sugar and nucleotide sugar metabolism,ko00520)、苯丙素生物合成(ko00940)和輔因子的生物合成(Biosynthesis of cofactors,ko01240)(圖9)。
結(jié)合PPO活性表現(xiàn)和代謝組學(xué)、蛋白組學(xué)分析結(jié)果,選擇苯丙素生物合成途徑進(jìn)行聯(lián)合分析。其中,苯丙氨酸解氨酶(PAL,EC:4.3.1.24)、4-香豆酸輔酶A連接酶(4CL,EC:6.2.1.12)、羥基肉桂酰輔酶A莽草酸酯/奎寧酸羥基肉桂酰轉(zhuǎn)移酶(HCT,EC:2.3.1.133)、咖啡酰輔酶A 3-O-甲基轉(zhuǎn)移酶(CCoAOMT,EC:2.1.1.104)、松柏醛脫氫酶(REF1,EC:1.2.1.68)下調(diào)(圖10)。篩選出來(lái)的差異表達(dá)蛋白主要集中在通路的上游且均表現(xiàn)為下調(diào),上游差異代謝物阿魏酸(Ferulic aeid)和下游差異代謝物松柏醇(Coniferyl alcohol)、芥子醇(Sinapyl alcohol)均表現(xiàn)出下調(diào),說(shuō)明相較于紫色土煙葉,沙泥田煙葉中多酚類(lèi)物質(zhì)合成速率加快,使酚類(lèi)物質(zhì)的積累量提高。
2.7 2種土壤類(lèi)型煙葉ABA生物合成分析
除多酚類(lèi)物質(zhì)合成途徑外,ABA生物合成和代謝途徑也有差異代謝物和差異表達(dá)蛋白富集。ABA生物合成分類(lèi)萜和類(lèi)胡蘿卜素2條途徑。聯(lián)合分析結(jié)果(圖11)顯示,類(lèi)胡蘿卜素生物合成(Carotenoids biosynthesis,ko00906)途徑上富集到較多差異表達(dá)蛋白和差異代謝物。其中,八氫番茄紅素脫氫酶(PDS,EC:2.5.1.32)、玉米黃質(zhì)環(huán)氧化酶(ZEP,EC:1.14.15.21)、9-順式環(huán)氧類(lèi)胡蘿卜素雙加氧酶(NCED,EC:1.14.15.21)、黃氧素脫氫酶(ABA2,EC:1.1.1.288)下調(diào)。ABA代謝途徑主要分由P450型單加氧酶(CYP707A)介導(dǎo)的羥基化和由葡萄糖基轉(zhuǎn)移酶介導(dǎo)的螯合2條途徑。在前者中,差異代謝物紅花菜豆酸(Phaseic acid)、二氫紅花菜豆酸(Dihydrophaseic acid)下調(diào);后者中,葡萄糖基轉(zhuǎn)移酶(AOG,EC:2.4.1.263)下調(diào)(圖11)。整體上,在ABA生物合成和代謝途徑中,篩選出來(lái)的差異代謝物和差異表達(dá)蛋白均表現(xiàn)為下調(diào),說(shuō)明與紫色土煙葉相比,沙泥田上部煙葉生長(zhǎng)過(guò)程中受到脅迫,導(dǎo)致ABA的物質(zhì)合成、代謝均較旺盛。
3討論
烤后煙葉掛灰現(xiàn)象受生態(tài)條件、栽培措施、烘烤調(diào)制技術(shù)等多種因素影響。廣東煙區(qū)沙泥田土壤質(zhì)地較疏松,保肥性能較差,土壤pH偏酸性,有效鐵和有效錳含量較高,交換性鈣和交換性鎂含量較低,水溶性硼普遍缺乏(王軍等,2015;王行等,2023),可能會(huì)引起煙草出現(xiàn)生理性中毒和生理功能紊亂,使煙葉生長(zhǎng)后期易受土壤因子脅迫,最終經(jīng)調(diào)制后出現(xiàn)掛灰煙葉。目前,普遍認(rèn)為掛灰煙葉形成與鮮煙素質(zhì)及酶促褐變密切相關(guān)(孫皓月等,2022)。同時(shí),PPO在植物抗逆性活動(dòng)中也起著重要作用(趙伶俐等,2005)。本研究中,以紫色土成熟煙葉(不易掛灰)為對(duì)照,發(fā)現(xiàn)沙泥田煙葉PPO活性在各時(shí)期均顯著升高,與煙葉掛灰程度一致,說(shuō)明鮮煙葉時(shí)期的沙泥田上部葉易受外界脅迫,PPO活性已顯著高于紫色土煙葉,采收時(shí)應(yīng)注意煙葉素質(zhì),同時(shí)在后期煙葉烘烤中更需注意煙葉所處環(huán)境的溫濕度條件,以降低煙葉酶促褐變的劇烈程度。本研究從代謝組學(xué)和蛋白組學(xué)層面解析2種土壤類(lèi)型成熟煙葉差異表達(dá)并進(jìn)行富集分析,發(fā)現(xiàn)差異代謝物和差異表達(dá)蛋白主要富集在酪氨酸代謝、苯丙素生物合成、類(lèi)胡蘿卜素生物合成等途徑;在其聯(lián)合分析中,氨基糖和核苷酸糖代謝、苯丙素生物合成和輔因子生物合成3條通路顯著富集,與前人發(fā)現(xiàn)褐變涉及通路相似(Li et al.,2023b;Guan et al.,2024)。PAL、C4H和4CL活性與酚類(lèi)物質(zhì)的合成密切相關(guān)(Zhou et al.,2018;Shahidi et al.,2024)。HCT在木質(zhì)素單體的合成中起重要作用(Zhou et al.,2018)。本研究結(jié)果表明,相較于紫色土煙葉,沙泥田煙葉的PAL、4CL和HCT下調(diào),說(shuō)明沙泥田上部煙葉烤后易掛灰,可能與多酚類(lèi)物質(zhì)合成相關(guān)酶活性上升有關(guān)。而阿魏酸、芥子酸等酚類(lèi)和類(lèi)黃酮物質(zhì)作為酶促褐變的關(guān)鍵底物,與組織褐變、抗逆性等密切相關(guān)(Sukhonthara et al.,2016;Liao et al.,2020)。本研究中,差異代謝物阿魏酸、松柏醇、芥子醇等差異代謝物下調(diào),也表明沙泥田上部煙葉更易受外界脅迫,導(dǎo)致PPO活性和多酚類(lèi)物質(zhì)含量增加。
已有研究表明,ABA是植物感知逆境信號(hào)并響應(yīng)脅迫的關(guān)鍵因子(Habibpourmehrabanetal.,2023)。非生物脅迫誘導(dǎo)ABA含量增加,使其可通過(guò)調(diào)節(jié)植物中的各種生理和生化信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián)反應(yīng)來(lái)應(yīng)對(duì)脅迫(Yang et al.,2011)。Castro-Cegri等(2023)對(duì)冷藏西葫蘆果實(shí)施用外源ABA,通過(guò)UPLC/MS-MS對(duì)特定酚類(lèi)進(jìn)行定量檢測(cè),觀察到外源ABA主要激活類(lèi)黃酮的產(chǎn)生,使抗壞血酸、類(lèi)胡蘿卜素和多酚類(lèi)化合物積累,從而提高西葫蘆果實(shí)在貯藏過(guò)程中的抗氧化能力。本研究發(fā)現(xiàn),相較于紫色土煙葉,沙泥田煙葉差異代謝物ABA下調(diào),同時(shí),ABA生物合成途徑中NCED、PDS、ZEP等差異表達(dá)蛋白下調(diào)。其中,NCED、ZEP是催化形成植物激素ABA生物合成的關(guān)鍵酶。說(shuō)明沙泥田上部煙葉生長(zhǎng)過(guò)程中更易受到環(huán)境脅迫,導(dǎo)致煙葉素質(zhì)下降,ABA含量上升,進(jìn)而激活與植物激素信號(hào)傳導(dǎo)相關(guān)的重要蛋白來(lái)增強(qiáng)其適應(yīng)能力。
4結(jié)論
與紫色土烤煙上部葉相比,沙泥田烤煙上部葉生長(zhǎng)過(guò)程中更易受環(huán)境脅迫,導(dǎo)致煙葉素質(zhì)下降,ABA合成增加,激素信號(hào)激活,酚類(lèi)代謝增強(qiáng),PPO活性上升,在烘烤過(guò)程中易導(dǎo)致酶促褐變更加劇烈,從而造成烤后煙葉易掛灰。
參考文獻(xiàn)(References):
黃亞成,任東立,何斌,趙艷妹,龔小見(jiàn),陳錦秀,劉林婭.2023.轉(zhuǎn)錄組學(xué)和代謝組學(xué)在植物非生物脅迫中的研究進(jìn)展[J].江蘇農(nóng)業(yè)科學(xué),51(22):1-7.[Huang Y C,Ren D L,He B,Zhao Y M,Gong X J,Chen J X,Liu LY.2023.Research progress in transcriptomics and metabolomics in plant abiotic stress[J].Jiangsu Agricultural Sciences,51(22):1-7.]doi:10.15889/j.issn.1002-1302.2023.22.001.
孫皓月,賈宏昉,謝良文,馮長(zhǎng)春,伍德洋,秦艷青,陳漢發(fā),郭仕平.2022.不同采烤方式對(duì)烤煙上部葉脂質(zhì)褐變的影響[J].南方農(nóng)業(yè)學(xué)報(bào),53(6):1616-1624.[Sun H Y,Jia H F,Xie L W,F(xiàn)eng C C,Wu D Y,Qin Y Q,Chen H F,Guo S P.2022.Effects of different harvesting methods on lipid browning of upper leaves of flue-cured tobacco[J].Southern Agricultural Journal,53(6):1616-1624.]doi:10.3969/j.issn.2095-1191.2022.06.015.
王軍,丁效東,何振峰,田俊嶺,劉蘭,陳澤鵬.2015.廣東南雄煙區(qū)植煙土壤肥力特征及綜合評(píng)價(jià)[J].中國(guó)煙草科學(xué),36(6):30-36.[Wang J,Ding X D,He Z F,Tian J L,Liu L,Chen Z P.2015.The soil fertility characteristics and comprehensive evaluation of Nanxiong tobacco-growing area in Guangdong Province[J].China Tobacco Science,36(6):30-36.]doi:10.13496/j.issn.1007-5119.2015.06.006.
王軍,丁效東,羅靜,王曉賓,王政仁,陳澤鵬.2016.南雄煙區(qū)氣候條件與煙葉產(chǎn)量構(gòu)成及主要化學(xué)成分的關(guān)系[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),37(3):54-61.[Wang J,Ding X D,LuoJ,Wang X B,Wang Z R,Chen Z P.2016.Effects of cli-matic conditions on yield components and main chemical constituents of tobacco in Nanxiong,Guangdong Province[J].Journal of South China Agricultural University,37(3):54-61.]doi:10.7671/j.issn.1001-411X.2016.03.008.
王行,姚遠(yuǎn)華,張丹丹,劉蘭,朱文格,邱妙文.2023.提高粵北烤煙上部煙葉可用性關(guān)鍵技術(shù)研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),39(34):16-21.[Wang H,Yao Y H,Zhang D D,Liu L,Zhu W G,Qiu M W.2023.Research progress on key tech-nologies for improving the availability of upper flue-cured tobacco leaves in Northern Guangdong[J].Chinese Agri-cultural Science Bulletin,39(34):16-21.]
趙伶俐,范崇輝,葛紅,劉洪濤.2005.植物多酚氧化酶及其活性特征的研究進(jìn)展[J].西北林學(xué)院學(xué)報(bào),20(3):156-159.[Zhao L L,F(xiàn)an C H,Ge H,Liu H T.2005.Progress on polyphenol oxidase and its activity characteristics in plants[J].Journal of Northwest Forestry University,20(3):156-159.]doi:10.3969/j.issn.1001-7461.2005.03.042.
Ampofo J,Ngadi M,Ramaswamy H S.2020.The impact oftemperature treatments on elicitation of the phenylpro-panoid pathway,phenolic accumulations and antioxidative capacities of common bean(Phaseolus vulgaris)sprouts[J].Food and Bioprocess Technology,13(9):1544-1555.
Begum N,Akhtar K,Ahanger M A,Iqbal M,Wang P P,Mus-tafa N S,Zhang L X.2021.Arbuscular mycorrhizal fungi improve growth,essential oil,secondary metabolism,and yield of tobacco(Nicotiana tabacum L.)under drought stress conditions[J].Environmental Science and Pollution Research International,28(33):45276-45295.doi:10.1007/s11356-021-13755-3.
Castro-Cegri A,Sierra S,Hidalgo-Santiago L,Esteban-Munoz A,Jamilena M,Garrido D,Palma F.2023.Postharvest treatment with abscisic acid alleviates chilling injury in zucchini fruit by regulating phenolic metabolism and non-enzymatic antioxidant system[J].Antioxidants,12(1):211.doi:10.3390/antiox 12010211.
Chen K,Li G J,Bressan R A,Song C P,Zhu J K,Zhao Y.2020.Abscisic acid dynamics,signaling,and functions in plants[J].Journal of Integrative Plant Biology,62(1):25-54.doi:10.1111/jipb.12899.
Guan Y G,Lu S N,Sun Y,Zheng X R,Wang R,Lu X H,Pang L J,Cheng J Y,Wang L.2024.Tea polyphenols inhibit the occurrence of enzymatic browning in fresh-cut potatoes by regulating phenylpropanoid and ROS metabolism[J].Plants,13(1):125.doi:10.3390/plants 13010125.
Habibpourmehraban F,Wu Y Q,Masoomi-Aladizgeh F,Amirkhani A,Atwell B J,Haynes PA.2023.Pre-treatment of rice plants with ABA makes them more tolerant to mul-tiple abiotic stress[J].International Journal of Molecular Sciences,24(11):9628.doi:10.3390/ijms24119628.
K?hler A,F(xiàn)orster N,Zander M,Ulrichs C.2020.Compound-specific responses of phenolic metabolites in the bark of drought-stressed Salix daphnoides and Salix purpurea[J].Plant Physiology and Biochemistry,155:311-320.doi:10.1016/j.plaphy.2020.07.004.
Li L Q,Mu Y L,Chen J,Wang Q,Lu Y F,Xin S,Yang S M,Huang X L,Wang X Y,Lu L M.2023a.Molecular mecha-nism by which StSN2 overexpression inhibits the enzy-matic browning of potato[J].Postharvest Biology and Te-chnology,203:112416.doi:10.1016/j.postharvbio.2023.112416.
Li X T,Zhang S,Wang Q G,Dong T T.2023b.Diacetyl inhi-bits the browning of fresh-cut stem lettuce by regulating the metabolism of phenylpropane and antioxidant ability[J].Foods,12(4):740.doi:10.3390/foods 12040740.
Li Y,Ren K,Hu M Y,He X,Gu K Y,Hu B B,Su J E,Jin Y,Gao W Y,Yang D S,Li F L,Zou C M.2021.Cold stress in the harvest period:Effects on tobacco leaf quality and curing characteristics[J].BMC Plant Biology,21(1):131.doi:10.1186/s 12870-021-02895-w.
Liao T,Liu J P,Sun Yu F,Zou L Q,Zhou L,Liu C M,Terefe N S,Liu W.2020.Differential inhibitory effects of organic acids on pear polyphenol oxidase in model systems and pear puree[J].LWT-Food Science and Technology,118:108704.doi:10.1016/j.lwt.2019.108704.
Ma Y,Hong T T,Xu D,Wu F F,Xu X M.2023.Inhibition of PPO-related browning in fresh noodles:A combination of chemical and heat treatment[J].Food Chemistry,404(Part B):134549.doi:10.1016/j.foodchem.2022.134549.
Maioli A,Gianoglio S,Moglia A,Acquadro A,Valentino D,Milani A M,Prohens J,Orzaez D,Granell A,Lanteri S,Comino C.2020.Simultaneous CRISPR/Cas9 editing of three PPO genes reduces fruit flesh Browning in Solanum melongena L[J].Frontiers in Plant Science,11:607161.doi:10.3389/fpls.2020.607161.
Shahidi P,Bahramnejad B,Vafaee Y,Dastan D,Heidari P.2024.Isolation and characterization of Phenylalanine Ammonia Lyase(PAL)genes in Ferulapseudalliacea:Insights into the phenylpropanoid pathway[J].Genes,15(6):771.doi:10.3390/genes 15060771.
Song Z Y,Qiao J,Tian D D,Dai M,Guan Q H,He Y,Liu P,Shi J Y.2023.Glutamic acid can prevent the browning of fresh-cut potatoes by inhibiting PPO activity and regula-ting amino acid metabolism[J].LWT-Food Science and Technology,180:114735.doi:10.1016/j.lwt.2023.114735.
Sui X,Meng Z,Dong T T,Xue T T,Wang Q G.2023.Enzy-matic browning and polyphenol oxidase control strategies[J].Current Opinion in Biotechnology,81:102921.doi:10.1016/j.copbio.2023.102921.
Sukhonthara S,Kaewka K,Theerakulkait C.2016.Inhibitory effect of rice bran extracts and its phenolic compounds on
polyphenol oxidase activity and browning in potato and apple puree[J].Food Chemistry,190:922-927.doi:10.1016/j.foodchem.2015.06.016.
Tang T T,Xie X F,Ren X,Wang W J,Tang X M,Zhang J,Wang Z D.2020.A difference of enzymatic browning unre-lated to PPO from physiology,targeted metabolomics and gene expression analysis in Fuji apples[J].Postharvest Bio-logy and Technology,170:111323.doi:10.1016/j.posthar-vbio.2020.111323.
Tong M R,Ding Ya F,Yu H,Zhang W,Wu D L.2024.Inte-grated non-targeted metabolomics and transcriptomicsreveals the browning mechanism of scraped ginger(Zingiber officinale Rosc.)[J].Journal of Food Science,89(6):3139-3275.doi:10.1111/1750-3841.17084.
Wang J,Wang J,Yue Z B,Luo S L,Zhang B,Yu J H,Liu Z C.2024.Disease and pest resistance through phenolic sub-stances in the solanaceae[J].Journal of Plant Growth Re-gulation,43(7):2121-2136.
Yang W,Liu X D,Chi X J,Wu C A,Li Y Z,Song L L,Liu X M,Wang Y F,Wang F W,Zhang C,Liu Y,Zong J M,Li H Y.2011.Dwarf apple MbDREB1 enhances plant toleranceto low temperature,drought,and salt stress via both ABA-dependent and ABA-independent pathways[J].Planta,233(2):219-229.doi:10.1007/s00425-010-1279-6.
Zhang L L,Martinelli E,Senizza B,Miras-Moreno B,Yildiztu-gay E,Arikan B,Elbasan F,Ak G,Balci M,Zengin G,Rouphael Y,Lucini L.2021.The combination of mild salinity conditions and exogenously applied phenolics modulates functional traits in lettuce[J].Plants,10(7):1457.doi:10.3390/plants 10071457.
Zhou P L,Li Q Y,Liu G L,Xu N,Yang Y J,Zeng W L,Chen A G,Wang S S.2018.Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress[J].Functional Plant Biology,46(1):30-43.doi:10.1071/fp 18099.
(責(zé)任編輯王暉)