摘要:紅樹(shù)植物作為濱海濕地生態(tài)系統(tǒng)的重要組成部分,其特異木質(zhì)化的根外皮層、根表鐵膜、葉表鹽腺,以及植物螯合劑的分泌系統(tǒng)和強(qiáng)大的抗氧化酶系統(tǒng)等獨(dú)特的生理結(jié)構(gòu),在耐受重金屬脅迫方面發(fā)揮著重要作用。本文就近年來(lái)紅樹(shù)植物耐受重金屬脅迫機(jī)制方面的研究進(jìn)展進(jìn)行了綜述,并展望了紅樹(shù)植物在重金屬污染修復(fù)中的應(yīng)用前景,以期為濱海濕地重金屬污染的生物修復(fù)提供新的思路。
關(guān)鍵詞:紅樹(shù)植物;重金屬;耐受機(jī)制;生物修復(fù)
中圖分類號(hào):S718.5" " " " " " " " " " " 文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " " " " " "文章編號(hào):2095-5774(2024)06-0547-12
Mechanism of Heavy Metal Stress Tolerance in Mangrove Plants and Its Application
Prospects in Bioremediation
Xie Chengjin1,Liu Shuyu2,Kang Xianhui3,Chen Xi4,Tuo Caijin4,Pan Jiazeng4
(1 College of Environment amp; Safety Engineering,F(xiàn)uzhou University,F(xiàn)uzhou,F(xiàn)ujian 350108,China;
2 College of Resources and Environment,F(xiàn)ujian Agriculture and Forestry University,F(xiàn)uzhou,F(xiàn)ujian 350002,China;
3 College of Future Technology,F(xiàn)ujian Agriculture and Forestry University,F(xiàn)uzhou,F(xiàn)ujian 350002,China;
4 College of Geography and Oceanography,Minjiang University,F(xiàn)uzhou,F(xiàn)ujian 350108,China)
Abstract:As an integral part of the coastal wetland ecosystem,mangrove plants play an important role in tolerance to heavy metal stress because of its unique physiological structures,such as the specific lignified root exodermis,iron plaque on the root surface,salt glands on the leaf surface,together with the secretion system of phytochelatins and strong antioxidant enzyme system. This review focuses on the recent research progress on the mechanisms underlying heavy metal tolerance of mangrove plants,and the application prospects of mangrove plants in heavy metal pollution remediation in order to provide new way of thinking for bioremediation of coastal wetland polluted by heavy metal.
Key words:Mangrove plants;Heavy metals;Tolerance mechanism;Bioremediation
紅樹(shù)林(Mangrove)是熱帶和亞熱帶海岸潮間帶濕地生態(tài)系統(tǒng)的重要組成部分。紅樹(shù)林生態(tài)系統(tǒng)具有緩沖鹽度、減弱波浪侵蝕、固岸、為鳥(niǎo)類提供棲息地、碳固存,以及對(duì)重金屬和無(wú)機(jī)污染的修復(fù)等重要的生態(tài)價(jià)值。其還在濱海生態(tài)系統(tǒng)中對(duì)營(yíng)養(yǎng)物質(zhì)的輸出及碳儲(chǔ)存起著關(guān)鍵作用[1-3]。然而,重金屬(HMs)的過(guò)度積累會(huì)抑制紅樹(shù)植物的正常生長(zhǎng)和發(fā)育過(guò)程,影響光合作用和呼吸作用[4-5]。已有大量研究表明,重金屬會(huì)對(duì)紅樹(shù)植物的萌發(fā)、生長(zhǎng)、繁殖以及基因組結(jié)構(gòu)產(chǎn)生不利影響[6-8]。其中,鎘是紅樹(shù)林生態(tài)系統(tǒng)中最常見(jiàn),同時(shí)對(duì)紅樹(shù)林生態(tài)系統(tǒng)的穩(wěn)定性構(gòu)成嚴(yán)重威脅的重金屬之一。因此,如何緩解濱海地區(qū)重金屬污染是目前污染生態(tài)學(xué)關(guān)注的主要科學(xué)問(wèn)題之一。另一方面,紅樹(shù)植物也進(jìn)化出多種應(yīng)對(duì)重金屬毒害的機(jī)制,其中包括避免重金屬吸收、形成鐵膜、螯合和吸附重金屬,以及激發(fā)酶促和非酶促抗氧化劑等[5,9]。解析紅樹(shù)植物根系富集、螯合以及利用鹽腺分泌等富集或外排重金屬的途徑,可以深入了解這些植物適應(yīng)極端環(huán)境的機(jī)制,也為后期利用開(kāi)發(fā)這些功能用于重金屬污染的修復(fù)作技術(shù)指導(dǎo)[10-11]。
1紅樹(shù)植物對(duì)重金屬的耐受機(jī)制
全球沿海地區(qū)已發(fā)現(xiàn)約80種紅樹(shù)植物,每個(gè)物種在應(yīng)對(duì)環(huán)境挑戰(zhàn)方面具有獨(dú)特的潛力,包括潮汐洪水、高鹽度、低氧水平及重金屬耐受等功能[12-13]。Zheng等[14]發(fā)現(xiàn),海欖雌(Avicennia marina)具有極高的銅(Cu)和鎘(Cd)富集能力,其富集率分別達(dá)到83.8%和74.2%。秋茄屬植物也表現(xiàn)出較強(qiáng)的銅和鎳的超積累能力,富集率分別為70.5%和50.5%。類似地,MacFarlane等[6]發(fā)現(xiàn),在銅濃度為200μg/g的條件下,海欖雌的根表皮組織中積累了大量的銅離子(Cu2+)。此外,紅樹(shù)植物因生長(zhǎng)年限、生物量和種類的不同,它們對(duì)重金屬的吸收和累積也有所差異[5,15-17]。研究表明,紅樹(shù)植物應(yīng)對(duì)低氧、淹水和鹽霧、高鹽等極端條件所具備的獨(dú)特的生理結(jié)構(gòu),如膝狀根、氣生根、葉片的旱生特性和鹽腺,在紅樹(shù)植物耐受重金屬脅迫方面起到了關(guān)鍵作用[5,18-19]。
1.1 根表對(duì)重金屬的阻擋
在紅樹(shù)植物中,有一類為拒鹽植物,如秋茄樹(shù)(Kandelia obovata)。早期有學(xué)者認(rèn)為拒鹽類紅樹(shù)植物根系的內(nèi)皮層具有“超濾機(jī)制”[20],可阻擋重金屬進(jìn)入韌皮部進(jìn)而減少重金屬往地上部分的轉(zhuǎn)運(yùn)。又有學(xué)者研究表明秋茄根系外皮層的次生增厚現(xiàn)象也同樣具有類似 “超濾機(jī)制” 的作用,并且在重金屬脅迫過(guò)程中外皮層的次生增厚現(xiàn)象先于根內(nèi)皮層凱氏帶的形成,被認(rèn)為是凱氏帶形成前的屏障[21-22]。這層不可滲透的根表屏障還調(diào)控著根際氣體、水分及溶質(zhì)的通量,可有效阻擋鎘、鉛、鋅和銅等多種重金屬向根內(nèi)遷移,是確保秋茄在重金屬富集的濕地環(huán)境中正常生長(zhǎng)的關(guān)鍵[23-24]。Pan等[25]的研究進(jìn)一步發(fā)現(xiàn),秋茄超氧化物歧化酶基因可通過(guò)調(diào)節(jié)根系活性氧水平調(diào)控外皮層的次生木質(zhì)素累積。同時(shí),漆酶基因還可能對(duì)老根外皮層的木質(zhì)素組成進(jìn)行調(diào)控,提高外皮層對(duì)鎘的阻擋作用。
1.2根系不同組織對(duì)重金屬的富集以減少向地上部分遷移
紅樹(shù)植物在重金屬污染環(huán)境中表現(xiàn)出高效的生物富集能力[26]。重金屬的吸收過(guò)程包括通過(guò)轉(zhuǎn)運(yùn)蛋白介導(dǎo)的主動(dòng)轉(zhuǎn)運(yùn)或通過(guò)多孔細(xì)胞膜的被動(dòng)擴(kuò)散。金屬離子也可以沿濃度梯度通過(guò)細(xì)胞膜中的陽(yáng)離子通道進(jìn)入根細(xì)胞[5,27]。Nguyen等[28]測(cè)量了土壤和紅樹(shù)植物不同部位中幾種重金屬的濃度,結(jié)果顯示土壤中的三價(jià)鉻(Cr3+)最高濃度達(dá)634 mg/kg,而紅樹(shù)植物根系中的三價(jià)鉻(Cr3+)濃度為90.6 mg/kg,這表明紅樹(shù)植物具有一定的生物富集能力;類似的趨勢(shì)也出現(xiàn)在鉛離子(Pb2+)的吸收中,根中濃度為2.05 mg/L,樹(shù)皮中為
1.38 mg/L,葉片中為1.43 mg/L。Nazli[29]研究了海桑(Sonneratia caseolaris)根部與葉片對(duì)銅離子(Cu2+)和鉛離子(Pd2+)的生物富集能力,進(jìn)一步表明根部是紅樹(shù)林植物中具有超富集潛力的器官。
還有研究表明,在不同紅樹(shù)林植物中,鎘、銅、鉻、汞、鉛、錳、鋅等重金屬主要富集在根部表皮、皮層和維管柱中[30]。桐花樹(shù)對(duì)鎘、鉻、銅、汞等重金屬的富集因子(BAF)較高,甚至在某些情況下大于29[18]。MacFarlane等[31-31]的研究指出,紅樹(shù)林植物對(duì)重金屬的吸收主要依賴于根系的選擇性吸收,例如海欖雌通過(guò)兩個(gè)根屏障——內(nèi)皮層和表皮層,有效阻止金屬離子向管內(nèi)空間的運(yùn)輸;研究還發(fā)現(xiàn),鉛在紅樹(shù)植物根部的運(yùn)輸受到顯著限制,可能與鉛在根系表層的固定、細(xì)胞壁的吸附或螯合作用有關(guān)。其他研究則指出,裸甘草、海桑等植物的銅、鉛、鋅離子富集在根系中,其含量顯著高于葉、枝和莖[33]。此外,根系富集的重金屬與沉積物中重金屬的可利用態(tài)和總量之間存在顯著線性關(guān)系,且這種富集是導(dǎo)致底泥中重金屬超累積的主要原因之一[34]。綜上研究表明,植物根系中重金屬的分配不均,導(dǎo)致根系對(duì)重金屬向地上部的轉(zhuǎn)運(yùn)受到限制,從而提高了植物對(duì)重金屬的耐性。
1.3根表鐵膜的形成及對(duì)重金屬的影響
紅樹(shù)植物通常具有發(fā)達(dá)的氣生根系統(tǒng),其根組織內(nèi)的通氣組織能夠?yàn)楦堤峁┏渥愕难鯕猓?8]。這些植物的根系會(huì)分泌氧氣,在根表面形成鐵膜,并將亞鐵離子(Fe2+)氧化,進(jìn)而誘導(dǎo)鐵氧化物在根表面沉淀[24]。
研究表明,鐵膜可以影響多種污染物從根際向植株體內(nèi)的運(yùn)移過(guò)程,這一現(xiàn)象已在白骨壤[10]、拉關(guān)木[10]和秋茄[35]等紅樹(shù)植物中得到證實(shí)。Pi等[24]的研究表明,紅樹(shù)植物根系形成的鐵膜是重金屬污染的“匯”,對(duì)鉻、鉛、鎳等元素的固定具有重要作用。此外,根表鐵膜的形成與根系的氧氣分泌速率密切相關(guān);根際氧含量越高,根表鐵膜的含量也隨之增加[5]。李林峰等[36]的研究表明,在高水平硅可顯著增強(qiáng)水稻根表鐵膜的形成,同時(shí)對(duì)鎘的吸附作用也顯著增加。張齊瓊[37]的研究證實(shí),根表鐵膜的形成與紅樹(shù)植物秋茄根系鉻的遷移存在顯著負(fù)相關(guān)性。
1.4分泌植物螯合劑對(duì)重金屬的螯合與隔離
紅樹(shù)植物通過(guò)根系富集重金屬,并通過(guò)轉(zhuǎn)運(yùn)蛋白、金屬螯合劑以及有機(jī)酸(如蘋(píng)果酸、檸檬酸等)[38-39],將重金屬轉(zhuǎn)運(yùn)至胞外。紅樹(shù)植物的根系分泌物是一類復(fù)雜的化學(xué)混合物,主要包括有機(jī)酸、酚類化合物、多糖、氨基酸、低分子量螯合劑等。這些化學(xué)物質(zhì)不僅在植物的正常代謝過(guò)程中發(fā)揮作用,還在植物與土壤微生物的相互作用中扮演了重要角色。當(dāng)植物受到重金屬脅迫時(shí),根系分泌物的種類和數(shù)量會(huì)顯著增加,以應(yīng)對(duì)外界的有害環(huán)境。有機(jī)酸是紅樹(shù)植物根系分泌物中最常見(jiàn)的化學(xué)成分之一,包括蘋(píng)果酸、檸檬酸、草酸等。這些有機(jī)酸通過(guò)與重金屬離子形成絡(luò)合物,減少重金屬的生物有效性。Lu等[40]指出,蘋(píng)果酸和檸檬酸是紅樹(shù)植物在應(yīng)對(duì)高濃度鉛(Pb)和鎘(Cd)污染時(shí)分泌的主要有機(jī)酸,它們通過(guò)絡(luò)合作用將這些重金屬離子固定在根表面,防止其進(jìn)一步向地上部分遷移,從而有效降低了重金屬對(duì)植物生長(zhǎng)的抑制作用。例如,檸檬酸與鋁離子(Al3+)和鎘離子(Cd2+)能夠形成絡(luò)合物,從而降低了這些離子對(duì)植物根系的毒害作用。
此外,紅樹(shù)植物根系分泌的多糖、氨基酸和某些螯合劑(如谷胱甘肽、植物螯合肽和金屬硫蛋白等),也在緩解重金屬脅迫中發(fā)揮了重要作用。研究表明,多糖能夠在根表面形成一層保護(hù)膜,在一定程度上抑制重金屬的吸附和積累;而氨基酸如谷氨酸、天冬氨酸等則通過(guò)螯合重金屬離子,減少其對(duì)細(xì)胞膜的損傷[41]。而谷胱甘肽和植物螯合肽能夠在根細(xì)胞內(nèi)存儲(chǔ),從而降低重金屬對(duì)細(xì)胞結(jié)構(gòu)和功能的破壞。Rahman等[42]指出,紅樹(shù)植物通過(guò)分泌有機(jī)酸和螯合劑,將重金屬?gòu)母窟w移到地上部分,然后通過(guò)鹽腺將其排出體外,這一過(guò)程不僅能夠降低根部的重金屬負(fù)擔(dān),還能有效維持體內(nèi)礦物質(zhì)的平衡。
在已知的重金屬螯合劑中,植物螯合素(PC)和金屬硫蛋白是最強(qiáng)效的重金屬螯合劑[5,18]。金屬硫蛋白是一種富含半胱氨酸的小分子蛋白質(zhì),主要存在于真核微生物、動(dòng)物、某些原核生物以及像紅樹(shù)林這樣的高等植物中[43]。在高等植物中,金屬硫蛋白的生物合成受到包括重金屬(如鎘、銅、汞、鋅等)、細(xì)胞毒性因子和植物激素的調(diào)控[38,44]。金屬硫蛋白主要螯合的是非必需的有毒重金屬,如鎘、汞、銀和鉛[18]。除了金屬硫蛋白外,植物螯合素(PCs)也能夠通過(guò)植物螯合素合酶(cyclotin synthase)的催化作用,促進(jìn)谷胱甘肽(GSH)的聚合,從而調(diào)控鎘、銅等重金屬的毒性。Huang等[45]發(fā)現(xiàn),在鎘、鉛、汞脅迫下,秋茄和木欖中的PC-SH可能參與了植物對(duì)重金屬的應(yīng)激反應(yīng)調(diào)控。此外,有研究表明,其他金屬結(jié)合蛋白如鐵蛋白可螯合銅和鐵離子,從而調(diào)節(jié)紅樹(shù)植物中的重金屬毒性[46]。一些研究還發(fā)現(xiàn),酚類化合物能夠替代抗氧化物質(zhì),在亞細(xì)胞水平上發(fā)揮對(duì)重金屬的保護(hù)作用[47]。
1.5 激發(fā)酶促和非酶促抗氧化劑調(diào)節(jié)重金屬脅迫下的活性氧水平
生物體內(nèi)活性氧(ROS)的生成與清除是維持氧化還原穩(wěn)態(tài)的關(guān)鍵過(guò)程[38]。然而,當(dāng)重金屬濃度超過(guò)可接受限度時(shí),為減輕重金屬誘導(dǎo)的氧化應(yīng)激,植物會(huì)激活多種酶類抗氧化劑(如過(guò)氧化物酶POD、過(guò)氧化氫酶CAT、超氧化物歧化酶SOD、谷胱甘肽還原酶GR、抗壞血酸過(guò)氧化物酶APX和谷胱甘肽過(guò)氧化物酶GPX)以及非酶類抗氧化劑(如胱氨酸、類胡蘿卜素、抗壞血酸、羥基醌、生物堿)以去除或中和ROS,恢復(fù)其正常水平[48-50]。紅樹(shù)植物的抗氧化防御機(jī)制可分為四類:1)酶類抗氧化劑(如CAT、SOD、POD);2)非酶類抗氧化劑(如抗壞血酸、酚類化合物、維生素E);3)金屬結(jié)合蛋白(如乳鐵蛋白、鐵蛋白、血漿銅藍(lán)蛋白、白蛋白)和抗氧化劑(如維生素C、類胡蘿卜素、生育三烯酚、GSH、硫辛酸);4)植物營(yíng)養(yǎng)素和植物活性成分[9,18,51]。在重金屬脅迫下,植物的耐受能力通常增強(qiáng),這一過(guò)程與酶類及非酶類抗氧化劑的作用密切相關(guān)[52]。多種紅樹(shù)植物的抗氧化能力隨有毒重金屬含量的不同而有所差異。例如,在不同濃度的鉛(200~800 mg/kg DW)處理下,海漆的SOD活性隨處理時(shí)間的延長(zhǎng)呈現(xiàn)與秋茄相似的變化趨勢(shì)[53-54]。不同濃度的鎘離子(Cd2+)和鉛離子(Pb2+)對(duì)木欖幼苗的抗氧化作用存在差異,經(jīng)過(guò)60 d的鎘離子(Cd2+)和鉛離子(Pb2+)處理后,植物的抗氧化能力顯著下降,且根部的抗氧化能力高于葉片。SOD和POD活性也在相同處理時(shí)期發(fā)生了不同程度的變化。當(dāng)鉛濃度較低時(shí),海漆表現(xiàn)出上調(diào)模式,而在高濃度鉛脅迫下則保持不變或下調(diào)[54]。
非酶類抗氧化劑如GSH可通過(guò)調(diào)節(jié)ROS,進(jìn)一步促進(jìn)植物螯合素(PC)的合成。已有研究表明,植物體內(nèi)的GSH對(duì)重金屬有較高的敏感性[5,55]。多項(xiàng)研究顯示,木欖和秋茄在鎘、鉛和汞的單獨(dú)或聯(lián)合脅迫下,其葉片中的PC-SH、脯氨酸和GSH含量顯著增加,表明GSH、脯氨酸和PC-SH在植物抗重金屬的毒性中的重要作用[18,56]。此外,GSH的變化因紅樹(shù)林種類、重金屬的類型和處理時(shí)間的不同而異;例如秋茄葉片中鎘和鉛的積累與PC-SH含量有顯著關(guān)聯(lián),而在白骨壤葉片中這種關(guān)聯(lián)性并不顯著[57]。
酚類化合物在紅樹(shù)植物的抗重金屬脅迫中也發(fā)揮著重要作用[58-59]。有研究報(bào)道,在一些紅樹(shù)林植物中,單寧酸這種酚類化合物在干樹(shù)葉和樹(shù)皮中的含量超過(guò)20%[60-62]。酚類化合物的ROS清除能力源于其氧化還原性質(zhì),它們能夠吸收或中和氧化劑的自由基[63]。此外,酚類化合物可為植物中的過(guò)氧化物酶(GuPX)提供電子,幫助清除由重金屬引發(fā)的過(guò)氧化氫(H2O2)[64]。同時(shí),酚類化合物的鄰位羥基還可作為螯合劑,將重金屬離子固定在根部[18,65]。
1.6 通過(guò)鹽腺或毛狀體作用緩解重金屬脅迫
一些紅樹(shù)植物為了適應(yīng)高鹽環(huán)境,演化出了鹽腺,這是其最為重要的耐鹽機(jī)制之一。鹽腺是一種位于葉片表皮細(xì)胞中的專門(mén)結(jié)構(gòu),能夠主動(dòng)將植物體內(nèi)多余的鹽分排出體外,從而維持體內(nèi)的滲透壓平衡。內(nèi)隔鹽生植物將鹽分隔離在特化囊細(xì)胞的液泡中,而外隔鹽生植物則直接從葉片表面分泌鹽分[66]。這種鹽分泌機(jī)制幫助植物調(diào)節(jié)體內(nèi)離子濃度,并在一定程度上緩解重金屬的毒性[66-67]。紅樹(shù)植物可以通過(guò)類似的機(jī)制,將重金屬?gòu)囊号葜蟹置诘饺~片表面,從而減輕其毒害作用。例如海欖雌的葉片主要通過(guò)腺毛排泄鋅離子(Zn2+),這被認(rèn)為是其解毒和重金屬轉(zhuǎn)運(yùn)過(guò)程的一部分。鋅離子通過(guò)改變礦物質(zhì)中不同離子的比例,調(diào)節(jié)植物體內(nèi)的礦物質(zhì)平衡[68]。Naidoo等[69]也報(bào)道了相似的結(jié)果,發(fā)現(xiàn)鋅離子(Zn2+)和銅離子(Cu2+)可通過(guò)海欖雌的鹽腺排出,而鉛(Pb)和汞(Hg)則消失,表明當(dāng)生理必需的微量金屬超過(guò)允許限度時(shí),海欖雌通過(guò)鹽腺排出多余的微量金屬來(lái)維持動(dòng)態(tài)平衡。Clough[70]指出,耐鹽紅樹(shù)林植物的嫩葉能夠積累更多的重金屬,例如秋茄(Kandeliaobovata)的嫩葉中鈷(Co)的含量為0.25μg/g,桐花樹(shù)(Aegicerascorniculatum)的嫩葉中錳(Mn)含量為295.3μg/g。在相同的鹽度條件下,鹽腺的分泌速率高于其他組織。Arrivabene等[71]
發(fā)現(xiàn),通過(guò)Laguncularia racemosa和Avicennia schaueriana的腺毛能夠分泌鐵(Fe),當(dāng)植物暴露于添加鐵的環(huán)境中時(shí),腺毛的分泌受到顯著抑制。
2 紅樹(shù)植物特異生理結(jié)構(gòu)和機(jī)制在植物修復(fù)中的應(yīng)用前景
植物修復(fù)是一種利用植物治理重金屬污染的環(huán)保技術(shù),能夠在不破壞生態(tài)環(huán)境的前提下,有效去除土壤中的重金屬。相比傳統(tǒng)的物理-化學(xué)處理方法,植物修復(fù)因其經(jīng)濟(jì)高效的特點(diǎn)而受到廣泛關(guān)注[72-73]。這一技術(shù)通過(guò)天然或基因改造的植物來(lái)修復(fù)重金屬毒害,植物具有富集、降解或去除重金屬離子、有機(jī)溶劑及其衍生物的能力[74-75]。與傳統(tǒng)方法相比,植物修復(fù)策略具有多種優(yōu)勢(shì),尤其是顯著降低了治理成本,能夠減少50%至90%的費(fèi)用,并且對(duì)環(huán)境友好[76-77]。但目前常見(jiàn)的超富集植物對(duì)重金屬的種類存在針對(duì)性,同時(shí)對(duì)潮汐影響下的濱海濕地的重金屬污染修復(fù),傳統(tǒng)超富集植物也存在明顯的局限性。
2.1 紅樹(shù)林濕地對(duì)重金屬的固定效應(yīng)
與傳統(tǒng)的利用超富集植物進(jìn)行修復(fù)不同,紅樹(shù)林濕地因其強(qiáng)大的生物化學(xué)循環(huán)能力,在維持營(yíng)養(yǎng)物質(zhì)平衡、改善水質(zhì)等方面發(fā)揮著關(guān)鍵作用。紅樹(shù)植物通過(guò)根系泌氧,促使沉積物中鐵氫氧化物的形成,從而抑制重金屬的遷移,實(shí)現(xiàn)對(duì)沉積物中重金屬的高效固定,減緩重金屬在厭氧環(huán)境中的生物有效性。據(jù)報(bào)道,每平方米紅樹(shù)林每年可螯合1 603 g重金屬[5]。紅樹(shù)植物的根系可以有效滯留重金屬,并限制其向地上部分的遷移[16]。此外,紅樹(shù)林沉積物中有機(jī)質(zhì)的含量比大陸邊緣沉積物高三到四倍,這些有機(jī)質(zhì)顯著影響了重金屬在沉積物中的遷移和沉降,沉積物中的粒度和有機(jī)質(zhì)含量是影響重金屬再分配的主要因素。研究表明,在維持紅樹(shù)林土壤中重金屬的固定和降低其生物有效性的過(guò)程中,沉積物的生物地球化學(xué)過(guò)程起著重要作用[78]。潮溝和泥灘等沉積物通過(guò)化學(xué)形態(tài)(如有機(jī)質(zhì)、鐵錳氧化物、碳酸鹽等)影響重金屬的遷移和再分配[79]。此外,沉積物的粒徑、化學(xué)組成以及暴露路徑也會(huì)影響重金屬的生物利用率[5]。例如,在哥倫比亞加勒比海的紅樹(shù)林濕地中,對(duì)比銅(Cu)、鎳(Ni)、鉛(Pb)、汞 (Hg) 和鋅 (Zn) 在紅樹(shù)植物干生物量中的分布率和沒(méi)有覆蓋紅樹(shù)植物的分布率,結(jié)果表明,銅、鎳和鋅主要通過(guò)氧化氫氧化物和鐵硫化物的形式分布在沉積物中,而有機(jī)質(zhì)顯著限制了它們?cè)诔练e物中的分布[22]。此外,紅樹(shù)林土壤由于其酸性特性,能夠有效地從廢水中滯留重金屬[80]。這與缺氧土壤加速了硫還原菌的活動(dòng),生成硫化氫并與重金屬離子結(jié)合有一定關(guān)聯(lián)。此外,與泥灘沉積物相比,紅樹(shù)林沉積物(尤其是上層沉積物)含有較高濃度的氧化態(tài)金屬,這表明紅樹(shù)林沉積物是重金屬的廣泛匯集地[81]。此外,紅樹(shù)植物的根系在厭氧土壤中釋放氧氣,以中和厭氧沉積物的有害作用,促使鐵氫氧化物沉淀并與重金屬結(jié)合,從而也在一定程度上減少其移動(dòng)性[22,82]。
2.2 紅樹(shù)植物根外皮層增厚相關(guān)基因的鑒定及其對(duì)重金屬的阻擋或束縛效應(yīng)
在紅樹(shù)植物秋茄中,有研究發(fā)現(xiàn)超氧化物歧化酶通過(guò)調(diào)控過(guò)氧化氫的濃度和過(guò)氧化物酶的活性,促進(jìn)細(xì)胞壁的木質(zhì)素累積,這一過(guò)程在根系鎘耐受過(guò)程中發(fā)揮重要作用。通過(guò)基因工程技術(shù)發(fā)現(xiàn)超表達(dá)KoCSD3基因可提高煙草根系木質(zhì)素含量且促進(jìn)維管組織的木質(zhì)化,同時(shí)還能有效減少鎘的攝入[25]。此外,紅樹(shù)植物根外皮層增厚也涉及到木質(zhì)素的不同裝載組成。此外,如漆酶等木質(zhì)素合成相關(guān)的基因也參與該過(guò)程。Pan等[83]通過(guò)轉(zhuǎn)化本氏煙草初步驗(yàn)證了秋茄KoLAC4/7/17基因可改變木質(zhì)素單體S/G的比例以及調(diào)整轉(zhuǎn)基因植株根系細(xì)胞壁對(duì)鎘的阻擋或束縛等多方面的作用。
2.3紅樹(shù)植物根表鐵膜形成的相關(guān)基因的功能及其對(duì)重金屬的吸附效應(yīng)
紅樹(shù)植物根表鐵膜中的鐵氧化物與重金屬離子之間存在較強(qiáng)的化學(xué)吸附作用。根表鐵膜具有較大的比表面積和豐富的活性位點(diǎn),可以通過(guò)物理吸附和化學(xué)吸附固定水體或土壤中的重金屬離子[84]。有研究表明,與鐵轉(zhuǎn)運(yùn)的相關(guān)蛋白:自然抗性相關(guān)巨噬細(xì)胞蛋白(Nramp)和鐵調(diào)節(jié)轉(zhuǎn)運(yùn)(IRT)蛋白可能在紅樹(shù)植物根表鐵膜形成中發(fā)揮作用。Nramp基因編碼的蛋白能夠轉(zhuǎn)運(yùn)二價(jià)金屬離子,包括鐵離子。在紅樹(shù)植物中,這類基因的表達(dá)可能參與了根系對(duì)環(huán)境中鐵的吸收和轉(zhuǎn)運(yùn),為根表鐵膜的形成提供鐵源[85]。例如,張?bào)K誠(chéng)等[85]檢測(cè)了該類基因在重金屬鎘脅迫時(shí)白骨壤葉、莖和根中的表達(dá)情況,發(fā)現(xiàn)AmNramp3基因編碼一種跨膜蛋白,在重金屬鎘脅迫下表達(dá)量快速變化,與鎘的跨膜運(yùn)輸密切相關(guān)。鐵調(diào)節(jié)轉(zhuǎn)運(yùn)蛋白主要負(fù)責(zé)將鐵離子從細(xì)胞外轉(zhuǎn)運(yùn)到細(xì)胞內(nèi),在紅樹(shù)植物根系中,IRT基因的表達(dá)可能與根表鐵膜形成過(guò)程中的鐵離子跨膜運(yùn)輸有關(guān)。譚松等[86]發(fā)現(xiàn)紅樹(shù)植物生長(zhǎng)在潮間帶等特殊環(huán)境中,土壤中的鐵元素存在形式和有效性與普通土壤有所不同,IRT基因的表達(dá)調(diào)控對(duì)于紅樹(shù)植物適應(yīng)這種特殊環(huán)境、獲取足夠的鐵元素并形成根表鐵膜具有重要意義。
此外,紅樹(shù)植物根表鐵膜還為根際微生物提供了棲息地,尤其是鐵氧化細(xì)菌和鐵還原細(xì)菌[87]。這些微生物能夠通過(guò)生物還原或氧化作用降解或轉(zhuǎn)化重金屬。例如,某些鐵還原細(xì)菌能夠?qū)⒘鶅r(jià)鉻(Cr6+)還原為毒性較低的三價(jià)鉻(Cr3+),從而降低鉻的環(huán)境毒性[37]。此外,鐵氧化細(xì)菌也可以通過(guò)改變根際的氧化還原條件,促進(jìn)重金屬的穩(wěn)定化。因此在應(yīng)用中可以與微生物修復(fù)技術(shù)相結(jié)合,進(jìn)一步增強(qiáng)重金屬的吸附能力。
2.4 紅樹(shù)植物根系分泌物在生態(tài)修復(fù)中的應(yīng)用前景
紅樹(shù)植物根系分泌物能夠在重金屬污染的土壤和水體中形成天然的屏障,阻止重金屬的遷移和擴(kuò)散。紅樹(shù)植物中對(duì)重金屬污染鈍化較為有效的根系分泌物主要有草酸、蘋(píng)果酸和檸檬酸等低分子量有機(jī)酸。其中,紅樹(shù)植物根系分泌的草酸可與鎘離子結(jié)合,減少鎘對(duì)植物的毒害作用。檸檬酸則可以與多種重金屬離子如銅、鉛、鋅等結(jié)合,形成不易被植物吸收的絡(luò)合物,將重金屬固定在根際土壤中,起到鈍化重金屬的作用。而蘋(píng)果酸分子中的羧基和羥基等官能團(tuán)能夠與重金屬離子發(fā)生配位反應(yīng),降低重金屬的活性,使其難以進(jìn)入植物體內(nèi),減輕重金屬對(duì)紅樹(shù)植物的傷害[18]。此外,紅樹(shù)植物根系分泌的氨基酸雖然含量相對(duì)較低,但也對(duì)重金屬污染的鈍化起到一定作用。一些氨基酸如半胱氨酸、甲硫氨酸等含有巰基等官能團(tuán),能夠與重金屬離子結(jié)合,形成穩(wěn)定的金屬-氨基酸復(fù)合物,從而降低重金屬的毒性和遷移性。
紅樹(shù)植物根系分泌物對(duì)重金屬的鈍化功能在生物修復(fù)中有廣闊的應(yīng)用前景。例如,利用紅樹(shù)植物構(gòu)建人工濕地系統(tǒng),用于處理受重金屬污染的水體和土壤。紅樹(shù)植物的根系分泌物能夠與重金屬發(fā)生相互作用,將重金屬固定在濕地土壤中,減少重金屬向水體的釋放,從而達(dá)到凈化水質(zhì)和土壤的目的。與此同時(shí),紅樹(shù)植物在環(huán)境修復(fù)過(guò)程中還有重要的生物指示意義。紅樹(shù)植物對(duì)重金屬污染具有一定的敏感性,其根系分泌物的組成和含量會(huì)隨著重金屬污染程度的變化而改變。因此,可以通過(guò)分析紅樹(shù)植物根系分泌物的變化,來(lái)監(jiān)測(cè)環(huán)境中重金屬污染的狀況,為環(huán)境評(píng)估和污染治理提供依據(jù)[88-89]。
2.5 紅樹(shù)植物鹽腺形成相關(guān)基因在重金屬耐受中的功能
紅樹(shù)植物通過(guò)鹽腺將吸收到體內(nèi)的鹽分排出體外,以避免鹽分在體內(nèi)積累而對(duì)生理代謝產(chǎn)生不利影響。在此過(guò)程中,鹽腺形成相關(guān)基因可通過(guò)調(diào)節(jié)離子轉(zhuǎn)運(yùn),在重金屬耐受中發(fā)揮作用。當(dāng)面臨重金屬脅迫時(shí),這種離子平衡調(diào)節(jié)能力有助于減少重金屬離子與其他離子的競(jìng)爭(zhēng),降低重金屬對(duì)細(xì)胞的毒害[90]。例如,HKT基因家族成員可能參與將細(xì)胞內(nèi)多余的重金屬離子與鈉離子進(jìn)行交換,排出細(xì)胞外,從而減輕重金屬對(duì)細(xì)胞的損傷[91]。此外,鹽腺形成相關(guān)基因如NHX基因家族編碼的蛋白可通過(guò)氫離子與重金屬離子的逆向轉(zhuǎn)運(yùn),調(diào)節(jié)細(xì)胞內(nèi)的pH,使細(xì)胞內(nèi)環(huán)境保持相對(duì)穩(wěn)定,增強(qiáng)植物對(duì)重金屬的耐受能力[90-92]。
3 小結(jié)和展望
本文探討了紅樹(shù)植物對(duì)重金屬的耐受機(jī)制,這些獨(dú)特的生理結(jié)構(gòu)在耐受重金屬脅迫方面可通過(guò)物理、生物和化學(xué)等多方面作用降低重金屬的生物有效性。本文在綜述紅樹(shù)植物耐受重金屬機(jī)理的同時(shí),提出一系列應(yīng)用前景。盡管紅樹(shù)植物的諸多特殊生理功能在重金屬污染修復(fù)中具有巨大的潛力,但仍需進(jìn)一步研究和探索以下幾個(gè)方面:首先,目前對(duì)紅樹(shù)植物特殊生理結(jié)構(gòu)和功能的分子機(jī)制了解尚淺,未來(lái)應(yīng)進(jìn)一步研究不同類型的功能基因、蛋白、以及重金屬螯合物在這些過(guò)程中所發(fā)揮的作用。通過(guò)基因組學(xué)和分子生物學(xué)手段,可能發(fā)現(xiàn)更多與重金屬排泄相關(guān)的關(guān)鍵基因和信號(hào)途徑。其次,由于沿海濕地常受到多種污染物的復(fù)合影響,未來(lái)的研究應(yīng)關(guān)注紅樹(shù)植物在多重污染環(huán)境中的適應(yīng)性,特別是鹽腺對(duì)重金屬與有機(jī)污染物的協(xié)同修復(fù)作用。此外,在實(shí)際應(yīng)用中,紅樹(shù)植物修復(fù)技術(shù)的效果可能會(huì)受到環(huán)境條件的限制,如土壤鹽度、水文條件以及氣候變化等。因此,未來(lái)的研究應(yīng)重點(diǎn)探索如何優(yōu)化修復(fù)技術(shù),以提高其在不同環(huán)境中的適用性。
參考文獻(xiàn):
[1]Ivorra L,Cardoso P G,Chan S K,et al. Can mangroves work as an effective phytoremediation tool for pesticide contamination? An interlinked analysis between surface water,sediments and biota[J]. Journal of Cleaner Production,2021,295:126334.
[2]Bayen S. Occurrence,bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems:A review[J]. Environment International,2012,48:84-101.
[3]Wang Q,Kelly B C. Occurrence,distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore[J]. Chemosphere,2017,183:257-265.
[4]Wani W,Masoodi K Z,Zaid A,et al. Engineering plants for heavy metal stress tolerance[J]. Rendiconti Lincei Scienze Fisiche e Naturali,2018,29(3):709-723.
[5]Yadav K K,Gupta N,Prasad S,et al. An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment:A critical review[J]. Marine Pollution Bulletin,2023,188:114569.
[6]MacFarlane G R,Pulkownik A,Burchett M D. Accumulation and distribution of heavy metals in the grey mangrove,Avicennia marina(forsk.)Vierh.:Biological indication potential[J]. Environmental Pollution,2003,123(1):139-151.
[7]Marchand C,Allenbach M,Lallier-Vergès E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments(Conception Bay,New Caledonia)[J]. Geoderma,2011,160(3-4):444-456.
[8]謝勇,王友紹. 重金屬脅迫下四種紅樹(shù)植物幼苗生理響應(yīng)特征[J]. 熱帶海洋學(xué)報(bào),2022,41(06):28-34.
[9]Wang J G,Wang P,Zhao Z Z,et al. Uptake and concentration of heavy metals in dominant mangrove species from Hainan Island,South China[J]. Environmental Geochemistry and Health,2021,43(4):1703-1714.
[10]Machado W,Gueiros B B,Lisboa-Filho S D,et al. Trace metals in mangrove seedlings:Role of iron plaque formation[J]. Wetlands Ecology and Management,2005,13(2):199-206.
[11]Marchand C,F(xiàn)ernandez J M,Moreton B. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants(New Caledonia)[J]. Science of the Total Environment,2016,562:216-227.
[12]Cannicci S,F(xiàn)usi M,Cimó F,et al. Interference competition as a key determinant for spatial distribution of mangrove crabs[J]. BMC Ecology,2018,18(1):8.
[13]Zheng W J,Chen X Y,Lin P. Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay,China[J]. Marine Ecology Progress Series,1997,159:293-301.
[14]Zheng F Z,Hong L Y,Zheng W J. A primary study on adsorption of certain heavy metals on the litter leaf detritus of some mangrove species[J]. Journal of Xiamen University(Natural Science),1998,37(1):137-141.
[15]Almahasheer H,Serrano O,Duarte C M,et al. Remobilization of heavy metals by mangrove leaves[J]. Frontiers in Marine Science,2018,5:484.
[16]Yadav A,Ram A,Majithiya D,et al. Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions[J]. Marine Pollution Bulletin,2015,101(1):359-365.
[17]Hossain M B,Rakib M R J,Jolly Y N,et al. Metals uptake and translocation in salt marsh macrophytes,Porteresia sp. from Bangladesh coastal area[J]. Science of the Total Environment,2021,764:144637.
[18]Yan Z Z,Sun X L,Xu Y,et al. Accumulation and tolerance of mangroves to heavy metals:A review[J]. Current Pollution Reports,2017,3(4):302-317.
[19]Reef R,F(xiàn)eller I C,Lovelock C E. Nutrition of mangroves[J]. Tree Physiology,2010,30(9):1148-1160.
[20]Tomlinson P. Architecture of tropical plants[J]. Annual Review of Ecology and Systematics,1987,18:1-21.
[21]于俊義. 秋茄和桐花樹(shù)根部重金屬元素的痕量定位分析研究[D]. 廈門(mén):廈門(mén)大學(xué),2014.
[22]Castro E,Pinedo J,Marrugo J,et al. Retention and vertical distribution of heavy metals in mangrove sediments of the protected area swamp of Mallorquin,Colombian Caribbean[J]. Regional Studies in Marine Science,2022,49:102072.
[23]Cheng H,Jiang Z Y,Liu Y,et al. Metal(Pb,Zn and Cu)uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization[J]. Tree Physiology,2014,34(6):646-656.
[24]Pi N,Tam N F Y,Wu Y,et al. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species[J]. Aquatic Botany,2009,90(3):222-230.
[25]Pan C L,Lu H L,Yang C Y,et al. Comparative transcriptome analysis reveals different functions of Kandelia obovata superoxide dismutases in regulation of cadmium translocation[J]. Science of the Total Environment,2021,771:144922.
[26]Li R L,Xu H L,Chai M W,et al. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen,the world’s most rapid urbanized city[J]. Environmental Monitoring and Assessment,2016,188(2):87.
[27]Ahmad B,Zaid A,Zulfiqar F,et al. Nanotechnology:A novel and sustainable approach towards heavy metal stress alleviation in plants[J]. Nanotechnology for Environmental Engineering,2023,8(1):27-40.
[28]Nguyen A,Le B V Q,Richter O. The role of mangroves in the retention of heavy metal(chromium):A simulation study in the thi vai river catchment,Vietnam[J]. International Journal of Environmental Research and Public Health,2020,17(16):5823.
[29]Nazli M F. Heavy metal concentrations in an important mangrove species,Sonneratia caseolaris,in peninsular malaysia[J]. EnvironmentAsia,2010,3(special +issue):50.
[30]Wang Y T,Qiu Q,Xin G R,et al. Heavy metal contamination in a vulnerable mangrove swamp in South China[J]. Environmental Monitoring and Assessment,2013,185(7):5775-5787.
[31]MacFarlane G R,Burchett M D. Toxicity,growth and accumulation relationships of copper,lead and zinc in the grey mangrove Avicennia marina(Forsk.)Vierh[J]. Marine Environmental Research,2002,54(1):65-84.
[32]MacFarlane G,Burchett M. Cellular distribution of copper,lead and zinc in the grey mangrove,Avicennia marina(Forsk.)Vierh[J]. Aquatic Botany,2000,68(1):45-59.
[33]Lu H L,Liu B B,Zhang Y,et al. Comparing analysis of elements sub-cellular distribution in Kandelia obovata between SEM-EDX and chemical extraction[J]. Aquatic Botany,2014,112:10-15.
[34]Xie Z L,Zhu G R,Xu M,et al. Risk assessment of heavy metals in a typical mangrove ecosystem-A case study of Shankou Mangrove National Natural Reserve,Southern China[J]. Marine Pollution Bulletin,2022,178:113642.
[35]Piro A,Mazzuca S,Phandee S,et al. Physiology and proteomics analyses reveal the response mechanisms of Rhizophora mucronata seedlings to prolonged complete submergence[J]. Plant Biology(Stuttgart,Germany),2023,25(3):420-432.
[36]李林峰,徐梓盛,陳勇,等. 施硅水平對(duì)水稻根表鐵膜和體內(nèi)Cd累積分布的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2024,33(5):781-790.
[37]張齊瓊. 典型濱海濕地植物根表鐵膜形成的影響因素及其生態(tài)環(huán)境效應(yīng)研究[D]. 上海:華東師范大學(xué),2023.
[38]Ur Rahman S ,Li Y L,Hussain S,et al. Role of phytohormones in heavy metal tolerance in plants:A review[J]. Ecological Indicators,2023,146:109844.
[39]Rahman S U,Nawaz M F,Gul S,et al. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants:A review[J]. Ecotoxicology and Environmental Safety,2022,242:113952.
[40]Lu H L,Yan C L,Liu J C. Low-molecular-weight organic acids exuded by Mangrove(Kandelia candel(L.)Druce)roots and their effect on cadmium species change in the rhizosphere[J]. Environmental and Experimental Botany,2007,61(2):159-166.
[41]劉長(zhǎng)風(fēng),段士鑫,張曉宇,等. 植物根系分泌物在重金屬脅迫下的響應(yīng)研究進(jìn)展[J]. 福建農(nóng)業(yè)學(xué)報(bào),2021,36(12):1506-1514.
[42]Ur Rahman S,Han J C,Zhou Y,et al. Adaptation and remediation strategies of mangroves against heavy metal contamination in global coastal ecosystems:A review[J]. Journal of Cleaner Production,2024,441:140868.
[43]Cobbett C,Goldsbrough P. Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology,2002,53:159-182.
[44]Kapoor B,Kumar P,Sharma R,et al. Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms[J]. Journal of Plant Biochemistry and Biotechnology,2021,30(4):813-828.
[45]Huang G Y,Wang Y S,Ying G G,et al. Analysis of type 2 metallothionein gene from mangrove species(Kandelia candel)[J]. Trees,2012,26(5):1537-1544.
[46]Jithesh M N,Prashanth S R,Sivaprakash K R,et al. Monitoring expression profiles of antioxidant genes to salinity,iron,oxidative,light and hyperosmotic stresses in the highly salt tolerant grey mangrove,Avicennia marina(Forsk.)Vierh. by mRNA analysis[J]. Plant Cell Reports,2006,25(8):865-876.
[47]Mukarram M,Petrik P,Mushtaq Z,et al. Silicon nanoparticles in higher plants:Uptake,action,stress tolerance,and crosstalk with phytohormones,antioxidants,and other signalling molecules[J]. Environmental Pollution,2022,310:119855.
[48]Li Y L,Rahman S U,Qiu Z X ,et al. Toxic effects of cadmium on the physiological and biochemical attributes of plants,and phytoremediation strategies:A review[J]. Environmental Pollution,2023,325:121433.
[49]Rahman S U,Wang X J,Shahzad M,et al. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements[J]. Environmental Pollution,2022,310:119916.
[50]Rahman S U,Qi X B,Kamran M,et al. Silicon elevated cadmium tolerance in wheat(Triticum aestivum L.)by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves[J]. Plant Physiology and Biochemistry,2021,166:148-159.
[51]Jiang Y C,Lu H L,Wang Y Z,et al. Uptake,biotransformation and physiological response of TBBPA in mangrove plants after hydroponics exposure[J]. Marine Pollution Bulletin,2020,151:110832.
[52]Sruthi P,Shackira A M,Puthur J T. Heavy metal detoxification mechanisms in halophytes:An overview[J]. Wetlands Ecology and Management,2017,25(2):129-148.
[53]Yan Z Z,Tam N F Y. Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn[J]. Plant and Soil,2013,367(1):327-338.
[54]Yan Z Z,Tam N F Y. Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times[J]. Aquatic Toxicology,2013,126:154-162.
[55]Terzi H,Y?ld?z M. Proteomic analysis reveals the role of exogenous cysteine in alleviating chromium stress in maize seedlings[J]. Ecotoxicology and Environmental Safety,2021,209:111784.
[56]Nareshkumar A,Veeranagamallaiah G,Pandurangaiah M,et al. Pb-Stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut(Arachis hypogaea L.)cultivars[J]. Agricultural Sciences,2015,06:1283-1297.
[57]Huang G Y,Wang Y S. Physiological and biochemical responses in the leaves of two mangrove plant seedlings(Kandelia candel and Bruguiera gymnorrhiza)exposed to multiple heavy metals[J]. Journal of Hazardous Materials,2010,182(1-3):848-854.
[58]Notununu I,Moleleki L,Roopnarain A,et al. Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses:A review[J]. Pedosphere,2022,32(1):90-106.
[59]Qureshi M K,Munir S,Shahzad A N,et al. Role of reactive oxygen species and contribution of new players in defense mechanism under drought stress in rice[J]. International Journal of Agriculture and Biology,2018,20(6):1339-1352.
[60]Bibi Sadeer N,Sinan K I,Cziáky Z,et al. Towards the pharmacological validation and phytochemical profiling of the decoction and maceration of Bruguiera gymnorhiza(L.)lam. —a traditionally used medicinal halophyte[J]. Molecules(Basel,Switzerland),2022,27(6):2000.
[61]Dehghanian Z,Habibi K,Dehghanian M,et al. Reinforcing the bulwark:unravelling the efficient applications of plant phenolics and tannins against environmental stresses[J]. Heliyon,2022,8(3):e09094.
[62]Mansoori A,Singh N,Dubey S K,et al. Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity[J]. Frontiers in Agronomy,2020,2:582268.
[63]Riebel M,Sabel A,Claus H,et al. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation[J]. Food Chemistry,2017,229:779-789.
[64]Sakihama Y,Cohen M F,Grace S C,et al. Plant phenolic antioxidant and prooxidant activities:Phenolics-induced oxidative damage mediated by metals in plants[J]. Toxicology,2002,177(1):67-80.
[65]Rehman M,Saeed M S,F(xiàn)an X M,et al. The multifaceted role of jasmonic acid in plant stress mitigation:An overview[J]. Plants(Basel,Switzerland),2023,12(23):3982.
[66]Lu C X,Yuan F,Guo J R,et al. Current understanding of role of vesicular transport in salt secretion by salt glands in recretohalophytes[J]. International Journal of Molecular Sciences,2021,22(4):2203.
[67]Sudhakaran M V. Micromorphology of salt glands and content of marker compound plumbagin in the leaves of Plumbago zeylanica Linn[J]. Pharmacognosy Journal,2019,11(1):161-170.
[68]Waisel Y,Eshel A,Agami M. Salt balance of leaves of the mangrove Avicennia marina[J]. Physiologia Plantarum,1986,67(1):67-72.
[69]Naidoo G,Hiralal T,Naidoo Y. Ecophysiological responses of the mangrove Avicennia marina to trace metal contamination[J]. Flora-Morphology,Distribution,F(xiàn)unctional Ecology of Plants,2014,209(1):63-72.
[70]Clough B. Continuing the journey amongst mangroves[J]. ISME Mangrove Educational Book Series,2013,1:86.
[71]Arrivabene H P,Campos C Q,da Costa Souza I,et al. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing[J]. Environmental Pollution,2016,215:302-313.
[72]Cristaldi A,Conti G O,Jho E H,et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review[J]. Environmental Technology amp; Innovation,2017,8:309-326.
[73]Souza E C,Vessoni-Penna T C,de Souza Oliveira R P. Biosurfactant-enhanced hydrocarbon bioremediation:An overview[J]. International Biodeterioration amp; Biodegradation,2014,89:88-94.
[74]Dadea C,Russo A,Tagliavini M,et al. Tree species as tools for biomonitoring and phytoremediation in urban environments:A review with special regard to heavy metals[J]. Arboriculture amp; Urban Forestry,2017,43(4):155-167.
[75]Gómez L,Contreras A,Bolonio D,et al. Phytoremediation with trees[M]. Advances in botanical research. Amsterdam:Elsevier,2019::281-321.
[76]Dietz A C,Schnoor J L. Advances in phytoremed-iation[J]. Environmental Health Perspectives,2001,109(1):163-168.
[77]Robinson B,Green S,Mills T,et al. Phytoremed-iation:Using plants as biopumps to improve degraded environments[J]. Soil Research,2003,41(3):599.
[78]Nath B,Birch G,Chaudhuri P. Trace metal biogeo-chemistry in mangrove ecosystems:a comparative assessment of acidified(by acid sulfate soils)and non-acidified sites[J]. Science of the Total Environment,2013,463:667-674.
[79]Hou D K,He J,Lü C W,et al. Distribution characteristics and potential ecological risk assessment of heavy metals(Cu,Pb,Zn,Cd)in water and sediments from Lake Dalinouer,China[J]. Ecotoxicology and Environmental Safety,2013,93:135-144.
[80]Kayalvizhi K,Kathiresan K. Microbes from wastewater treated mangrove soil and their heavy metal accumulation and Zn solubilization[J]. Biocatalysis and Agricultural Biotechnology,2019,22:101379.
[81]Niu Z Y,Cao Y,Zhao W L,et al. Distribution and assessment of mercury(Hg)in surface sediments of Futian mangrove forest,China[J]. Environmental Geochemistry and Health,2019,41(1):125-134.
[82]Chaudhuri P,Nath B,Birch G. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots:The role of rhizosphere processes[J]. Marine Pollution Bulletin,2014,79(1-2):284-292.
[83]Pan C L,Zhang M X,Chen J M,et al. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata[J]. Journal of Hazardous Materials,2024,471:134313.
[84]沈小雪,李瑞利,柴民偉,等. 深圳灣典型紅樹(shù)植物根表鐵膜及其重金屬富集特征[J]. 環(huán)境科學(xué),2018,39(4):1851-1860.
[85]張?bào)K誠(chéng),梁嘉慶,俞錦鋒,等. 白骨壤重金屬耐受性相關(guān)基因AmNramp3的克隆與分析[J]. 廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,56(3):331-338.
[86]譚松,印莉萍. 二價(jià)鐵轉(zhuǎn)運(yùn)體IRT1的研究歷程及最新進(jìn)展[J]. 科學(xué)通報(bào),2017,62(5):350-359.
[87]姚海興,葉志鴻.濕地植物根表鐵膜研究進(jìn)展[J].生態(tài)學(xué)雜志,2009,28(11):2374-2380.
[88]Zhuang W,Yu X L,Hu R W,et al. Diversity,function and assembly of mangrove root-associated microbial communities at a continuous fine-scale[J]. npj Biofilms and Microbiomes,2020,6(1):52.
[89]王鵬云,晁代印. 重金屬污染的植物修復(fù)及相關(guān)分子機(jī)制[J]. 生物工程學(xué)報(bào),2020,36(3):426-435.
[90]Yang X R,Hu R,Sun F J,et al. Identification of the high-affinity potassium transporter gene family(HKT)in Brassica U-triangle species and its potential roles in abiotic stress in Brassica napus L[J]. Plants(Basel,Switzerland),2023,12(21):3768.
[91]Li H Y,Xu G Z,Yang C,et al. Genome-wide identification and expression analysis of HKT transcription factor under salt stress in nine plant species[J]. Ecotoxicology and Environmental Safety,2019,171:435-442.
[92]Fu X K,Lu Z Y,Wei H L,et al. Genome-wide identification and expression analysis of the NHX(sodium/hydrogen antiporter)gene family in cotton[J]. Frontiers in Genetics,2020,11:964.
(責(zé)任編輯:黃" " 鵬)
DOI:10.20023/j.cnki.2095-5774.2024.06.013
收稿日期:2024-09-28
作者簡(jiǎn)介:謝程錦(1998-),男,碩士,主要從事紅樹(shù)林濕地重金屬污染修復(fù)研究,E-mail:18065856796@163.com