摘 要:首先綜述氫氣儲(chǔ)運(yùn)技術(shù)的發(fā)展現(xiàn)狀,包括氫氣氣態(tài)儲(chǔ)運(yùn)、液態(tài)儲(chǔ)運(yùn)、固態(tài)儲(chǔ)運(yùn)及混合儲(chǔ)運(yùn)四大技術(shù);然后基于美國能源部車載儲(chǔ)氫指標(biāo)要求,對(duì)比不同儲(chǔ)氫技術(shù)綜合性能,并總結(jié)既有氫氣運(yùn)輸方式的優(yōu)缺點(diǎn);最后對(duì)氫氣儲(chǔ)運(yùn)技術(shù)未來研究方向提出5點(diǎn)建議??傮w而言,在氫氣儲(chǔ)存領(lǐng)域,當(dāng)前的研究重點(diǎn)應(yīng)集中在綜合性能優(yōu)越的新型儲(chǔ)氫氣瓶和混合儲(chǔ)氫技術(shù)上;而在氫氣運(yùn)輸方面,天然氣摻氫運(yùn)輸和液氫運(yùn)輸則分別是當(dāng)前和未來的重要研究熱點(diǎn)。
關(guān)鍵詞:氫氣;氫氣儲(chǔ)存;運(yùn)輸;混合儲(chǔ)氫;摻氫天然氣;綜合性能
中圖分類號(hào):TK91 " " " " 文獻(xiàn)標(biāo)志碼:A
0 引 言
氫氣儲(chǔ)運(yùn)作為氫能全產(chǎn)業(yè)鏈中的關(guān)鍵環(huán)節(jié),其相關(guān)技術(shù)的突破對(duì)于氫能的發(fā)展和應(yīng)用至關(guān)重要[1-2]。儲(chǔ)氫技術(shù)的關(guān)鍵是如何提高儲(chǔ)氫綜合性能,以滿足國家相關(guān)標(biāo)準(zhǔn),包括質(zhì)量和體積儲(chǔ)氫密度、吸放氫溫度和速率、安全性、經(jīng)濟(jì)性、使用壽命等指標(biāo)。氫氣運(yùn)輸方式需要綜合考慮需求、安全、成本等因素。
根據(jù)儲(chǔ)氫方式的不同,儲(chǔ)氫技術(shù)可大致分為氣態(tài)儲(chǔ)氫技術(shù)[3]、固態(tài)儲(chǔ)氫技術(shù)[4]、液態(tài)儲(chǔ)氫技術(shù)[5]、混合儲(chǔ)氫技術(shù)[6-7]4種。然而既有儲(chǔ)氫技術(shù)儲(chǔ)氫綜合指標(biāo)均未達(dá)到理想要求,有待進(jìn)一步研究。氫氣運(yùn)輸主要分為車輛運(yùn)輸[8-9]、船舶運(yùn)輸[10]和管道運(yùn)輸[11-12]3種類型,利用現(xiàn)有天然氣管道摻氫運(yùn)輸是現(xiàn)階段一大研究熱點(diǎn),其安全性和氫氣與天然氣的分離方法有待研究。
本文對(duì)4種儲(chǔ)氫技術(shù)的優(yōu)缺點(diǎn)和研究進(jìn)展進(jìn)行綜述,同時(shí)對(duì)比了氫氣不同運(yùn)輸方式,并對(duì)未來儲(chǔ)運(yùn)技術(shù)的研究方向提出5點(diǎn)建議。
1 氣態(tài)儲(chǔ)運(yùn)技術(shù)
高壓氣態(tài)儲(chǔ)氫技術(shù)相比于其他儲(chǔ)氫方式,優(yōu)勢(shì)是技術(shù)成熟、成本較低、充放氫條件溫和且速度快。由于儲(chǔ)量與氣瓶內(nèi)部壓力成正比,因此高體積密度儲(chǔ)氫對(duì)氣瓶耐壓能力要求苛刻,且高壓區(qū)繼續(xù)增壓效果不佳[13-14];加之壓力越大,危險(xiǎn)性越高。對(duì)于高壓氣態(tài)儲(chǔ)氫技術(shù)的研究主要致力于輕質(zhì)、高壓、高安全儲(chǔ)氫容器的開發(fā)。
1.1 非玻璃氣瓶
根據(jù)儲(chǔ)罐材料不同,非玻璃氣瓶主要分為Ⅰ型、Ⅱ型、Ⅲ型和Ⅳ型氣瓶[15]。Ⅰ型氣瓶結(jié)構(gòu)最為簡單、成本最低,但儲(chǔ)氫密度低且不易進(jìn)行安全監(jiān)測(cè)。Ⅱ型氣瓶為雙層結(jié)構(gòu),易實(shí)現(xiàn)氫氣安全狀態(tài)監(jiān)測(cè),質(zhì)量較Ⅰ型氣瓶更輕,但儲(chǔ)氫密度仍較低。Ⅲ型氣瓶采用復(fù)合纖維比例較Ⅱ型更高,進(jìn)一步減輕了氣瓶質(zhì)量。Ⅳ型氣瓶主要以聚乙烯材料作為內(nèi)膽,質(zhì)量更輕且儲(chǔ)氫密度較高。其中具有代表性的是日本豐田公司研制的70 MPa Ⅳ型氣瓶,質(zhì)量和體積儲(chǔ)氫密度分別達(dá)到5.7%和40.8 kg/m3[16]。當(dāng)前中國Ⅳ型氣瓶的研究還處在初步階段。
1.2 玻璃氣瓶
上述氣瓶均存在氫脆問題,為此,科研人員開發(fā)了玻璃儲(chǔ)氫氣瓶,具有安全、儲(chǔ)氫密度高、質(zhì)量輕、耐高壓、低滲透率、無氫脆等優(yōu)點(diǎn),是一種頗具前景的儲(chǔ)氫氣瓶[17]。主要包括空心玻璃球和玻璃毛細(xì)管陣列氣瓶。
1)空心玻璃球氣瓶(hollow glass microspheres,HGM):利用氫氣在不同條件下對(duì)微球玻璃壁的滲透性強(qiáng)弱實(shí)現(xiàn)吸放氫氣[18]。然而,HGM放氫時(shí)須高溫加熱并控制微球內(nèi)外部形成壓差,這可能會(huì)導(dǎo)致微球破損。此外,其放氫速率較低且加熱耗能也較高,這些不足限制了HGM的進(jìn)一步商業(yè)化。為此,邱龍會(huì)等[19]采用分步充氣法極大改善了因壓差過大導(dǎo)致的微球破損問題。針對(duì)放氫速率問題,可通過紅外線照射和摻雜金屬進(jìn)行改善,但影響機(jī)理有待進(jìn)一步研究。
2)玻璃毛細(xì)管陣列氣瓶:針對(duì)HGM充放氫效率低等問題,科研人員開發(fā)了玻璃毛細(xì)管陣列氣瓶。利用電磁開關(guān)控制微閥的開閉實(shí)現(xiàn)充放氫。由于單個(gè)毛細(xì)管中儲(chǔ)氫量很小,誤操作導(dǎo)致爆炸的可能性較低,比非玻璃氣瓶更安全。且其質(zhì)量和體積儲(chǔ)氫密度分別可達(dá)10%和80 kg/m3[20]。但目前其相關(guān)技術(shù)及裝置仍有待完善。
1.3 氫氣氣態(tài)運(yùn)輸
氫氣氣態(tài)運(yùn)輸方式主要包括拖車和管道運(yùn)輸兩種,分別適用于小規(guī)模、短距離和大規(guī)模、中短距離運(yùn)輸[21]。
1)拖車運(yùn)輸:目前燃料電池仍在發(fā)展中,國內(nèi)氫氣需求量和加氫站都處于少量狀態(tài),這促使長管拖車的廣泛運(yùn)用;但長距離運(yùn)輸耗能高[22]。且氫氣瓶卸車時(shí)間較長,需2~6 h,效率低[23]。針對(duì)長距離輸送成本高的問題,Moreno-Blanco等[24]提出低溫高壓絕熱罐運(yùn)輸氫氣,長距離運(yùn)輸總成本約35 MPa儲(chǔ)氫罐的2/3。但該方式仍難以滿足未來氫氣的巨大需求。
2)管道運(yùn)輸:與拖車相對(duì),管道運(yùn)輸可用于氫氣大規(guī)模輸送。未來氫能將會(huì)大規(guī)模發(fā)展,此時(shí)管道運(yùn)輸便會(huì)成為優(yōu)勢(shì)。目前多使用鋼管作為運(yùn)輸管道,運(yùn)行壓力為1~2 MPa,該方式具有運(yùn)量大、成本低以及能耗低等優(yōu)勢(shì),但對(duì)于管道的修建,一次性投資成本很高。且目前中國加氫站數(shù)量少且分散,管道運(yùn)氫不具備較大優(yōu)勢(shì),可選重點(diǎn)區(qū)域小規(guī)模運(yùn)行。為此,研究人員提出天然氣摻氫運(yùn)輸,運(yùn)輸成本低、運(yùn)量大[25-26]。然而該方法存在兩大問題:一是氫氣對(duì)天然氣管道的影響,以氫脆為主[27-28],該問題會(huì)導(dǎo)致鋼管力學(xué)性能下降,造成泄漏,一種可行的解決方法是摻入抑制劑;二是如何有效分離天然氣和氫氣,目前可用物理和化學(xué)方法(電化學(xué)分離等)進(jìn)行分離[29-30],但都需投入較高成本。
2 液態(tài)儲(chǔ)運(yùn)技術(shù)
液態(tài)儲(chǔ)氫技術(shù)因儲(chǔ)氫量大而受到廣泛關(guān)注,其通過液化氫氣或利用液態(tài)氫載體實(shí)現(xiàn)儲(chǔ)氫,前者即低溫液態(tài)儲(chǔ)氫技術(shù),后者研究熱點(diǎn)是有機(jī)液態(tài)儲(chǔ)氫技術(shù)。
2.1 低溫液態(tài)儲(chǔ)氫
低溫液態(tài)儲(chǔ)氫,通過超低溫條件下使氫氣液化(20 K),然后儲(chǔ)存在絕熱性能良好的容器中。低溫液態(tài)儲(chǔ)氫在純度、質(zhì)量儲(chǔ)氫密度、遠(yuǎn)距離輸送成本等方面有較大優(yōu)勢(shì)[31]。然而其存在兩大不足:一是液化所需能耗較高,成本居高不下;二是液氫易蒸發(fā),對(duì)儲(chǔ)罐絕熱性能有較高要求。為降低蒸發(fā)率,可在氫氣液化過程中添加催化劑加快正氫轉(zhuǎn)化仲氫[32]。或采用球型儲(chǔ)罐[33]。但兼顧儲(chǔ)氫成本和絕熱性能的關(guān)鍵還在于儲(chǔ)罐材料和絕熱技術(shù)。
2.1.1 儲(chǔ)罐材料
儲(chǔ)罐材料主要包括金屬合金和低溫復(fù)合材料。前者主要有奧氏體不銹鋼、鋁或鈦合金等。盡管鋁合金、鈦合金質(zhì)量較輕,已運(yùn)用到國內(nèi)外航空航天領(lǐng)域,但與奧氏體不銹鋼相比,低溫條件下的機(jī)械特性要稍遜一籌[34]。此外,奧氏體不銹鋼在低溫條件下氫脆問題可忽略。鑒于奧氏體不銹鋼優(yōu)越的低溫性能,其在液氫儲(chǔ)罐中得到最為廣泛的應(yīng)用。但目前國內(nèi)奧氏體不銹鋼溫度最低設(shè)計(jì)標(biāo)準(zhǔn)還未達(dá)到20 K,有待進(jìn)一步完善。低溫復(fù)合材料在強(qiáng)度和質(zhì)量方面具有一定優(yōu)勢(shì)。美國宇航局研制的CYCOM?5320-1 IM7復(fù)合材料,與鋁合金相比,無氫脆現(xiàn)象,并有效降低了液氫儲(chǔ)罐成本和質(zhì)量[20]。在航空航天領(lǐng)域,復(fù)合材料有望成為金屬合金的替代品。但其成型工藝、低溫性能等有待進(jìn)一步研究[34]。
2.1.2 儲(chǔ)罐絕熱技術(shù)
液氫儲(chǔ)罐絕熱技術(shù)按絕熱方式可分為被動(dòng)和主動(dòng)兩種絕熱技術(shù)。被動(dòng)絕熱技術(shù)主要包括堆積絕熱、高真空絕熱、高真空多層絕熱和真空粉末絕熱。堆積絕熱成本低,但絕熱效果不佳。高真空絕熱夾層絕熱性能良好但成本相對(duì)高。為提升儲(chǔ)罐絕熱性能,研究人員提出變密度多層絕熱技術(shù),儲(chǔ)罐絕熱性能更好、質(zhì)量更低[35]。在此基礎(chǔ)上,結(jié)合其他結(jié)構(gòu),如泡沫塑料絕熱結(jié)構(gòu),可進(jìn)一步提升絕熱性能,且質(zhì)量輕[36]。鑒于被動(dòng)絕熱技術(shù)絕熱能力有限,引入主動(dòng)絕熱技術(shù)[37]。主動(dòng)絕熱通過附加設(shè)備如制冷機(jī)保持液氫儲(chǔ)存溫度,從而達(dá)到長時(shí)間無損儲(chǔ)氫。該方法無疑會(huì)投入額外的成本。近年來發(fā)展的零蒸發(fā)存儲(chǔ)技術(shù)(zero boil off,ZBO)技術(shù)(原理如圖1)[38],綜合了主動(dòng)和被動(dòng)絕熱兩大技術(shù),能夠?qū)崿F(xiàn)零蒸發(fā)儲(chǔ)存,具有很好的應(yīng)用前景[39]。
2.2 有機(jī)液態(tài)儲(chǔ)氫
有機(jī)液態(tài)儲(chǔ)氫技術(shù)利用液態(tài)有機(jī)物與氫氣發(fā)生加氫反應(yīng)實(shí)現(xiàn)儲(chǔ)氫。目前有機(jī)液態(tài)儲(chǔ)氫材料主要有烯烴、炔烴、芳烴等,其中環(huán)己烷因儲(chǔ)氫量大和脫氫溫度相對(duì)較低受到廣泛關(guān)注。為進(jìn)一步改善脫氫溫度,Clot等[40]研究發(fā)現(xiàn),在環(huán)烷中加入氮原子能夠有效降低脫氫溫度。此外,羅威等[41]研發(fā)3-Me-1,2-B,N環(huán)己烷在FeCl2催化作用下可在80 ℃下進(jìn)行脫氫,但質(zhì)量儲(chǔ)氫密度僅4.7%。戴燕等[42]合成一種新的有機(jī)介質(zhì)1,6;2,3-Bis-BN環(huán)己烷,質(zhì)量儲(chǔ)氫密度可達(dá)9%以上,滿足美國能源部(Department of Energy,DOE)要求。同時(shí),研究發(fā)現(xiàn),甲醇和甲酸儲(chǔ)氫具有在常溫常壓下儲(chǔ)存、含氫量較高、易于運(yùn)輸?shù)葍?yōu)勢(shì),是具有潛力的液態(tài)儲(chǔ)氫介質(zhì)之一[17]。但其脫氫溫度有待進(jìn)一步降低,且放氫時(shí)存在碳排放問題。如何提升現(xiàn)有有機(jī)物綜合性能和開發(fā)新型有機(jī)材料是目前的研究重點(diǎn)。
2.3 氫氣液態(tài)運(yùn)輸
2.3.1 低溫液態(tài)氫氣運(yùn)輸
液氫密度大,氫氣液化后運(yùn)輸和存儲(chǔ)效率均較高。然而液態(tài)氫氣易揮發(fā),需投入大量成本保證其絕熱性能。目前其運(yùn)輸方式主要有船運(yùn)、槽車運(yùn)以及管道運(yùn)。
1)船運(yùn)輸:該方式采用配備有大型液氫儲(chǔ)罐的駁船進(jìn)行氫氣運(yùn)輸,運(yùn)輸量大、能耗低,適合長距離運(yùn)輸。且由于在海上進(jìn)行運(yùn)輸,較為偏僻,相對(duì)安全。然而液氫駁船技術(shù)難度大,一次投入成本高。目前國外已研發(fā)出大型液氫駁船[43],而國內(nèi)相關(guān)技術(shù)還較落后。
2)槽車運(yùn)輸:采用專用低溫絕熱槽罐進(jìn)行運(yùn)輸。運(yùn)輸效率高,鐵路運(yùn)量可達(dá)200 m3,適合于長距離運(yùn)輸。缺點(diǎn)在于氫氣液化耗能高,同時(shí)對(duì)設(shè)備、工藝等方面均有高要求。此外,由于中國液氫相關(guān)設(shè)備和技術(shù)與發(fā)達(dá)國家差距較大,基本依賴進(jìn)口,液氫運(yùn)輸不是主流[44]。
3)管道運(yùn)輸:采用管道運(yùn)輸液氫對(duì)管道絕熱性能要求高。既有液氫管道一般采用真空隔熱,包括兩個(gè)套管,它們之間的空隙抽至高真空,其技術(shù)難度大且成本高[45]。對(duì)于短距離氫氣輸送,采用液氫管道運(yùn)輸有較大優(yōu)勢(shì)。
2.3.2 有機(jī)液態(tài)氫氣運(yùn)輸
有機(jī)液態(tài)氫氣運(yùn)輸,利用有機(jī)物同氫氣生成氫化物后進(jìn)行運(yùn)輸[46],相比于高壓氫氣運(yùn)輸運(yùn)量更大,相比于低溫液態(tài)氫氣運(yùn)輸更加安全,更適合長時(shí)間儲(chǔ)存和遠(yuǎn)距離運(yùn)輸,尤其是國際運(yùn)輸[47]。此外,考慮到有機(jī)液態(tài)儲(chǔ)氫介質(zhì)于汽油性質(zhì)相似,因此可直接利用汽油運(yùn)輸設(shè)備,有效節(jié)約了成本[48]。Müeller等[49]探索了從有機(jī)液態(tài)儲(chǔ)氫(liquid organic hydrogen carrier,LOHC)中低溫脫氫的方法,結(jié)果表明低壓脫氫和反應(yīng)蒸餾在高效低溫放氫方面具備很大潛力。
3 固態(tài)儲(chǔ)運(yùn)技術(shù)
固態(tài)儲(chǔ)氫技術(shù)利用固態(tài)儲(chǔ)氫材料通過物理或化學(xué)吸附儲(chǔ)存氫氣或生成固體化合物進(jìn)行儲(chǔ)氫。根據(jù)儲(chǔ)氫原理可分為物理吸附和化學(xué)吸附儲(chǔ)氫。
3.1 物理吸附儲(chǔ)氫
物理吸附儲(chǔ)氫利用固體材料對(duì)氫氣的物理吸附作用實(shí)現(xiàn)儲(chǔ)氫。主要有碳質(zhì)材料和沸石儲(chǔ)氫,前者包括活性炭、碳納米纖維、石墨納米纖維、碳納米管4種碳質(zhì)材料。碳質(zhì)材料質(zhì)量儲(chǔ)氫密度較高,且具有輕質(zhì)、無毒、高安全等優(yōu)點(diǎn),但存在材料成本高、制作過程復(fù)雜等不足[50]。鑒于碳質(zhì)材料儲(chǔ)氫的缺陷,研究發(fā)現(xiàn)沸石具有高比表面積、較低的成本、成熟的制備工藝等優(yōu)勢(shì),因此受到廣泛關(guān)注[51]。但沸石儲(chǔ)氫需在低溫高壓下才能達(dá)到較高的儲(chǔ)氫密度。針對(duì)這一問題,Isidro-ortega等[52]實(shí)驗(yàn)證實(shí)了在常溫下ZSM-5沸石具備一定的儲(chǔ)氫能力,但儲(chǔ)氫密度較低;張利智等[53]研究發(fā)現(xiàn),摻雜金屬鋰原子能提高沸石模板碳(zeolite templated carbons,ZTC)儲(chǔ)氫容量;Chakraborty等[54]在二維同素異形體碳(Psi-Graphene)中摻雜Ti原子后,其質(zhì)量儲(chǔ)氫密度可達(dá)13.1%,應(yīng)用前景可觀。
3.2 化學(xué)吸附儲(chǔ)氫
3.2.1 金屬合金儲(chǔ)氫
金屬合金儲(chǔ)氫利用金屬合金與氫氣反應(yīng)生成氫化物實(shí)現(xiàn)儲(chǔ)氫。主要包括鎂系、鈦系、釩系、稀土系、鋯系儲(chǔ)氫合金[55]。其中釩系、稀土系、鋯系儲(chǔ)氫合金儲(chǔ)氫材料成本較高,采用低成本金屬部分替代以降低其儲(chǔ)氫材料成本是研究方向之一。鈦系儲(chǔ)氫合金雖成本低且能在室溫條件下吸放氫,但由于Ti表面易生成TiO2,導(dǎo)致活化溫度和壓強(qiáng)較高,且易受水等雜質(zhì)氣體毒化。研究發(fā)現(xiàn),在Ti-Te中摻雜混合稀土元素Mm,可改善活化問題[56]。但雜質(zhì)氣體毒化問題暫未得到解決,且活化溫度也有待進(jìn)一步降低。表1對(duì)比了5種典型金屬合金儲(chǔ)氫性能??煽闯觯V系儲(chǔ)氫合金儲(chǔ)氫容量優(yōu)勢(shì)大,但其脫氫溫度高(563 K),吸收氫速率也較低[57]。
針對(duì)上述問題,可通過納米化、催化劑添加和復(fù)合化等技術(shù)進(jìn)行改善[58-60]。Wagemans等[59]研究發(fā)現(xiàn),采用0.9 nm的MgH2可有效降低脫氫焓,使其脫氫溫度降至473 K;張欣等[60]借助超聲波合成4~5 nm的納米MgH2顆粒,其在303 K條件下質(zhì)量儲(chǔ)氫密度可達(dá)6.7%,且多次使用后儲(chǔ)量基本不變。翁兆躍等[61]發(fā)現(xiàn)超高壓條件下得到的γ-MgH2脫氫溫度更低,在真空中,在約60 ℃條件下即可實(shí)現(xiàn)脫氫,非真空條件脫氫溫度為200 ℃,質(zhì)量儲(chǔ)氫密度可達(dá)4.5%,但γ-MgH2形成條件苛刻,且溫度升高其含量會(huì)降低,從而使脫氫溫度升高。
3.2.2 配位氫化物儲(chǔ)氫
配位氫化物儲(chǔ)氫利用氫氣和金屬反應(yīng)生成離子氫化物實(shí)現(xiàn)儲(chǔ)氫。配位氫化物可用AxMeyHz來表達(dá),其中A為元素周期表一、二主族元素,Me一般是B、Al或過渡元素[62]。其中氫化鋁配位氫化物是目前的研究熱點(diǎn),其理論質(zhì)量儲(chǔ)氫量大于5.5%,滿足DOE近期要求[63],但可逆性較差且放氫所需溫度較高。針對(duì)上述問題多采用添加催化劑改善動(dòng)力學(xué)特性。文獻(xiàn)[64]在NaAlH4中添加少量Ti4+或Fe3+離子可將放氫溫度降低約100 ℃,同時(shí)可實(shí)現(xiàn)逆向吸氫。文獻(xiàn)[65]通過球磨法與TiCl3混合,將其放氫活化能從120降至80 kJ/mol。但其可逆性和吸放氫溫度仍有待進(jìn)一步改善。
3.2.3 水合物儲(chǔ)氫
水合物儲(chǔ)氫,即通過水和氫氣在一定條件下生成固體水合物實(shí)現(xiàn)儲(chǔ)氫。該方法具有低成本、高安全、脫氫條件溫和等優(yōu)點(diǎn)??煞譃棰裥?、Ⅱ型、H型和半籠型4種類型[66]。目前Ⅱ型水合物儲(chǔ)氫性能相對(duì)較好,采用純水時(shí)理論質(zhì)量儲(chǔ)氫密度可達(dá)5.3%[67]。然而水合物形成條件苛刻。可加入促進(jìn)劑,如四氫呋喃(tetrahydrofuran,THF),以緩和其形成條件,但會(huì)占據(jù)一些水合物籠,導(dǎo)致儲(chǔ)氫密度降低[68-69]。
3.3 氫氣固態(tài)運(yùn)輸
氫氣固態(tài)運(yùn)輸通常以金屬氫化物的形式儲(chǔ)存然后以貨車和集裝箱等方式進(jìn)行。同固態(tài)儲(chǔ)氫一樣,安全性較高,且固態(tài)儲(chǔ)氫技術(shù)儲(chǔ)氫密度大,適合長距離、大規(guī)模運(yùn)輸氫氣。相信隨著相關(guān)技術(shù)的不斷研究,這種氫氣輸送方式將會(huì)大量投入使用。
4 混合儲(chǔ)運(yùn)技術(shù)
為綜合不同儲(chǔ)氫技術(shù)優(yōu)勢(shì),研究人員提出復(fù)合或混合儲(chǔ)氫技術(shù),以提升儲(chǔ)氫裝置的綜合性能。高壓氣態(tài)儲(chǔ)氫技術(shù)最成熟、吸放氫氣性能優(yōu)越,但低壓時(shí)儲(chǔ)氫密度較低,而固態(tài)儲(chǔ)氫安全性高且低壓儲(chǔ)氫密度高[70-71]。因此研究人員提出氣態(tài)-固態(tài)混合儲(chǔ)氫技術(shù),在高壓復(fù)合儲(chǔ)氫罐中(結(jié)構(gòu)如圖2),金屬合金吸收一部分氫氣,同時(shí)利用氣瓶中的空隙儲(chǔ)存一部分氫氣,并通過氣瓶內(nèi)部壓力閾值令金屬合金吸放氫氣[72-75]。曹志杰等[74]研究35 MPa固-氣復(fù)合儲(chǔ)氫罐中儲(chǔ)氫合金含量對(duì)質(zhì)量及體積儲(chǔ)氫密度的影響,同時(shí)探索了Ti-Zr-Cr合金部分元素替代后的儲(chǔ)氫特性。研究發(fā)現(xiàn),(Ti0.85Zr0.15)1.1Cr0.9Mo0.1Mn具有最好的儲(chǔ)氫性能,復(fù)合儲(chǔ)氫瓶28%填充合金時(shí),體積儲(chǔ)氫密度能滿足DOE近期要求,但質(zhì)量儲(chǔ)氫密度僅為2.72%,且脫氫時(shí)間較長,約為6 min。涂冰等[75]通過取代Ti-Zr-Cr部分原子后,可在較溫和的條件下(298 K,10.88 atm)實(shí)現(xiàn)儲(chǔ)放氫,但質(zhì)量儲(chǔ)氫密度僅1.82%。
除固態(tài)-氣態(tài)混合儲(chǔ)氫技術(shù)外,液態(tài)-氣態(tài)混合儲(chǔ)氫技術(shù),即低溫壓縮儲(chǔ)氫技術(shù),前景同樣可觀[76-79]。其綜合了高壓氣態(tài)儲(chǔ)氫與低溫液態(tài)儲(chǔ)存技術(shù)優(yōu)點(diǎn),降低了儲(chǔ)氫壓力和儲(chǔ)氫溫度,兼具高儲(chǔ)氫密度,但其成本(主要源于碳釬維材料)較高[78]。趙延興等[79]探究不同溫度下和不同壓強(qiáng)條件下低溫壓縮儲(chǔ)氫技術(shù)儲(chǔ)氫性能,研究發(fā)現(xiàn)50 MPa、100 K等參數(shù)條件下儲(chǔ)氫綜合性能較好,體積儲(chǔ)氫密度可達(dá)62 kg/m3以上?;旌蟽?chǔ)氫運(yùn)輸方式與其所包含的儲(chǔ)氫技術(shù)有關(guān),可參考?xì)錃鈿鈶B(tài)、液態(tài)和固態(tài)運(yùn)輸方式,限于篇幅原因,此處不再贅述。
5 總結(jié)與展望
5.1 總 結(jié)
參考DOE車載儲(chǔ)氫指標(biāo)要求[63],對(duì)比9種典型儲(chǔ)氫技術(shù)和氫氣不同運(yùn)輸方式(表2和表3)。由表2可知,就車載儲(chǔ)氫而言,現(xiàn)有儲(chǔ)氫技術(shù)均存在不足。高壓氣態(tài)儲(chǔ)氫技術(shù)中,非玻璃氣瓶安全性和儲(chǔ)氫密度不滿足標(biāo)準(zhǔn),且由于纖維復(fù)合材料含量較高,導(dǎo)致Ⅲ型(700美元/kg H2)和Ⅳ型氣瓶成本
高;玻璃氣瓶僅在技術(shù)成熟度方面處于劣勢(shì)。低溫液態(tài)儲(chǔ)氫方式儲(chǔ)氫密度高,盡管液化能耗高,但在其他方面如分配過程中成本低于Ⅰ型(83美元/kg H2)和Ⅱ型(86美元/kg H2)氣瓶儲(chǔ)氫,尤其是長距離運(yùn)輸情況下,綜合成本優(yōu)于氣態(tài)儲(chǔ)氫。有機(jī)液態(tài)儲(chǔ)氫技術(shù)儲(chǔ)氫密度較大、安全性高。但脫氫溫度高,導(dǎo)致其加氫和脫氫設(shè)備成本相對(duì)較高。固態(tài)儲(chǔ)氫中,鎂系儲(chǔ)氫合金脫氫溫度較高,從而導(dǎo)致較高的成本;稀土系和鈦系儲(chǔ)氫雖脫氫溫度溫和但其質(zhì)量儲(chǔ)氫密度較低,且稀土合金成本較高。固態(tài)-氣態(tài)混合儲(chǔ)氫技術(shù)儲(chǔ)氫密度仍有待提升。液態(tài)-氣態(tài)混合儲(chǔ)氫技術(shù)需進(jìn)一步降低成本和提高安全性。氫氣運(yùn)輸方式選擇需綜合運(yùn)輸距離、運(yùn)量和成本等因素。由表3可知,短距離可采用拖車和液氫管道運(yùn)輸,而拖車長距離運(yùn)輸能耗高、效率低,且大規(guī)模鋪設(shè)管道成本高,故拖車和管道不適用于長距離運(yùn)輸。長距離可采用天然氣摻氫和液氫駁船運(yùn)輸方式。短期內(nèi),長管拖車運(yùn)輸氫氣和天然氣摻氫運(yùn)輸氫氣是目前為止較經(jīng)濟(jì)且方便的方法;當(dāng)氫氣用量大時(shí),液氫運(yùn)輸將會(huì)成為理想的運(yùn)輸方式,可發(fā)展液氫槽車和液氫管道運(yùn)輸。
5.2 展 望
考慮到目前中國氫氣儲(chǔ)運(yùn)技術(shù)發(fā)展現(xiàn)狀和未來巨大的氫氣需求,提出以下5點(diǎn)建議:
1)鼓勵(lì)國內(nèi)研究人員開發(fā)帶電磁微閥的玻璃毛細(xì)管陣列氣瓶,并研制其相關(guān)配套設(shè)施;考慮到玻璃的易碎特性和設(shè)備成本,研究陣列之間的隔離方法并提高氣瓶整體抗震能力。
2)從儲(chǔ)罐材料和絕熱系統(tǒng)出發(fā),研制低蒸發(fā)率和低成本的低溫液氫儲(chǔ)罐;探索包括甲醇在內(nèi)的高儲(chǔ)氫密度、低成本、溫和吸放氫的新型有機(jī)儲(chǔ)氫材料并提升現(xiàn)有有機(jī)儲(chǔ)氫材料脫氫溫度和脫氫速率等綜合性能。
3)從機(jī)理層面探究降低鎂基儲(chǔ)氫合金脫氫溫度和提升吸氫速度的有效方法。
4)研究混合儲(chǔ)氫所含不同儲(chǔ)氫技術(shù)的比例和儲(chǔ)氫壓力、溫度對(duì)儲(chǔ)氫性能的綜合影響,進(jìn)一步提升混合儲(chǔ)氫綜合性能。
5)探索天然氣摻氫氣關(guān)鍵技術(shù),降低氫氣和天然氣分離成本,有效解決氫脆問題;突破液氫運(yùn)輸相關(guān)技術(shù),滿足未來大規(guī)模長距離氫氣運(yùn)輸需求。
[參考文獻(xiàn)]
[1] FAYE O, SZPUNAR J A. An efficient way to suppress the competition between adsorption of H2 and desorption of nH2-Nb complex from graphene sheet: a promising approach to H2 storage[J]. The journal of physical chemistry C, 2018, 122(50): 28506-28517.
[2] 李軍, 薄柯, 黃強(qiáng)華, 等. 高壓氫氣儲(chǔ)運(yùn)移動(dòng)式壓力容器發(fā)展趨勢(shì)與挑戰(zhàn)[J]. 太陽能學(xué)報(bào), 2022, 43(3): 20-26.
LI J, BO K, HUANG Q H, et al. Development trend and challenges of high pressure hydrogen transpotable pressure vessel[J]. Acta energiae solaris sinica, 2022, 43(3): 20-26.
[3] ZHENG J Y, LIU X X, XU P, et al. Development of high pressure" " gaseous" " hydrogen" " storage" " technologies[J]. International journal of hydrogen energy, 2012, 37(1): 1048-1057.
[4] SAZELEE N A, ISMAIL M. Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: a review[J]. International journal of hydrogen energy, 2021, 46(13): 9123-9141.
[5] YATSENKO E A, GOLTSMAN B M, NOVIKOV Y V, et al. Review on modern ways of insulation of reservoirs for liquid" "hydrogen" "storage[J]." " International" "journal" "of hydrogen energy, 2022, 47(97): 41046-41054.
[6] TAKEICHI N, SENOH H, YOKOTA T, et al. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. International journal of hydrogen energy, 2003, 28(10): 1121-1129.
[7] HE M, LV C, GONG L H, et al. The design and optimization of a cryogenic compressed hydrogen refueling process[J]." International" "journal" "of" "hydrogen" "energy, 2021, 46(57): 29391-29399.
[8] WANNIARACHCHI S, HEWAGE K, WIRASINGHE C, et al. Transforming road freight transportation from fossils to hydrogen: opportunities and challenges[J]. International journal of sustainable transportation, 2023, 17(5): 552-572.
[9] LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks[J]. International journal of hydrogen energy, 2019, 44(35): 19302-19312.
[10] YALCIN E, SUNER M. The changing role of diesel oil-gasoil-LPG and hydrogen based fuels in human health risk: a numerical investigation in ferry ship operations[J]. International journal of hydrogen energy, 2020, 45(5): 3660-3669.
[11] ZHOU N, LI X W, LI X, et al. Effect of hydrogen addition on the explosion characteristics of methane-hydrogen-air mixture in T-shaped bifurcation pipe[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2022, 44(2): 3808-3822.
[12] ZHOU C S, YE B G, SONG Y Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement" "of" "X80" "pipeline" "steel[J]." International journal of hydrogen energy, 2019, 44(40): 22547-22558.
[13] FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International journal of hydrogen energy, 2022, 47(29): 13771-13802.
[14] SUN B G, ZHANG D S, LIU F S. Analysis of the cost-effectiveness of pressure for vehicular high-pressure gaseous hydrogen storage vessel[J]. International journal of hydrogen energy, 2012, 37(17): 13088-13091.
[15] 李建, 張立新, 李瑞懿, 等. 高壓儲(chǔ)氫容器研究進(jìn)展[J]. 儲(chǔ)能科學(xué)與技術(shù), 2021, 10(5): 1835-1844.
LI J, ZHANG L X, LI R Y, et al. High-pressure gaseous hydrogen storage vessels: current status and prospects[J]. Energy storage science and technology, 2021, 10(5): 1835-1844.
[16] 張志蕓, 張國強(qiáng), 劉艷秋, 等. 車載儲(chǔ)氫技術(shù)研究現(xiàn)狀及發(fā)展方向[J]. 油氣儲(chǔ)運(yùn), 2018, 37(11): 1207-1212.
ZHANG Z Y, ZHANG G Q, LIU Y Q, et al. Research status and development direction of on-board hydrogen storage technologies[J]. Oil amp; gas storage and transportation, 2018, 37(11): 1207-1212.
[17] 李璐伶, 樊栓獅, 陳秋雄, 等. 儲(chǔ)氫技術(shù)研究現(xiàn)狀及展望[J]. 儲(chǔ)能科學(xué)與技術(shù), 2018, 7(4): 586-594.
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology:" Current" status" and" prospects[J]." Energy storage science and technology, 2018, 7(4): 586-594.
[18] DAS L M. On-board hydrogen storage systems for automotive" " application[J]." "International" " journal" " of hydrogen energy, 1996, 21(9): 789-800.
[19] 邱龍會(huì), 魏蕓, 傅依備. 薄壁玻璃微球殼的熱擴(kuò)散充氣[J]. 強(qiáng)激光與粒子束, 1999, 11(3): 317-320.
QIU L H, WEI Y, FU Y B. Gas diffusion fill through hollow glass microspheres with high aspect ratio[J]. High power laser and particle beams, 1999, 11(3): 317-320.
[20] 蒲亮, 余海帥, 代明昊, 等. 氫的高壓與液化儲(chǔ)運(yùn)研究及應(yīng)用進(jìn)展[J]. 科學(xué)通報(bào), 2022, 67(19): 2172-2191.
PU L, YU H S, DAI M H, et al. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese science bulletin, 2022, 67(19): 2172-2191.
[21] 常樂, 倪維斗, 李政, 等. 氫能供應(yīng)鏈中最佳運(yùn)氫方式的選擇[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 49(2): 257-260.
CHANG L, NI W D, LI Z, et al. Selection of best hydrogen transport mode in the hydrogen supply chain[J]. Journal of Tsinghua University (science and technology), 2009, 49(2): 257-260.
[22] LI M, MING P W, HUO R, et al. Economic assessment and comparative analysis of hydrogen transportation with various technical processes[J]. Journal of renewable and sustainable energy, 2023, 15(2): 025904.
[23] 黃明, 吳勇, 文習(xí)之, 等. 利用天然氣管道摻混輸送氫氣的可行性分析[J]. 煤氣與熱力, 2013, 33(4): 39-42.
HUANG M, WU Y, WEN X Z, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas amp; heat, 2013, 33(4): 39-42.
[24] MORENO-BLANCO J, CAMACHO G, VALLADARES F, et al. The cold high-pressure approach to hydrogen delivery[J]." International" journal" ofnbsp; hydrogen" energy, 2020, 45(51): 27369-27380.
[25] 劉超廣, 馬貴陽, 孫東旭. 氫氣管輸技術(shù)研究進(jìn)展[J]. 太陽能學(xué)報(bào), 2023, 44(1): 451-458.
LIU C G, MA G Y, SUN D X. Research progress for technology of hydrogen transportation by pipeline[J]. Acta energiae solaris sinica, 2023, 44(1): 451-458.
[26] CHAE M J, KIM J H, MOON B, et al. The present condition and outlook for hydrogen-natural gas blending technology[J]. Korean journal of chemical engineering, 2022, 39(2): 251-262.
[27] NYKYFORCHYN H, ZVIRKO O, HREDIL M, et al. Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport[J]. Frattura ed integrità strutturale, 2021, 16(59): 396-404.
[28] ZHOU D J, LI T T, HUANG D W, et al. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel[J]. International journal of hydrogen energy, 2021, 46(10): 7402-7414.
[29] NAYEBOSSADRI S, SPEIGHT J D, BOOK D. Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes[J]. International journal of hydrogen energy, 2019, 44(55): 29092-29099.
[30] MACHHAMMER O, HENSCHEL C, FUESSL A. Natural gas pipelines for hydrogen transport[J]. Chemie-ingenieur-technik, 2021, 93(4): 717-728.
[31] 曹軍文, 覃祥富, 耿嘎, 等. 氫氣儲(chǔ)運(yùn)技術(shù)的發(fā)展現(xiàn)狀與展望[J]. 石油學(xué)報(bào)(石油加工), 2021, 37(6): 1461-1478.
CAO J W, QIN X F, GENG G, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta petrolei sinica (petroleum processing section), 2021, 37(6): 1461-1478.
[32] XU P, LEI G, XU Y Y, et al. Study on continuous cooling process coupled with ortho-Para hydrogen conversion in plate-fin" "heat" "exchanger" "filled" "with" "catalyst[J]. International journal of hydrogen energy, 2022, 47(7): 4690-4703.
[33] 揚(yáng)帆, 張超, 張博超, 等. 大型液氫儲(chǔ)罐內(nèi)罐材料研究與應(yīng)用進(jìn)展[J]. 太陽能學(xué)報(bào), 2023, 44(10): 557-563.
YANG F, ZHANG C, ZHANG B C, et al. Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J]. Acta energiae solaris sinica, 2023, 44(10): 557-563.
[34] QIU Y N, YANG H, TONG L G, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101.
[35] HEDAYAT A. Analytical modeling of variable density multilayer insulation for cryogenic storage[C]//AIP Conference Proceedings. Madison, Wisconsin, USA, 2002.
[36] 李延娜, 陳叔平, 姚淑婷, 等. 應(yīng)用于ZBO存儲(chǔ)的SOFI/VD-MLI技術(shù)研究[J]. 低溫與超導(dǎo), 2013, 41(12): 15-18.
LI Y N, CHEN S P, YAO S T, et al. Study on SOFI/VD-MLI technology for ZBO storage[J]. Cryogenics amp; superconductivity, 2013, 41(12): 15-18.
[37] JIANG W B, ZUO Z Q, SUN P J, et al. Thermal analysis of coupled vapor-cooling-shield insulation for liquid hydrogen-oxygen pair storage[J]. International journal of hydrogen energy, 2022, 47(12): 8000-8014.
[38] LIU Y W, LIU X, YUAN X Z, et al. Optimizing design of a new zero boil off cryogenic storage tank in microgravity[J]. Applied energy, 2016, 162: 1678-1686.
[39] LUO J, CHEN Y Y, ZHANG L M, et al. Numerical investigation on regenerative heat-driven cryocoolers for zero boil-off storage of liquid hydrogen[C]//ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Rotterdam, Netherlands, 2022
[40] CLOT E, EISENSTEIN O, CRABTREE R H. Computational structure-activity relationships in H2 storage: how placement of N atoms affects release temperatures" "in" "organic" "liquid" storage" materials[J]. Chemical communications, 2007(22): 2231-2233.
[41] LUO W, CAMPBELL P G, ZAKHAROV L N, et al. A single-component liquid-phase hydrogen storage material[J]. Journal of the American Chemical Society, 2011, 133(48): 19326-19329.
[42] DAI Y, ZHANG X, LIU Y F, et al. 1,6;2,3-Bis-BN cyclohexane: synthesis, structure, and hydrogen release[J]. Journal of the American Chemical Society, 2022, 144(19): 8434-8438.
[43] ALKHALEDI A N, SAMPATH S, PILIDIS P. Propulsion of a hydrogen-fuelled LH2 tanker ship[J]. International journal of hydrogen energy, 2022, 47(39): 17407-17422.
[44] 張軒, 樊昕曄, 吳振宇, 等. 氫能供應(yīng)鏈成本分析及建議[J]. 化工進(jìn)展, 2022, 41(5): 2364-2371.
ZHANG X, FAN X Y, WU Z Y, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical industry and engineering progress, 2022, 41(5): 2364-2371.
[45] 馬建新, 劉紹軍, 周偉, 等. 加氫站氫氣運(yùn)輸方案比選[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 36(5): 615-619.
MA J X, LIU S J, ZHOU W, et al. Comparison of hydrogen transportation methods for hydrogen refueling station[J]. Journal of Tongji University (natural science), 2008, 36(5): 615-619.
[46] WULF C, ZAPP P. Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers[J]. International journal of hydrogen energy, 2018, 43(26): 11884-11895.
[47] HURSKAINEN M, IHONEN J. Techno-economic feasibility of road transport of hydrogen using liquid organic hydrogen carriers[J]. International journal of hydrogen energy, 2020, 45(56): 32098-32112.
[48] JANG M, SHIN B S, JO Y S, et al. A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether[J]. Journal of energy chemistry, 2020, 42: 11-16.
[49] MüLLER K, SKELEDZIC T, WASSERSCHEID P. Strategies for low-temperature liquid organic hydrogen carrier dehydrogenation[J]. Energy amp; fuels, 2021, 35(13): 10929-10936.
[50] 曲海芹, 婁豫皖, 杜俊霖, 等. 碳質(zhì)儲(chǔ)氫材料的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2014, 28(13): 69-71, 77.
QU H Q, LOU Y W, DU J L, et al. Research progress of carbon-based" hydrogen" storage" materials[J]." Materials review, 2014, 28(13): 69-71, 77.
[51] 張峰, 馮翠紅, 張麗鵬, 等. 物理吸附儲(chǔ)氫材料的研究進(jìn)展[J]. 硅酸鹽通報(bào), 2013, 32(9): 1785-1789, 1793.
ZHANG F, FENG C H, ZHANG L P, et al. Study progress on the hydrogen storage material by physical absorption[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1785-1789, 1793.
[52] ISIDRO-ORTEGA F J, PACHECO-SáNCHEZ J H, DESALES-GUZMáN L A. Hydrogen storage on lithium decorated zeolite templated carbon, DFT study[J]. International journal of hydrogen energy, 2017, 42(52): 30704-30717.
[53] 張利智, 劉聰, 禹國軍. 基于物理吸附的微孔儲(chǔ)氫材料研究進(jìn)展[J]. 應(yīng)用化工, 2021, 50(12): 3407-3410.
ZHANG L Z, LIU C, YU G J. Research progress in microporous physical-adsorption-based hydrogen storage materials[J]. Applied chemical industry, 2021, 50(12): 3407-3410.
[54] CHAKRABORTY B, RAY P, GARG N, et al. High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: density functional theory investigations[J]." " International" " journal" " of" " hydrogen energy, 2021, 46(5): 4154-4167.
[55] 馬通祥, 高雷章, 胡蒙均, 等. 固體儲(chǔ)氫材料研究進(jìn)展[J]. 功能材料, 2018, 49(4): 4001-4006.
MA T X, GAO L Z, HU M J, et al. Research progress of solid hydrogen storage materials[J]. Journal of functional materials, 2018, 49(4): 4001-4006.
[56] LOTOTSKYY M V, YARTYS V A, POLLET B G, et al. Metal hydride hydrogen compressors: a review[J]. International journal of hydrogen energy, 2014, 39(11): 5818-5851.
[57] 張曉飛, 蔣利軍, 葉建華, 等. 固態(tài)儲(chǔ)氫技術(shù)的研究進(jìn)展[J]. 太陽能學(xué)報(bào), 2022, 43(6): 345-354.
ZHANG X F, JIANG L J, YE J H, et al. Research progress of solid-state hydrogen storage teachnology[J]. Acta energiae solaris sinica, 2022, 43(6): 345-354.
[58] 張秋雨, 杜四川, 馬哲文, 等. 鎂基儲(chǔ)氫材料的研究進(jìn)展[J]. 科學(xué)通報(bào), 2022, 67(19): 2158-2171.
ZHANG Q Y, DU S C, MA Z W, et al. Recent advances in Mg-based hydrogen storage materials[J]. Chinese science bulletin, 2022, 67(19): 2158-2171.
[59] WAGEMANS R W P, VAN LENTHE J H, DE JONGH P E, et al. Hydrogen storage in magnesium clusters: quantum" chemical" study[J]. Journal" of" the" American Chemical Society, 2005, 127(47): 16675-16680.
[60] ZHANG X, LIU Y F, REN Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy amp; environmental science, 2021, 14(4): 2302-2313.
[61] WENG Z Y, RETITA I, TSENG Y S, et al. γ-MgH2 induced by high pressure for low temperature dehydrogenation[J]." "International" "journal" "of" "hydrogen energy, 2021, 46(7): 5441-5448.
[62] 牛森. 鈦基儲(chǔ)氫合金的制備及電化學(xué)性能研究[D]. 長沙: 中南大學(xué), 2013.
NIU S. Fabrication and electrochemical properties of Ti-based hydrogen storagre alloys[D]. Changsha: Central South University, 2013.
[63] Department of energy. DOE technical targets for onboard hydrogen storage for light-duty vehicles [EB/OL]. https://www.energy.gov/eere/fuelcells/doe-technical-targets onboard-hydrogen-storage-light-duty-vehicles.
[64] BOGDANOVI? B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen" storage" materials[J]. Journal" of" alloys" and compounds, 1997, 253/254: 1-9.
[65] EBERLE U, ARNOLD G, VON HELMOLT R. Hydrogen storage in metal-hydrogen systems and their derivatives[J]. Journal of power sources, 2006, 154(2): 456-460.
[66] VELUSWAMY H P, KUMAR R, LINGA P. Hydrogen storage in clathrate hydrates: current state of the art and future directions[J]. Applied energy, 2014, 122: 112-132.
[67] SAHA D, DENG S G. Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir, 2010, 26(11): 8414-8418.
[68] 李昊陽, 張煒, 李小森, 等. 水合物儲(chǔ)氫的研究進(jìn)展[J]. 化工進(jìn)展, 2022, 41(12): 6285-6294.
LI H Y, ZHANG W, LI X S, et al. Research process of hydrate-based hydrogen storage[J]. Chemical industry and engineering progress, 2022, 41(12): 6285-6294.
[69] LIU J X, HOU J, XU J F, et al. Ab initio study of the molecular hydrogen occupancy in pure H2 and binary H2-THF clathrate hydrates[J]. International journal of hydrogen energy, 2017, 42(27): 17136-17143.
[70] 王亞雄, 鐘順彬, 孫逢春. 車載高質(zhì)量密度固態(tài)儲(chǔ)氫材料研究進(jìn)展[J]. 稀有金屬, 2022, 46(6): 796-812.
WANG Y X, ZHONG S B, SUN F C. Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese journal of rare metals, 2022, 46(6): 796-812.
[71] CAO Y C, YANG Y W, ZHAO X L, et al. A review of seasonal hydrogen storage multi-energy systems based on temporal and spatial characteristics[J]. Journal of renewable materials, 2021, 9(11): 1823-1842.
[72] LUXENBURGER B, MüLLER W. Investigations of the discharging of metal hydride beds for hydrogen-gasoline mixture operation of SI-engines[J]. International journal of hydrogen energy, 1985, 10(5): 305-315.
[73] 周超, 王輝, 歐陽柳章, 等. 高壓復(fù)合儲(chǔ)氫罐用儲(chǔ)氫材料的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2019, 33(1): 117-126.
ZHOU C, WANG H, OUYANG L Z, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials reports, 2019, 33(1): 117-126.
[74] CAO Z J, OUYANG L Z, WANG H, et al. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank[J]. International journal of hydrogen energy, 2015, 40(6): 2717-2728.
[75] TU B, WANG H, WANG Y, et al. Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle[J]. International journal of hydrogen energy, 2022, 47(33): 14952-14960.
[76] ACEVES S M, ESPINOSA-LOZA F, LEDESMA-OROZCO E, et al. High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International journal of hydrogen energy, 2010, 35(3): 1219-1226.
[77] 趙永志, 花爭立, 歐可升, 等. 車載低溫高壓復(fù)合儲(chǔ)氫技術(shù)研究現(xiàn)狀與挑戰(zhàn)[J]. 太陽能學(xué)報(bào), 2013, 34(7): 1300-1306.
ZHAO Y Z, HUA Z L, OU K S, et al. Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta energiae solaris sinica, 2013, 34(7): 1300-1306.
[78] 呂翠, 賀明, 王金陣, 等. 車載低溫高壓氫存儲(chǔ)技術(shù)現(xiàn)狀及分析[J]. 低溫與超導(dǎo), 2023, 51(2): 1-6.
LV C, HE M, WANG J Z, et al. Status and analysis of on-board cryogenic and compressed hydrogen storage technology[J]. Cryogenics amp; superconductivity, 2023, 51(2): 1-6.
[79] 趙延興, 公茂瓊, 周遠(yuǎn). 氣相低溫高壓儲(chǔ)氫密度和能耗的理論分析及比較[J]. 科學(xué)通報(bào), 2019, 64(25): 2654-2660.
ZHAO Y X, GONG M Q, ZHOU Y. The storage of hydrogen based on low-temperature and high-pressure method[J]. Chinese science bulletin, 2019, 64(25): 2654-2660.
[80] RIVARD E, TRUDEAU M, ZAGHIB K. Hydrogen storage for mobility: a review[J]. Materials, 2019, 12(12): 1973.
[81] SHIN H K, HA S K. A review on the cost analysis of hydrogen gas storage tanks for fuel cell vehicles[J]. Energies, 2023, 16(13): 5233.
[82] KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers[J]. International journal of hydrogen energy, 2019, 44(33): 18179-18192.
[83] ABD KHALIM KHAFIDZ N Z, YAAKOB Z, LIM K L, et al. The kinetics of lightweight solid-state hydrogen storage materials: a review[J]. International journal of hydrogen energy, 2016, 41(30): 13131-13151.
[84] REDDI K, ELGOWAINY A, RUSTAGI N, et al. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling[J]. International journal of hydrogen energy, 2018, 43(9): 4428-4438.
[85] BALAT M. Potential importance of hydrogen as a future solution to environmental and transportation problems[J]. International journal of hydrogen energy, 2008, 33(15): 4013-4029.
[86] JOHNSTON C, ALI KHAN M H, AMAL R, et al. Shipping the sunshine: an open-source model for costing renewable" " hydrogen" " transport" " from" " Australia[J]. International journal of hydrogen energy, 2022, 47(47): 20362-20377.
[87] SOUTHALL E, LUKASHUK L. Hydrogen storage and transportation technologies to enable the hydrogen economy:" liquid" organic" hydrogen" carriers[J]." Johnson matthey technology review, 2022, 66(3): 246-258.
DEVELOPMENT AND PROSPECT OF HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY
Liao Hongbo,Zhang Xuexia,Yue Jialing,Qiu Danluo,Tang Shuangxi
(School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)
Abstract:Primarily, the current status of development for the hydrogen storage and transportation technology are reviewed in this paper, including the storage and transportation manners of gaseous, liquid, solid, and hybrid, respectively. Subsequently, based on the index requirements of on-board hydrogen storage by US Department of Energy, the comprehensive performance of varied hydrogen storage technologies is compared, and the advantages and disadvantages of the existing hydrogen transportation ways are summarized. Finally, five suggestions are put forward for the future research direction of hydrogen storage and transportation technology. Overall, new hydrogen storage cylinders with superior comprehensive performance and hybrid hydrogen storage technologies should be the main focus of current research in the field of hydrogen storage. Liquid hydrogen transportation and natural gas mixed with hydrogen transportation are significant research hotspots for the future and present, respectively.
Keywords:hydrogen; hydrogen storage; transportation; hybrid hydrogen storage; hydrogen-mixed natural gas; comprehensive performances