1.引言
設(shè)a,b,c,R,r,s,△ABC分別為△ABC的三邊長、外接圓半徑、內(nèi)切圓半徑、半周長與面積,∑表示循環(huán)求和.文[1]介紹了由D.M.Milosevic提出的如下不等式:
∑ab+csin2A2≥12(1-r2R)≥38①.
文[2]給出了不等式的①的加強(qiáng):
∑ab+csin2A2≥(1-r2R2)②.
最近文[3]中對milosevic不等式做了進(jìn)一步研究,給出了①的一個逆向不等式和②的一個加強(qiáng).
1-3r2R+3r28R2+r34R3≤∑ab+csin2A2≤1-21r16R+r28R2③.
文[4]將不等式(3)改進(jìn)為更簡潔的形式:
1-3R2r+r22R2≤∑ab+csin2A2≤1-4r3R+r26R2④.
文[5]通過Gerrestsen不等式 ③的加強(qiáng):
1-3r2R+r22R2≤∑ab+csin2A2≤1-4r3R+r26R2⑤.
本文利用Gerrestsen不等式的加強(qiáng)不等式,即楊雪枝不等式等到新的定理1以及運(yùn)用引理4得到一個強(qiáng)于⑤式的定理2:
定理1 在△ABC中,有1-3r2R+3r24R2-r34R3-r42R4≤∑ab+csin2A2≤1-9r8R-r28R2-r34R3.
等號當(dāng)且僅當(dāng)△ABC為正三角形時成立.
定理2 在△ABC中,有1-3r2R+3r28R2+r34R3≤∑ab+csin2A2≤1-5r22R2.
等號當(dāng)且僅當(dāng)△ABC為正三角形時成立.
2.引理
引理1[5] 在△ABC中,有∑ab + csin2A2 = 1-3r2R + r2R·6R r + 4r2s2 + 2Rr + r2.
引理2[6] (Gerrestsen)在△ABC中,有16Rr-5r2≤s2≤4R2+4Rr+3r2.
引理3[6] (楊學(xué)枝不等式)在△ABC中,有16Rr-5r2+(R-2r)r2R-r≤s2≤4R2+4Rr+3r2-(R-2r)r2R-r.
證明:引理3是引理2的加強(qiáng)式.只需證(R-2r)r2R-r≥0,由R≥2r,顯然成立.
為了方便計(jì)算,我們引理3轉(zhuǎn)化成:16R2r-20Rr2+3r3R-r≤s2≤4R3-2Rr2-r3R-r.
引理4[6] 在△ABC中,有27r2≤s2≤27R24.
證明:由海倫公式,△2=116(a+b+c)(b+c-a)(c+a-b)(a+b-c)=116·2s(2s-2a)(2s-b)(2s-2c)=s(s-a)(s-b)(s-c),又由△=12(a+b+c)r=sr,結(jié)合三元不等式可得(sr)2=s(s-a)(s-b)(s-c)≤s·[(s-a)+(s-b)+(s-c)3]3=s427,整理得27r2≤s2,引理左端得證.又由s=a+b+c2=R(sinA+sinB+sinC),sinA+sinB+sinC=4cosA2cosB2·cosC2,cosA2cosB2cosC2≤332,則可得s2≤27R24.引理4得證.
3.結(jié)論的證明
由引理1和引理2右端可知,以及歐拉公式R≥2r,
6Rr+4r2s2+2Rr+r2≥6Rr+4r24R3-2Rr2-r3R-r+2Rr+r2=6R2r-2Rr2-4r34R3+2R2r-3Rr2-2r3≥6R2r-2Rr2-4r34R3=3r2R-r22R2-r3R3.
代入下式得
∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≥1-3r2R+r2R·(3r2R-r22R2-r3R3)
=1-3r2R+3r24R2-r34R3-r42R4.
則定理1的左邊得證.現(xiàn)證右邊.
6Rr+4r2s2+2Rr+r2≤6Rr+4r216R2r-20Rr2+3r3R-r+2Rr+r2=6R2-2Rr-4r218R2-21Rr+2r2,
由歐拉公式R≥2r,18R2-21Rr+2r2-8R3=10R2-21Rr+2r2=(R-2r)(10R-r)≥0,即18R-21Rr+2r2≥8R2,所以上式6R2-2Rr-4r218R2-21Rr+2r2≤6R2-2Rr-4r28R2=34-r4R-r22R2.代入下式得∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≤1-3r2R+r2R·(34-r4R-r32R3)
=1-9r8R-r28R2-r34R3.
由上,定理1得證.
現(xiàn)證明定理2,由引理1和引理4,以及歐拉公式R≥2r,可得:
6Rr+4r2s2+2Rr+r2≥6Rr+4r227R24+2Rr+r2=24Rr+16r227R2+8Rr+4r2≥24Rr+16r232R2=3r4R+r22R2,可得∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≥1-3r2R+r2R·(3r4R+r22R2)=1-3r2R+3r28R2+r34R3.
即定理2的左端得證.現(xiàn)證右邊.
6Rr+4r2s2+2Rr+r2≤6Rr+4r227r2+2Rr+r2=6R+4r28r+2R=3-80r2R+28r≤3-80r16R=3-5rR,可得
∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≤1-3r2R+r2R(3-5rR)=1-5r22R2.
則定理2得證.
注:定理2是⑤式的加強(qiáng).只需證分別證右端1-3r2R+r22R2與1-3r2R+3r28R2+r34R3,左端1-4r3R+r26R2與1-5r22R2的大小.
證明:由歐拉公式R≥2r,右端有
1-3r2R+r22R2-(1-3r2R+3r28R2+r34R3)=r28R2-r34R3=r2(R-2r)8R3≥0,即1-3r2R+r22R2≥1-3r2R+3r28R2+r34R3.
左端:1-4r3R+r26R2-(1-5r22R2)=8r(2r-R)6R2≤0,有1-4r3R+r26R2≥1-5r22R2.則證明了定理2強(qiáng)于⑤式.
現(xiàn)證明定理1式與定理2的強(qiáng)弱.只需證右端 1-3r2R+3r24R2-r34R3-r42R4與 1-3r2R+3r28R2+r34R3,左端1-9r8R-r28R2-r34R3與1-5r22R2的大小.
證明:由歐拉公式R≥2r,右端有1-3r2R+3r24R2-r34R3-r42R4-(1-3r2R+3r28R2+r34R3)=r2[R(3R-2r)-2r(R-2r)]8R4≥r2(3R-2r)8R3≥0,即1-3r2R+3r24R2-r34R3-r42R4≥1-3r2R+3r28R2+r34R3.
左端:1-9r8R-r28R2-r34R3-(1-5r22R2)=r(2r-R)(9R-r)8R3≤0,即1-9r8R-r28R2-r34R3≤1-5r22R2.則定理2的右端強(qiáng)于定理1的右端端,而定理2的左端弱于定理1的左端.
參考文獻(xiàn)
[1] Mitrinovic D S,Pecaric JE,Volenec V,陳計(jì).專著《幾何不等式新進(jìn)展》的補(bǔ)遺(Ⅰ)(英文)[J].寧波大學(xué)學(xué)報(理工版),1991(02):79-145.
[2]姜衛(wèi)東.關(guān)于Milosevic不等式的加強(qiáng)[J].中學(xué)數(shù)學(xué)教學(xué),2019(02):71.
[3]郭要紅.關(guān)于Milosevic不等式的再研討[J].數(shù)學(xué)通報,2020,59(02):60-61.
[4]何燈,王少光.Milosevic不等式的再探討[J].中學(xué)數(shù)學(xué)研究,2021(04):31-32.
[5]李建潮.關(guān)于Milosevic不等式的再研究[J].數(shù)學(xué)通報,2022,61(03):54-55+60.
[6]蘇岳祥,胡孝蘭,楊續(xù)亮.三角形半周長不等式的研討[J].數(shù)學(xué)通訊,2020(16):62-66.