關鍵詞:高等農(nóng)林教育;教學改革;計算方法;數(shù)值分析
0 引言
2022年11月,教育部辦公廳等4部門發(fā)布《關于加快新農(nóng)科建設推進高等農(nóng)林教育創(chuàng)新發(fā)展的意見》指出,高等農(nóng)林專業(yè)教育要以服務鄉(xiāng)村振興、農(nóng)業(yè)農(nóng)村現(xiàn)代化建設等國家重大戰(zhàn)略需求和區(qū)域經(jīng)濟社會發(fā)展為原則,主動應對第四次產(chǎn)業(yè)革命挑戰(zhàn),培養(yǎng)一批多學科背景、高素質(zhì)的復合應用型農(nóng)林人才,開創(chuàng)農(nóng)林教育新格局。在新農(nóng)科人才培養(yǎng)背景下,教育教學迎來更大的發(fā)展機遇與挑戰(zhàn)。如何變革傳統(tǒng)教學內(nèi)容與教學方法,將科學素養(yǎng)、專業(yè)技能、職業(yè)發(fā)展等融入教學中,引導學生學農(nóng)知農(nóng)、愛農(nóng)為農(nóng),已成為高等農(nóng)林教育重點聚焦的問題[1-4]。
計算方法課程是現(xiàn)代科學與工程計算中常用的數(shù)值近似解方法,在科學研究與工程應用中發(fā)揮著重要的“工具”作用,是農(nóng)林院校農(nóng)業(yè)機械化及其自動化、機械設計制造及其自動化等工科專業(yè)必修的基礎課程之一。計算方法課程具有數(shù)學理論的抽象性和嚴謹性,是一門理論與實踐結合緊密的數(shù)學分支學科。對培養(yǎng)學生邏輯思維能力、提升數(shù)學思維方法解決農(nóng)業(yè)工程問題具有重要作用,是培養(yǎng)農(nóng)業(yè)農(nóng)村現(xiàn)代化建設人才的重要環(huán)節(jié)。面對新時代發(fā)展要求,計算方法課程教學中反映出一些問題,如理論教學學時被壓縮、課堂實踐教學不足、教學中學生主動參與度不夠等問題,這些問題偏離了應用型人才的培養(yǎng)目標[5-7]。本研究基于甘肅農(nóng)業(yè)大學計算方法課程教學實踐,總結了現(xiàn)階段教學中存在問題,分析了深化教學改革的舉措,進一步對立德樹人及協(xié)同育人過程進行了探索。
1 存在問題
1.1 理論學時緊張,教學內(nèi)容較難形成知識體系
計算方法課程編排內(nèi)容較多,同種方法衍生的分支方法一般會有3種左右。如果按照課本內(nèi)容安排學時,理論課教學至少40學時,同時需安排16學時上機實驗。通過理論教學與上機實驗結合,才能使學生對課程知識點形成較為系統(tǒng)、連貫的知識體系。但不同學校的專業(yè)背景、培養(yǎng)方案等情況存在差異,此外還受專業(yè)工程認證、通識課教學學時增加等影響,計算方法課程理論教學學時已被壓縮。以甘肅農(nóng)業(yè)大學為例,所采用的教材為朱建新等編著的《數(shù)值計算方法》,書中建議理論教學至少32學時、上機實驗16學時[8]。經(jīng)過教學改革后,計算方法課程理論教學為32學時、無實驗學時安排,只能完成課本每章主體內(nèi)容的講授,無法做到分支內(nèi)容對教學的補充與延伸;同時,缺少了上機實驗練習,導致理論教學與實踐訓練脫節(jié)。對于基礎知識薄弱、自制力不強的學生,僅課堂學習遠遠不足以掌握基本知識點。此教學模式導致學生理論知識點掌握不牢固,對理解不同數(shù)值解法存在困難,缺乏工程實際問題解決能力,并不利于復合應用型農(nóng)林人才培養(yǎng)目標的實現(xiàn)[9]。
1.2 基礎知識薄弱,教學中知識點未能及時掌握
工科專業(yè)需要學習的課程相對龐雜,跨學期課程的知識點在學生學習歷程中是環(huán)環(huán)相扣的。計算方法課程與已學習的高等數(shù)學、線性代數(shù)課程存在緊密聯(lián)系。如常微分方程的數(shù)值解法需要微分方程求解(高等數(shù)學內(nèi)容)知識作為基礎,線性方程的數(shù)值解法與矩陣的初等運算(線性代數(shù)內(nèi)容)密不可分。而高等數(shù)學、線性代數(shù)課程已是前期學習課程內(nèi)容,這就要求學生在較長時間內(nèi)對該部分知識保持一定記憶。但在實際教學中,由于這些課程內(nèi)容學習時間跨度較長,部分學生數(shù)學基礎知識欠缺,對已學知識點沒有牢固記憶,加之課余時間利用率低等現(xiàn)實問題,導致學生在學習計算方法課程相關章節(jié)內(nèi)容時并不能較好地在課堂中及時掌握。積少成多后,學生難免會對本課程產(chǎn)生抵觸心理,進而導致考試成績不理想。
1.3 實踐內(nèi)容簡單,與農(nóng)業(yè)工程領域結合不緊密
馬克思主義哲學認為理論必須與實踐相結合才能變?yōu)槲镔|(zhì)力量[10]。理論知識的學習同樣如此,積極進行實踐探索是必不可少的環(huán)節(jié)。學習計算方法課程的目的之一是培養(yǎng)數(shù)學思維能力和工程問題解決能力。理論知識的學習更加側(cè)重于數(shù)學思維能力的鍛煉,所以各章節(jié)不同問題求解的方法在課堂講解時都進行手工推導,以加強學生對求解方法的理解和掌握。但在算法的實踐環(huán)節(jié)依靠計算機強大的計算速度,可獲得高效的問題求解能力,所以書中涉及的求解方法案例一般都會轉(zhuǎn)化為計算機程序語言進行演示練習。但這些案例基本都為純粹的算法問題,缺少一定的工程技術背景,尤其在農(nóng)業(yè)工程領域的問題幾乎沒有。學生對于農(nóng)業(yè)工程問題抽象成數(shù)學物理模型的能力缺少鍛煉,對數(shù)值求解方法在農(nóng)業(yè)工程領域的應用沒有直觀認知,僅僅將純數(shù)學問題的求解過程程序化、將結果圖形化,只會導致學生在學習過程中產(chǎn)生枯燥乏味感。此外,相關網(wǎng)絡教學資源短缺,無法滿足知識點與農(nóng)業(yè)工程技術背景結合。如果缺少工程技術背景的實踐練習,理論與實踐勢必產(chǎn)生背離,學生很難把理論知識熟練運用到實踐問題的解決中。與此同時,這些問題也將成為應用型人才培養(yǎng)的短板。
1.4 思政融合不夠,教育教學缺乏思政育人效果
2020年5月,教育部印發(fā)《高等學校課程思政建設指導綱要》指出,建成一批課程思政示范高校,推出一批課程思政示范課程,選出一批課程思政教學名師和團隊,建設一批高校課程思政教學研究示范中心[11]。高校教師的80%是專業(yè)教師,課程的80%是專業(yè)課程,專業(yè)教師在實際教學中容易將教學內(nèi)容局限于所學專業(yè)知識體系內(nèi),缺乏融入思想政治教育的理論知識、價值理念及精神追求等課程思政元素,對專業(yè)知識點中蘊含的思政元素及關聯(lián)思政元素挖掘不夠,對學生知識傳授過程中進行價值觀引導,幫助學生塑造正確的世界觀、人生觀、價值觀還不足[12-14]。
2 解決策略
2.1 儲備線上教學資源,發(fā)揮學生主動學習作用
理論教學學時壓縮已是大部分院??陀^現(xiàn)實,高等教育在應對教學改革的同時,要保證課堂教學質(zhì)量[15]。在面對課程學時壓縮的現(xiàn)狀下,需要充分調(diào)動學生學習的積極性。根據(jù)實際教學經(jīng)驗,本研究提出3點建議。第一,引導學生充分利用好課余時間,發(fā)揮主動學習作用。課堂教學時間是有限的,而學生課余時間相對富裕,通過課余時間對課堂教學的補充,對學生學習效果能起到正向促進作用。本課程已實現(xiàn)混合式教學,與教學相關的課件、算法程序、電子書等資源通過智慧樹平臺向?qū)W生全部開放。近兩年的平臺學情數(shù)據(jù)顯示,課余時間學生學習課程的參與度在90%以上,對實際教學能起到良好的輔助作用。第二,積極發(fā)揮線上教學資源的優(yōu)勢。已積累了較為豐富的在線教學資源及渠道,可在智慧樹、中國大學生慕課、學堂在線等主流線上學習平臺檢索課程資源。第三,提高課堂教學質(zhì)量。無論發(fā)揮學生主動學習作用還是儲備在線教學資源,教師的講解是學生掌握知識的最重要途徑。所以,教師課前要充分做好備課,凝練好每節(jié)課講授知識點,在有限的課堂時間內(nèi)將知識點清晰、準確、高效地向?qū)W生傳達,保證學生能在課堂學習中完全掌握所學知識。
2.2 羅列基礎知識點,加強學生課前預習
計算方法課程中諸多公式定理涉及高等數(shù)學、線性代數(shù)課程中知識點較多,如果前期基礎知識學習不扎實,加之不同課程之間存在時間跨度,基礎知識薄弱的同學很容易產(chǎn)生遺忘,較難對新內(nèi)容中的方法熟練掌握。針對這個問題,任課教師可在課前將與課堂講解相關的已學知識點匯總整理,通過課程群、在線學習平臺等向?qū)W生發(fā)布。如圖1所示,以思維導圖模式對牛頓迭代法知識點進行拆解,向?qū)W生明確學習課堂知識點所需的關聯(lián)知識,以及關聯(lián)知識的出處,進而建立與課堂知識點的聯(lián)系。這樣間接督促學生有效利用課前預習時間,加深對基礎知識的記憶。
2.3 豐富專業(yè)工程技術問題,提煉教學實踐案例
計算方法課程知識點要與農(nóng)業(yè)工程問題結合,對教師知識儲備及豐富的實踐經(jīng)驗要求較高。一方面,教師要善于歸納總結書本知識,將現(xiàn)有問題轉(zhuǎn)化為具有農(nóng)業(yè)工程背景的技術問題。同時,積極從已開展的科研工作中提煉適用于課堂講解的農(nóng)業(yè)工程問題,豐富教學中的農(nóng)業(yè)工程技術案例,將科研的“身教”與教學的“言傳”結合,以達到協(xié)同育人目的。另一方面,教師要勤于實踐,深入加工車間、農(nóng)業(yè)生產(chǎn)一線調(diào)研,將實際生產(chǎn)中的問題抽象為數(shù)學物理模型,并運用到教學中。如采用常微分方程數(shù)值解法可求解農(nóng)業(yè)機械零部件田間工作時振動問題、通過最小二乘法擬合或拉格朗日逼近法可探尋農(nóng)業(yè)機械田間試驗數(shù)據(jù)分布規(guī)律。農(nóng)林院校工科專業(yè)服務國家鄉(xiāng)村振興大局,采用具有專業(yè)背景的教學案例講解,能夠更好地促進學生良好工程實踐能力和工程素養(yǎng)的提升。
2.4 挖掘思政元素,拓展課程思政實現(xiàn)途徑
在計算方法課程教學中融入思政元素,教師要以課程為載體實現(xiàn)立德樹人的目標,傳播協(xié)同育人的價值理念,構建立體多元的課程思政結構,培養(yǎng)學生科學創(chuàng)新的思維模式,從而給學生樹立正確的價值引領。計算方法課程中不同章節(jié)內(nèi)容都可以挖掘出諸如科學家精神、理想信念、中國傳統(tǒng)文化教育、航天精神及馬克思主義哲學等思政元素。根據(jù)實際教學經(jīng)驗,提出結合教學設計的不同環(huán)節(jié)開展思政融合教學。課程引入階段是學生注意力最集中的時候,可針對與所學知識點相關的科學家生平經(jīng)歷展開講解,將科學故事與教學結合,傳播數(shù)學文化的同時激發(fā)學生學習積極性,喚醒學生學習本課程的熱情,引導學生樹立遠大理想,永攀科學高峰。如數(shù)學家陳景潤能夠甘于平淡,用畢生精力證明了哥德巴赫猜想“1+2”的世界難題。在方法闡述時可將馬克思主義哲學思想與所學知識融合,使學生樹立正確的世界觀,學會運用辯證唯物主義世界觀和方法論解決實際問題。如高斯?賽德爾迭代法講解中,將算法中的新舊更替與生老病死的自然法則結合,增強學生辯證思維能力。在實踐教學環(huán)節(jié),以“小馬過河”等故事增加課堂教學趣味性,向?qū)W生講述實踐的重要性。面對眼前的河流(困題)不能聽信老牛說的河水很淺、不過腳踝,也不能聽信松鼠說的河水太深、漫過頭頂,只有將理論與實踐結合,堅持實踐是檢驗真理的唯一標準才能克服眼前的困難,走出一條柳暗花明之路。
3 課程改革成效
針對計算方法課程教學中遇到的問題,應對策略的實施對教學效果具有顯著提升作用。在對農(nóng)業(yè)機械化及其自動化專業(yè)學生的實踐教學中總結了以下4方面成效。
(1)近幾年的教學中已經(jīng)積累了豐富的在線學習資源,包括PPT課件、習題講解、Python程序源碼等。2022級全班共60人,在線學習總時長超300h。學生對于課件、程序源碼學習興趣較強。
(2)學生在課前對照知識點的思維導圖能建立已學知識與即將學習知識的聯(lián)系,在課堂提問及課堂習題練習中相對以往能應對自如,能較好解決前期已學知識因時間跨度長而產(chǎn)生遺忘的問題。
(3)教學實踐案例對學生的創(chuàng)新思維具有很好的啟發(fā),學生能根據(jù)課堂講解的工程案例主動聯(lián)想到其他工程場景問題。
(4)課程思政元素與知識點融合,對學生上課注意力引導、增加知識點趣味性等具有很好效果。整體而言,學生在課堂中主動參與度及學習積極性具有一定提高。
4 結束語
新農(nóng)科建設要求更加注重高等農(nóng)林教育創(chuàng)新發(fā)展,人才培養(yǎng)支撐服務農(nóng)業(yè)強國建設。教育教學在新農(nóng)科背景下將迎來深刻變革,課程教學全過程要做到以立德樹人為中心,將“三全育人”貫穿于人才培養(yǎng)各環(huán)節(jié),引導學生熱愛“三農(nóng)”工作,服務“三農(nóng)”工作。本研究在新農(nóng)科建設背景下,根據(jù)甘肅農(nóng)業(yè)大學近年來計算方法課程教學情況總結了教育教學中存在的4方面問題,通過點對點分析提出應對策略,以期深化課程教學改革,引導學生更好地服務于鄉(xiāng)村振興、農(nóng)業(yè)農(nóng)村現(xiàn)代化建設等國家重大戰(zhàn)略需求。