• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    整車聲學(xué)統(tǒng)計(jì)能量分析定制優(yōu)化

    2024-11-05 00:00:00黃義馮秋翰劉經(jīng)奇李學(xué)亮劉林楊少波
    汽車文摘 2024年11期

    Customized Optimization for Vehicle Acoustic Statistical Energy Analysis

    Huang Yi1,2,, Feng Qiuhan1,2,, Liu Jingqi1,2,, Li Xueliang1,2,, Liu Lin1,2, Yang Shaobo1,2

    (1. Chongqing Changan Automobile Co., Ltd, Chongqing 400023;2. Chongqing Key Laboratory of Vehicle Intelligent Simulation, Chongqing 400000)

    【Abstract】 Statistical Energy Analysis (SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses. This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages. This approach innovatively integrates dynamic optimization, Radial Basis Function(RBF), and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA), and also takes vehicle sheet metal into account in the optimization of sound packages. In the implementation process, a correlation model is established through Python scripts to link material density with acoustic parameters, weight, and cost. By combining Optimus and VaOne software, an optimization design workflow is constructed and the optimization design process is successfully executed. Under various constraints related to acoustic performance, weight and cost, a globally optimal design is achieved. This technology has been effectively applied in the field of battery electric vehicle(BEV).

    Key words: Statistical Energy Analysis(SEA), Dynamic optimization, Radial Basis Function(RBF), Vehicle sheet metal, Sound package, Battery Electric Vehicle(BEV)

    【歡迎引用】 黃義, 馮秋翰, 劉經(jīng)奇, 等. 整車聲學(xué)統(tǒng)計(jì)能量分析定制優(yōu)化[J]. 汽車文摘,2024(XX): X-XX.

    【Cite this paper】 HUANG Y, FENG Q H, LIU J Q, et al. Customized Optimization for Vehicle Acoustic Statistical Energy Analysis[J]. Automotive Digest (Chinese), 2024(XX): X-XX.

    【摘要】統(tǒng)計(jì)能量分析(SEA)是預(yù)測整車高頻聲學(xué)響應(yīng)的常規(guī)工具之一。為了在項(xiàng)目初期階段依據(jù)不同項(xiàng)目組的具體需求,提供滿足NVH目標(biāo)的定制優(yōu)化方案,提出了一種創(chuàng)新性方法,結(jié)合了動態(tài)優(yōu)化、徑向基函數(shù)(RBF)以及基于模糊決策變量的遺傳算法(FDVGA)進(jìn)行SEA優(yōu)化,并將車身鈑金納入聲學(xué)包優(yōu)化的考慮范圍。在實(shí)施過程中,利用Python腳本建立了材料密度與聲學(xué)參數(shù)、質(zhì)量及成本之間的關(guān)聯(lián)模型。通過整合Optimus與VaOne軟件,構(gòu)建了優(yōu)化設(shè)計(jì)工作流,并成功執(zhí)行了優(yōu)化設(shè)計(jì)流程,可以在不同的聲學(xué)性能、質(zhì)量及成本約束條件下,實(shí)現(xiàn)了全局最優(yōu)設(shè)計(jì)。該技術(shù)已在電動汽車研發(fā)領(lǐng)域得到有效應(yīng)用。

    關(guān)鍵詞:統(tǒng)計(jì)能量分析;動態(tài)優(yōu)化;徑向基函數(shù);車身鈑金;聲學(xué)包;電動汽車

    中圖分類號:U461.4 文獻(xiàn)標(biāo)志碼:A DOI: 10.19822/j.cnki.1671-6329.20240211

    0 Introduction

    In the concept design stage of a vehicle program, acoustical targets are defined according to performance requirements. This process is typically conducted using primarily benchmark information regarding the position of the vehicle within its market segment. A sound package “Bill of Material” is then created and packaging spaces are reserved in the design based on experience and competitive offering. Statistical Energy Analysis(SEA) methods are well developed within the automotive industry and have been shown to be effective for vehicle sound package design[1-3]. Optimization of sound package can be studied and conducted with this tool. Pan from Rieter Automotive has studied the sound package optimal design with respect to weight, cost and acoustical performance by Genetic Algorithms (GA) in 2003[4]. Wentzel from Roush Industries has developed an interactive approach to the design of a balanced vehicle sound package in 2007[5]. Lee from Seoul National University of Korea and Thomas from Melbourne Business School studied the key sound package part-dash insulator and floor carpet optimization design[6-7]. These approaches have been successful in achieving balance vehicle sound packages. However, there are several practical limitations in practice.

    Firstly, the frequency ranges of interest for vehicle acoustic performance spans from 200 Hz to 8 000 Hz, which has 17 central frequency points under 4 conditions, including front and rear tire patch noise reduction, front and rear motor noise reduction. The noise reduction performance at each of central frequency needs to be achieved. This represent a typical multi-targets-conditions optimization. The GA used by Pan isn’t suitable to this comprehensive solution since the optimal search in the design space will be a huge work. Therefore, each central frequency performance was simplified to a sum of weighted values[4]. Taguchi analysis used by Thomas and the part contribution analysis used by Lee were sensitivity analysis other than optimization searches[6-7].

    Secondly, a full vehicle noise reduction performance can be cascaded to several local sound insulation systems like dash area, floor area, etc. The local sound insulation system includes not only sound package parts but body sheet metal. It isn’t a real optimal solution if only sound package parts considered because both of them are the key factors for sound insulation. Besides that, different locations for one part should have different designs to achieve the leanest design according to the actual vehicle sound field. Only sound package parts as a whole were discussed in the study of Pan Jian and Richard[4-5]. Moreover, dash insulator and floor carpet were discussed in the study of Lee and Thomas[6-7].

    Thirdly, sound package part is normally made of heavy layer plus foam or fiber decoupler. Surface density is the key design variable of the mass layer. Volume density and thickness are the key design variables of the foam or fiber. The material Biot parameters like porosity and flow resistance will be different when the material density and thickness are changed[8-10]. This issue was never clarified in all the referenced literature. The relationship between material Biot parameters and design variables should be considered in the process of the optimization.

    In this paper, the Radial Basis Function(RBF) method[11] is introduced for the agent model establishment. Dynamic optimization and Fuzzy Design Variables Genetic Algorithm (FDVGA) are introduced as the optimization tools. FDVGA is developed by Yang and Chen[12-13] and is designed for multi-targets-condition optimization. A battery electric vehicle(BEV) SEA model is created to the study. Both sound package parts and related sheet metals are considered for the optimization. The relationship between volume density and thickness of the foam or fiber material and Biot parameters is established with Python programs. A total of 86 body sheet metals and sound package design variables for a new BEV program are optimized regarding program team need.

    1 Dynamic Optimization and RBF

    One of major features of full vehicle noise reduction performance is “the barrel effect”, which means it mainly depends on the weakest local sound insulation systems. Partial parameters in the weakest area has similar effect to acoustic performance. Therefore, in terms of mathematics, there are numerous local optimal solutions of full vehicle noise reduction performance optimization to achieve lowest possible mass or cost.

    Most optimization processes include the following 3 steps: (1)Conducting experiments using the designing of experiments(DOE) method to acquiring uniform sample data. (2)Training an approximate surrogate model based on the sample data. (3)Performing optimization with a genetic algorithm and the trained surrogate model to obtain the optimal design. However, this approach has been found to be inadequate for this scene owing to low precision surrogate model during trials. As shown in Fig.1, this paper introduces a dynamic optimization process, which involves one or more additional experiments around potentially optimal design domain that would be conducted following the regular optimization process, if the last optimization fails to meet the optimization goal by the results. New data for training would be composed by these additional sample data and original sample data. This process would be continued until the optimization goal is achieved. These additional experiments would effectively enhance the precision in most concerned area which includes the optimal solution identified by the algorithm.

    Further, the RBF algorithm is well known for its ability to approximate to local zone, but its precision strongly depends on its numerous parameters. Some researchers used genetic algorithm to obtain a better set of parameters[14], however it requires a lot of data and training time. A custom developed Radial Basis Function(RBF) surrogate model by back propagation[15] has been investigated. Considering model would been trained repeatedly, following measures as Fig.2 shown has been taken to improve training efficiency: (1)Gain the linear coefficient w by pseudo-inverse matrix of the product of middle layer matrix and real y to reduce the training computational complexity, and accelerate the training and improve the computational accuracy. (2)Limit the maximum number of iteration steps from traditional large order of magnitude to less than 100. (3)Increase learning rate to obtain optimal possible parameters in few steps, owing to step 1, a large learning rate would not cause divergence. The custom developed RBF algorithm could juggle efficiency and local approximation precision.

    2 SEA Model and Optimization Flow Process Created

    A four-door sedan EV SEA model as shown in Fig.3 was created. The model was built based on a validated previous similar project model and guaranteed with good precise in order to achieve the precise optimization results. The parts to be optimized are shown in Fig.4. A total of 86 design parameters undergoing optimization is listed in Table.1.

    1 python program was written to make density, thickness, coverage rate, related to weight and cost.

    [Ms=i=1n(S×Ti×ρi)] (1)

    [Mtotal=j=1m(CRsj×Msj)] (2)

    [Ctotal=j=1m(Msj×Psj÷α)] (3)

    In the equation: [Mtotal] refers to the total weight of the panels and sound package parts, [Ctotal] refers to the total cost of the panels and sound package parts, [Ms] refers to the weight of the part or the panel, S refers to the area of the part or the panel, T refers to the thickness of the layer of the part or the panel, [ρ] refers to the density of the layer of the part or the panel, the [CRs] refers to the coverage of the part or the panel, [Ps] refers to the unit price of the material per kg, [α] refers to the quotient obtained by diving material cost by total cost, normally is 0.7, i refers to the layer of the part or the panel, n refers to the total number of layers of the part or the panel, j refers to the index of the part or the panel dependently, m refers to the total number of the parts and the panels.

    1 python program was written to transform the Sound Pressure Level(SPL) to Noise Reduction(NR), which is the engineering metrics for vehicle insulation.

    [Ni=Ssi-Sci] (4)

    In the equation: [Ni] refers to the noise reduction at the i-th central frequency, [Ssi] refers to the sound pressure level of source at the i-th central frequency, [Sci] refers to the sound pressure level of vehicle interior compartment at the i-th central frequency.

    1 python program was written to transform the density and thickness of the foam or fiber to material parameters.

    [n=ρ/ρ0] (5)

    [σ=σ0*n] (6)

    [?=1-1-?0*n] (7)

    [α∞=1-1-α∞0*n] (8)

    [Λ=Λ0/n] (9)

    [Λ'=Λ'0/n] (10)

    In the equation: [n] refers to the density ratio, [ρ] refers to the changed density, [ρ0] refers to the initial density, [σ] refers to the changed resistivity, [σ0] refers to the initial resistivity, [?] refers to the changed porosity, [?0] refers to the initial porosity, [α∞] refers to the changed tortuosity, [α∞0] refers to the initial tortuosity, [Λ] refers to the changed viscous characteristic lengths, [Λ0] refers to the initial viscous characteristic lengths, [Λ'] refers to the changed thermal characteristic lengths, [Λ'0] refers to the initial thermal characteristic lengths.

    Calculate the lowest cost design with the constraint of achieving acoustic performance. The constraint function can be defined as:

    [?i=Ni-Ti>0] (11)

    In the equation: i refers to 1/3 octave center frequency index, and the frequency range of interest in this paper is 200~8 000 Hz. N refers to the noise reduction, including TPNR and MNR. TPNR refers to the tire patch noise reduction, including front and rear tire. MNR refers to the motor noise reduction, including front and rear motor. T refers to the target value. ? refers to the difference obtained by subtracting the target value from the noise reduction.

    Then a vehicle noise reduction calculation work flow was built to process the optimization calculation as shown in Fig.5. The work flow shows how to process design parameters to noise reduction. Then the customized optimization can be done with the flow chart shown in Fig.1. The flow was cycled back and forth till the global optimized parameters were found.

    Customized optimizations from program team were needed as follows: The primary objective was to achieve the lowest possible total cost . However, it was essential that these optimizations were carricd out without compromising the NR performance.

    3 Result and Discussion

    In this problem, the cost of the initial sound package and panel design is $318. Acoustical performance for the initial design and acoustical targets were analyzed as shown in Fig.6. A minimum total cost was calculated with the constraint of acoustical targets achievement.

    An agent model was established with RBF method. Optimization was carried out via FDVGA with a population size of 860 and terminated at the 200th generation. The optimization took just under 60 h and involved 12 040 000 function evaluations.

    Table 2~5 list the results of the top 20 most sensitive design variables under 4 different conditions, respectively. It is important to note that Design Sensitivity Analysis(DSA) results may be either positive or negative. The positive DSA result indicates an increase in noise reduction at driver’s ear location, while the negative result indicates a decrease in noise reduction at the location.

    To increase F-MNR, the top 5 most efficient ways are: to increase dash insulator second PolyOlefin Elastomer(POE) surface mass, to increase dash insulator first POE surface mass, to increase upper dash panel thickness, to increase middle upper dash panel thickness, and to increase dash insulator hard felt thickness.

    To enhance R-MNR, the 5 most effective methods are as follows: (1)To increase the rear power under shield foam thickness.(2)To increase rear wheel house panel thickness.(3)To increase rear wheel house insulator felt thickness.(4)To increase trunk carpet hard felt thickness. (5)To increase lower tool kit carpet soft felt thickness.

    To increase LF-TPNR, the 5 most efficient ways are as follows: (1)To increase dash insulator second POE surface mass. (2)To increase dash insulator hard felt thickness. (3)To increase dash insulator first POE surface mass. (4)To increase lower dash insulator soft felt thickness. (5)To increase upper dash panel thickness.

    To increase LR-TPNR, the 5 most efficient ways are as follows: (1)To increase rear wheel house insulator felt thickness. (2)To increase rear wheel house panel thickness. (3)To increase rear power under shield foam thickness. (4)To increase trunk carpet hard felt thickness. (5)To increase lower tool kit carpet soft felt thickness.

    Fig.7 compares the NRs for the initial design, optimal acoustical design and target. The optimal solution is $24.6 lower than the initial design and well within the specified acoustical constraints.

    The SEA model analysis indicates that: (1)The front wall system is the primary path of front sound insulation. The optimization of the dash panel and the thicker dash insulator soft felt is aimed at achieving the best cost performance. (2)Given the integrated battery under the cabin, the front floor system has a good soundproofing performance. A thin front floor panel with only the fabric layer retained for the main carpet is sufficient. (3)To maximize noise reduction, sound absorbing materials are added to the motor compartment, as proximity to the noise source enhances absorption efficiency. (4)The rear wheelhouse insulator is the main part of the low frequency noise insulation in the rear cabin. A thin rear wheelhouse panel and a redesign the rear wheelhouse insulator. (5)The inner trim cover is the main part of the high frequency noise insulation in the rear cabin. Change the material of the inner trim cover to plastic and sound-absorbing cotton is added locally. (6)Due to the presence of the trunk baffle, the rear floor system has good sound insulation. Optimize the rear floor panel to be thinner and retain only soft felt for the rear carpet.

    4 Test Results

    Optimization parameters were applied to the analyzed vehicle. The test result of the vehicle compared with the target is shown in Fig.8.

    The test results show that all the NR targets were achieved as CAE predicted with the optimized design. The customized optimization was applied in the program successfully.

    5 Conclusions

    (1)The optimized process, which takes into account both the body panel and sound package components, achieves superior space utilization compared to focusing solely on the sound package parts.

    (2)The relationship between material density and thickness with material simulation parameters is very important for the sound package optimization. The simulation was in-precise if they were considered independently. This can be resolved properly in this paper.

    (3)The RBF and FDVGA method are very suitable for the multi-targets and multi-conditions optimization. According to the optimal result, the acoustical performance with the final optimal panel and sound package just achieved the target, which was called “just OK” design. That is valuable for the automobile industry, especially for X-EV vehicles.

    (4)The optimal space will be further enlarged with innovative material parameter design. The optimization considering innovative materials will be the next necessary technical study.

    Reference

    [1] 鄧江華, 宋俊, 李燦, 等. 乘用車聲學(xué)包設(shè)計(jì)開發(fā)與優(yōu)化技術(shù)研究[J]. 聲學(xué)技術(shù), 2015, 34(4): 353-357.

    [2] LYON R H, DEJONG R G, HECKL M. Theory and Application of Statistical Energy Analysis, Second Edition[J]. Journal of the Acoustical Society of America, 1998, 98(6): 3021.

    [3] CHARPENTIER A, BLANCHET D , FUKUI K. Full Vehicle SEA Model Uses Detailed Sound Package Definition to Predict Driver’s Headspace Acoustic Response[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2004.

    [4] PAN J, SEMENIUK B P, AHLQUIST J, et al. Optimal Sound Package Design Using Statistical Energy Analysis[J]. SEA Technical Paper, 2003(1): 1544.

    [5] WENTZEL R E, AUBERT A. An Interactive Approach to the Design of An Acoustically Balanced Vehicle Sound Package[J]. SEA Technical Paper, 2007(1): 2314.

    [6] LEE H R, KIM H Y, JEON J H, et al. Application of Global Sensitivity Analysis to Statistical Energy Analysis: Vehicle Model Development and Transmission Path Contribution[J]. Applied Acoustics, 2019, 146(3): 368-389.

    [7] THOMAS K J, WANG X, DOLLA E, et al. Simulation(SEA) Based Acoustic Optimization of Vehicle Carpet Systems[C]//15th International Congress on Sound and Vibration, 2008(1): 2752-2759.

    [8] CASTAGNEDE B, AKNINE A, BROUARD B. Effects of Compression on the Sound Absorption of Fibrous Materials[J]. Applied Acoustics, 2000, 61(2): 173-182.

    [9] BOLTON J S , KANG Y J. Elastic Porous Materials for Sound Absorption and Transmission Control[J]. SAE Technical Papers, 1997: 971878.

    [10] NARANG P P. Material Parameter Selection in Polyester Fibre Insulation for Sound Transmission And Absorption[J]. Applied Acoustics, 1995, 45(4): 335-358.

    [11] POWELL M J D. Radial Basis Functions for Multivariable Interpolation: A Review[M]. In algorithm for Approximation(143-167). Oxford: Clarendon Press, 1987.

    [12] YANG X, ZOU J, YANG S X, et al. A Fuzzy Decision Variables Framework for Large-Scale Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 445-459.

    [13] 陳愛國, 周世俊. 基于模糊邏輯的多目標(biāo)優(yōu)化問題遺傳算法求解探討[J]. 河南科學(xué), 2006, 24(4): 482-484.

    [14] 薛小杰, 黃強(qiáng), 惠泱河, 等. 基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)與改進(jìn)遺傳算法的黃河流域需水預(yù)測[J]. 水土保持學(xué)報(bào), 2002, 16(3): 83-85.

    [15] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations by Back Propagating Errors[J]. Nature, 1986, 323(6088): 533-536.

    (責(zé)任編輯 梵玲)

    久久国产精品大桥未久av| 一级毛片高清免费大全| 亚洲五月婷婷丁香| 亚洲熟女精品中文字幕| 精品无人区乱码1区二区| 脱女人内裤的视频| 国产精品99久久99久久久不卡| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| a级毛片在线看网站| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片精品| 国产精品综合久久久久久久免费 | 50天的宝宝边吃奶边哭怎么回事| 午夜91福利影院| 久久精品亚洲精品国产色婷小说| 高清欧美精品videossex| 男人舔女人的私密视频| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 中文亚洲av片在线观看爽 | 日韩大码丰满熟妇| 18禁黄网站禁片午夜丰满| 国产精品偷伦视频观看了| 亚洲国产精品一区二区三区在线| 亚洲综合色网址| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 在线观看免费视频日本深夜| av天堂久久9| 国产精品免费一区二区三区在线 | 亚洲少妇的诱惑av| 亚洲全国av大片| 精品一区二区三卡| 高清视频免费观看一区二区| 亚洲人成77777在线视频| 国产精品成人在线| 脱女人内裤的视频| 亚洲少妇的诱惑av| 欧美激情高清一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情在线| 免费黄频网站在线观看国产| 久久精品熟女亚洲av麻豆精品| 精品视频人人做人人爽| av视频免费观看在线观看| 精品乱码久久久久久99久播| 黄色视频不卡| 亚洲av熟女| 男人操女人黄网站| 国产精品电影一区二区三区 | 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 亚洲五月婷婷丁香| 99久久精品国产亚洲精品| 亚洲欧美色中文字幕在线| 一边摸一边抽搐一进一出视频| 一二三四在线观看免费中文在| 不卡一级毛片| 黄色视频不卡| 久99久视频精品免费| 国产精品电影一区二区三区 | 亚洲中文av在线| 人妻 亚洲 视频| 久久久久精品国产欧美久久久| 国产亚洲欧美精品永久| 免费久久久久久久精品成人欧美视频| 我的亚洲天堂| 在线国产一区二区在线| 亚洲精品成人av观看孕妇| 精品人妻1区二区| 他把我摸到了高潮在线观看| 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 最近最新中文字幕大全电影3 | 91字幕亚洲| 色94色欧美一区二区| 久久这里只有精品19| 午夜91福利影院| 无遮挡黄片免费观看| а√天堂www在线а√下载 | 黑丝袜美女国产一区| 操美女的视频在线观看| 欧美日韩av久久| 国产精品久久久人人做人人爽| av网站免费在线观看视频| 欧美精品av麻豆av| 在线观看免费视频日本深夜| 高清视频免费观看一区二区| 两人在一起打扑克的视频| 中文字幕高清在线视频| 香蕉久久夜色| 男女之事视频高清在线观看| 视频区欧美日本亚洲| 免费高清在线观看日韩| 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说 | 水蜜桃什么品种好| 亚洲av成人不卡在线观看播放网| 日韩欧美一区二区三区在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 午夜福利欧美成人| 一级毛片女人18水好多| 精品久久久久久,| 久久久久久久精品吃奶| 亚洲精品国产色婷婷电影| 成人特级黄色片久久久久久久| 国产主播在线观看一区二区| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| videos熟女内射| 亚洲aⅴ乱码一区二区在线播放 | 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 欧美激情久久久久久爽电影 | 国产xxxxx性猛交| 午夜福利在线观看吧| 精品第一国产精品| 91字幕亚洲| 黄频高清免费视频| 成人18禁高潮啪啪吃奶动态图| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 精品少妇久久久久久888优播| 欧美亚洲日本最大视频资源| 欧美黑人精品巨大| 成人亚洲精品一区在线观看| 欧美最黄视频在线播放免费 | 日本五十路高清| 免费女性裸体啪啪无遮挡网站| 高清av免费在线| 中文亚洲av片在线观看爽 | 亚洲国产精品合色在线| 亚洲精品美女久久av网站| 操美女的视频在线观看| 亚洲成人免费电影在线观看| 欧美激情高清一区二区三区| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| 高清在线国产一区| 国产精品影院久久| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 国产又爽黄色视频| 久9热在线精品视频| 王馨瑶露胸无遮挡在线观看| 热99久久久久精品小说推荐| 99久久精品国产亚洲精品| 9热在线视频观看99| 99精品欧美一区二区三区四区| 国产成人一区二区三区免费视频网站| av免费在线观看网站| 日本黄色日本黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图av天堂| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 妹子高潮喷水视频| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 日韩成人在线观看一区二区三区| 欧美日韩视频精品一区| 欧美不卡视频在线免费观看 | 一区在线观看完整版| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 很黄的视频免费| 欧美日韩精品网址| 91成年电影在线观看| 成人三级做爰电影| 一边摸一边做爽爽视频免费| 天堂俺去俺来也www色官网| 成熟少妇高潮喷水视频| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 成年动漫av网址| 亚洲国产精品一区二区三区在线| 两人在一起打扑克的视频| 99国产精品99久久久久| 国产一区二区三区视频了| 不卡一级毛片| www.精华液| 精品国内亚洲2022精品成人 | 老汉色∧v一级毛片| 18禁国产床啪视频网站| 久久精品91无色码中文字幕| 色婷婷av一区二区三区视频| 精品一区二区三区视频在线观看免费 | 亚洲视频免费观看视频| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| 午夜福利在线观看吧| 色综合婷婷激情| av视频免费观看在线观看| 99久久国产精品久久久| 激情视频va一区二区三区| 黑人操中国人逼视频| 精品卡一卡二卡四卡免费| 叶爱在线成人免费视频播放| 18禁观看日本| 欧美 日韩 精品 国产| 不卡一级毛片| 91字幕亚洲| 天天躁夜夜躁狠狠躁躁| 下体分泌物呈黄色| 国产亚洲精品一区二区www | 免费人成视频x8x8入口观看| 人成视频在线观看免费观看| 69精品国产乱码久久久| 久久久久国产一级毛片高清牌| 午夜久久久在线观看| 亚洲情色 制服丝袜| 亚洲国产欧美网| 天堂俺去俺来也www色官网| 午夜福利欧美成人| videos熟女内射| 亚洲精品粉嫩美女一区| 国产精品自产拍在线观看55亚洲 | 高清在线国产一区| 成年女人毛片免费观看观看9 | 一本综合久久免费| av免费在线观看网站| 亚洲中文字幕日韩| 中文字幕高清在线视频| 亚洲 欧美一区二区三区| 精品高清国产在线一区| 人妻丰满熟妇av一区二区三区 | av电影中文网址| 中文亚洲av片在线观看爽 | 51午夜福利影视在线观看| 午夜精品在线福利| 免费在线观看黄色视频的| 亚洲人成电影免费在线| 亚洲欧美激情综合另类| 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 中文欧美无线码| 久久性视频一级片| 国产成人精品久久二区二区91| 午夜福利在线免费观看网站| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲av一区麻豆| 91麻豆av在线| 国产片内射在线| 国内久久婷婷六月综合欲色啪| 亚洲欧洲精品一区二区精品久久久| 91大片在线观看| 免费av中文字幕在线| 成人国语在线视频| 成年女人毛片免费观看观看9 | 十分钟在线观看高清视频www| 搡老乐熟女国产| 中文字幕色久视频| 一级片'在线观看视频| 国产成人免费观看mmmm| 日韩欧美在线二视频 | 午夜福利影视在线免费观看| 757午夜福利合集在线观看| 色老头精品视频在线观看| 女同久久另类99精品国产91| 欧美+亚洲+日韩+国产| 亚洲第一青青草原| 国产精品九九99| 黑丝袜美女国产一区| 色94色欧美一区二区| 99re在线观看精品视频| 高清视频免费观看一区二区| 天堂√8在线中文| 天堂中文最新版在线下载| 日韩大码丰满熟妇| 欧美成狂野欧美在线观看| 精品久久蜜臀av无| 我的亚洲天堂| 女性被躁到高潮视频| 老熟女久久久| 老熟女久久久| 国产亚洲精品第一综合不卡| 国产精品久久久人人做人人爽| 少妇被粗大的猛进出69影院| 亚洲av日韩精品久久久久久密| 18禁国产床啪视频网站| 国产一卡二卡三卡精品| 美女高潮到喷水免费观看| 岛国毛片在线播放| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 三级毛片av免费| 欧美丝袜亚洲另类 | 老司机深夜福利视频在线观看| 又紧又爽又黄一区二区| 电影成人av| 亚洲精品自拍成人| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 国精品久久久久久国模美| 亚洲色图综合在线观看| a级毛片黄视频| 亚洲美女黄片视频| 国产蜜桃级精品一区二区三区 | 国产精品美女特级片免费视频播放器 | 午夜久久久在线观看| 亚洲精品乱久久久久久| 人妻久久中文字幕网| 一级毛片精品| 黄网站色视频无遮挡免费观看| 成人国产一区最新在线观看| 日本精品一区二区三区蜜桃| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 精品久久久久久久久久免费视频 | 午夜福利,免费看| 亚洲av成人av| 亚洲黑人精品在线| 国产成人av教育| 亚洲第一欧美日韩一区二区三区| 最近最新中文字幕大全电影3 | 久久人妻福利社区极品人妻图片| tocl精华| 中出人妻视频一区二区| 窝窝影院91人妻| 99久久99久久久精品蜜桃| 曰老女人黄片| 国产一区二区三区视频了| 精品人妻1区二区| 一本一本久久a久久精品综合妖精| 91av网站免费观看| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 在线十欧美十亚洲十日本专区| 免费看a级黄色片| 国产91精品成人一区二区三区| 18禁美女被吸乳视频| 在线观看免费日韩欧美大片| 亚洲人成伊人成综合网2020| av网站在线播放免费| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| videos熟女内射| 一个人免费在线观看的高清视频| 免费不卡黄色视频| 91九色精品人成在线观看| 999精品在线视频| 国产三级黄色录像| 69精品国产乱码久久久| 怎么达到女性高潮| 一进一出抽搐gif免费好疼 | 午夜福利视频在线观看免费| 狠狠婷婷综合久久久久久88av| 久久久国产成人免费| 久久午夜综合久久蜜桃| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 免费在线观看日本一区| 精品福利观看| 精品一区二区三区视频在线观看免费 | 交换朋友夫妻互换小说| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 日韩欧美一区二区三区在线观看 | 中文欧美无线码| 黄片播放在线免费| 国产精品综合久久久久久久免费 | 最近最新免费中文字幕在线| 麻豆国产av国片精品| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲| 精品一品国产午夜福利视频| 满18在线观看网站| av一本久久久久| 免费日韩欧美在线观看| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 欧美日韩视频精品一区| 国产精品免费大片| 久久久久国产精品人妻aⅴ院 | 啪啪无遮挡十八禁网站| 精品熟女少妇八av免费久了| 欧美国产精品一级二级三级| 飞空精品影院首页| 人人妻人人爽人人添夜夜欢视频| 欧美日韩成人在线一区二区| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 久久精品熟女亚洲av麻豆精品| 亚洲人成电影观看| 国产精品一区二区免费欧美| 国产精品久久久久久精品古装| 国产成人欧美| 丰满的人妻完整版| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产视频一区二区在线看| 国产精品免费一区二区三区在线 | 如日韩欧美国产精品一区二区三区| 亚洲在线自拍视频| 中文字幕制服av| 日韩视频一区二区在线观看| 大码成人一级视频| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 欧美乱妇无乱码| 99国产精品99久久久久| 黄色 视频免费看| www.999成人在线观看| 欧美人与性动交α欧美精品济南到| 精品卡一卡二卡四卡免费| av天堂在线播放| 久久久久久久精品吃奶| 色尼玛亚洲综合影院| 50天的宝宝边吃奶边哭怎么回事| 日韩制服丝袜自拍偷拍| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 国产激情欧美一区二区| 男人舔女人的私密视频| 国产精品.久久久| 夜夜夜夜夜久久久久| 九色亚洲精品在线播放| 午夜福利,免费看| 久久午夜亚洲精品久久| 国产1区2区3区精品| 丁香欧美五月| 一区福利在线观看| 大型黄色视频在线免费观看| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 亚洲成人国产一区在线观看| 麻豆国产av国片精品| 亚洲av片天天在线观看| 国产淫语在线视频| 久99久视频精品免费| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 视频区欧美日本亚洲| 久久久国产成人免费| 精品国产国语对白av| 色在线成人网| av网站免费在线观看视频| 色播在线永久视频| 成年动漫av网址| 国产精品偷伦视频观看了| av天堂久久9| 国产成人欧美| 日韩视频一区二区在线观看| 午夜久久久在线观看| 老熟妇仑乱视频hdxx| 亚洲国产精品一区二区三区在线| 欧美一级毛片孕妇| 免费日韩欧美在线观看| 久久精品国产清高在天天线| 中文欧美无线码| av不卡在线播放| 亚洲一区中文字幕在线| 宅男免费午夜| 在线观看免费午夜福利视频| 免费观看精品视频网站| www.自偷自拍.com| 成在线人永久免费视频| 成人影院久久| 悠悠久久av| 精品福利永久在线观看| 怎么达到女性高潮| 欧美精品高潮呻吟av久久| 国产欧美亚洲国产| 麻豆国产av国片精品| 成年人午夜在线观看视频| 丰满的人妻完整版| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 免费在线观看亚洲国产| 欧美人与性动交α欧美软件| 日本欧美视频一区| 免费看十八禁软件| 丝袜美足系列| 久久亚洲精品不卡| 亚洲熟女精品中文字幕| 老司机亚洲免费影院| 欧美激情 高清一区二区三区| 在线观看日韩欧美| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 超碰97精品在线观看| 黄频高清免费视频| 最新美女视频免费是黄的| videos熟女内射| 欧美乱妇无乱码| 下体分泌物呈黄色| 丝袜美腿诱惑在线| 高潮久久久久久久久久久不卡| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 人妻一区二区av| 人妻久久中文字幕网| 久久精品国产a三级三级三级| 国产精华一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品免费一区二区三区在线 | 色尼玛亚洲综合影院| 十八禁高潮呻吟视频| 在线观看日韩欧美| 天堂俺去俺来也www色官网| 99国产精品一区二区蜜桃av | 水蜜桃什么品种好| 在线天堂中文资源库| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 青草久久国产| 9热在线视频观看99| 黄色视频,在线免费观看| 免费观看精品视频网站| 他把我摸到了高潮在线观看| 精品欧美一区二区三区在线| 人人妻,人人澡人人爽秒播| 久久午夜亚洲精品久久| 午夜两性在线视频| 视频在线观看一区二区三区| 亚洲国产精品合色在线| 久久国产精品大桥未久av| 亚洲在线自拍视频| 久久精品熟女亚洲av麻豆精品| 无人区码免费观看不卡| 欧美日韩黄片免| 又大又爽又粗| 国产精品98久久久久久宅男小说| 久久人妻熟女aⅴ| 9191精品国产免费久久| 欧美日韩中文字幕国产精品一区二区三区 | 免费女性裸体啪啪无遮挡网站| 国产精品电影一区二区三区 | 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| tocl精华| 国产亚洲av高清不卡| 精品福利永久在线观看| 色婷婷久久久亚洲欧美| 国产成人精品久久二区二区91| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 51午夜福利影视在线观看| 精品国产国语对白av| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 一级毛片高清免费大全| 亚洲精品国产精品久久久不卡| 亚洲色图综合在线观看| 国产一区二区三区综合在线观看| 免费观看精品视频网站| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 深夜精品福利| 我的亚洲天堂| 91精品三级在线观看| 亚洲在线自拍视频| 国产一区二区激情短视频| 看黄色毛片网站| 大陆偷拍与自拍| 香蕉久久夜色| 国产精品久久视频播放| 婷婷成人精品国产| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区| 国产成人系列免费观看| 久久久国产成人精品二区 | 亚洲国产精品合色在线| 亚洲av欧美aⅴ国产| 少妇 在线观看| 中国美女看黄片| 久久久精品区二区三区| 后天国语完整版免费观看| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 色婷婷av一区二区三区视频| 在线视频色国产色| 成人18禁在线播放| 国产精品二区激情视频| 国精品久久久久久国模美| 国产精品一区二区在线观看99| 咕卡用的链子| 亚洲精品中文字幕一二三四区| 色老头精品视频在线观看| 电影成人av| 激情视频va一区二区三区| 国产极品粉嫩免费观看在线| 国产日韩欧美亚洲二区| 色综合欧美亚洲国产小说|