摘 要:為研究循環(huán)荷載下納米CaCO3重塑軟黏土的動(dòng)力特性與微觀形態(tài),進(jìn)行GDS動(dòng)三軸、NMR試驗(yàn),分析其動(dòng)應(yīng)力-動(dòng)應(yīng)變、動(dòng)彈性模量、阻尼比及微觀孔隙變化規(guī)律。結(jié)果表明:隨著納米CaCO3摻量增加、圍壓增大,軟黏土的動(dòng)應(yīng)變逐漸減小,動(dòng)彈性模量逐漸增大;固結(jié)應(yīng)力比增大使納米CaCO3重塑軟黏土動(dòng)應(yīng)變先減小后增大,動(dòng)彈性模量先增加后減?。粐鷫汉凸探Y(jié)應(yīng)力比的提高均可有效降低軟黏土的阻尼比;軟黏土滯回耗能與動(dòng)應(yīng)變呈現(xiàn)明顯的非線性關(guān)系;納米CaCO3重塑軟黏土T2分布曲線主峰峰值及峰面積相比于素軟黏土顯著降低,孔隙比減小使土體結(jié)構(gòu)更加穩(wěn)定。所進(jìn)行的納米CaCO3重塑軟黏土動(dòng)力特性研究,可為實(shí)際工程提供參考。
關(guān)鍵詞:地面工程;重塑軟黏土;納米CaCO3;循環(huán)荷載;固結(jié)應(yīng)力比;動(dòng)彈性模量;阻尼比
中圖分類號(hào):TU443
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.7535/hbkd.2024yx05009
Dynamic characteristics and microscopic pores structure of remolded
soft clay under influence of nano-CaCO3
ZHUANG Xinshan, ZHANG Zihan
(School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, Hubei 430068, China)
Abstract:
To study the dynamic characteristics and microstructure of nano-CaCO3 remolded soft clay under cyclic loading, GDS dynamic triaxial and NMR tests were conducted to analyze its dynamic stress-strain, dynamic elastic modulus, damping ratio, and micro pore changes. The results show that as the content of nano-CaCO3 increases and the confining pressure increases, the dynamic strain of the remolded soft clay gradually decreases and the dynamic elastic modulus gradually increases; The increase in consolidation stress ratio leads to a decrease and then an increase in dynamic strain of nano-CaCO3 remolded soft clay, and an increase and then a decrease in dynamic elastic modulus; The increase in confining pressure and consolidation stress ratio can effectively reduce the damping ratio of the soft clay; There is a significant nonlinear relationsh75fe5dfc2c87f03ee73851f73614f4e5af42c3690f53d282868b24d35da306daip between the hysteresis energy dissipation of soft clay and the dynamic strain curve; The main peak and peak area of the T2 distribution curve of nano-CaCO3 soft clay are significantly reduced compared to plain soft clay, and the decrease in pore ratio makes the soil structure more stable. The obtained dynamic characteristics of remolded soft clay based on nano-CaCO3 provides some reference for practical engineering.
Keywords:ground engineering; remolded soft clay; nano-CaCO3; cyclic load; consolidation stress ratio; dynamic elastic modulus; damping ratio
軟黏土是具有低強(qiáng)度、滲透性差、壓縮性低、孔隙小等特點(diǎn)的黏性土,在中國(guó)分布廣泛。近年來(lái),中國(guó)道路建設(shè)發(fā)展迅速,而建設(shè)過(guò)程中由于軟黏土有承載力差、抗剪強(qiáng)度低、各層之間力學(xué)性質(zhì)相差較大等缺點(diǎn)[1-2],在動(dòng)荷載作用下,道路可能發(fā)生大幅度沉降,造成嚴(yán)重?fù)p失。改良軟黏土的方案有很多,CaO是改良軟黏土最常用的添加劑之一,具有成本低、效果好等優(yōu)點(diǎn)[3],但也存在施工難度大、CaO消耗量大和危害環(huán)境等缺陷[4-7]。因納米CaCO3具有價(jià)格低、污染小等特點(diǎn)[8-9]并能顯著影響土體的微觀化學(xué)性能和物理結(jié)構(gòu)[10],改善路基土的力學(xué)性能[11-14],越來(lái)越多地被應(yīng)用到巖土工程領(lǐng)域。
納米CaCO3是一種顆粒尺寸在0.01~0.1 μm的超細(xì)固體粉末材料,可與水發(fā)生水化反應(yīng),增強(qiáng)土體間的作用力。目前,已有眾多學(xué)者應(yīng)用納米CaCO3對(duì)土體進(jìn)行改良研究[15-19]。WANG等[20]對(duì)滲入納米CaO的土體進(jìn)行了力學(xué)性能和加固機(jī)理分析,在不同的固化間隔下對(duì)改良土體進(jìn)行了無(wú)側(cè)限抗壓試驗(yàn),試驗(yàn)結(jié)果表明,改良土體的強(qiáng)度最初有所增加,但在添加更多的石灰納米顆粒后,強(qiáng)度開(kāi)始呈下降趨勢(shì)。TANZADEH等[21]通過(guò)對(duì)納米CaCO3改良土體進(jìn)行微觀成分分析,證實(shí)可以通過(guò)添加少量的納米CaCO3來(lái)取代CaO,并擁有更好的力學(xué)性能。王沖等[22]通過(guò)對(duì)摻入納米CaCO3的水泥基材料進(jìn)行靜力學(xué)性能試驗(yàn),發(fā)現(xiàn)當(dāng)摻入1.5%納米CaCO3時(shí),對(duì)改良材料的強(qiáng)度提高最明顯;鄧友生等[23]對(duì)納米CaCO3提高再生混凝土的抗壓性能進(jìn)行了靜力學(xué)研究,發(fā)現(xiàn)摻入適量納米CaCO3可以有效提高再生混凝土的抗壓強(qiáng)度。陳學(xué)軍等[24]通過(guò)納米CaCO3對(duì)重塑黏土作用的機(jī)理進(jìn)行分析,得出隨著摻量增加,黏土礦物吸附的Ca2+增加,與帶負(fù)電的黏土礦物產(chǎn)生吸附作用并形成鈣質(zhì)膠結(jié),使得顆粒間黏聚力增強(qiáng)以及內(nèi)摩擦角增大。綜上所述,納米CaCO3改良土的研究基本停留在靜力學(xué)階段,而實(shí)際道路建設(shè)中,土體主要承受動(dòng)荷載作用,因此,進(jìn)一步研究納米CaCO3對(duì)軟黏土的動(dòng)力性能的影響具有重要的工程意義。
本文運(yùn)用真/動(dòng)三軸儀進(jìn)行了一系列動(dòng)三軸試驗(yàn),研究重塑軟黏土動(dòng)應(yīng)力-應(yīng)變骨干曲線、動(dòng)彈性模量、阻尼比變化規(guī)律,以評(píng)估納米CaCO3重塑軟黏土的動(dòng)力性能,并通過(guò)核磁共振(NMR),進(jìn)一步解釋摻入納米CaCO3對(duì)土體微觀孔隙結(jié)構(gòu)的影響。試驗(yàn)結(jié)果可為納米CaCO3重塑軟黏土為不同摻量、圍壓和固結(jié)應(yīng)力比下的彈性模量和阻尼比模型提供理論參考。
1 土樣制備與試驗(yàn)方案
1.1 試驗(yàn)儀器和土樣制備
試驗(yàn)儀器為英國(guó)GDS(GDSTTA)電機(jī)式動(dòng)靜態(tài)真/動(dòng)三軸儀,如圖1所示,分為三維應(yīng)力加載模塊及動(dòng)力加載模塊,可分別進(jìn)行土體的真三軸及動(dòng)力三軸試驗(yàn)。本次試驗(yàn)選用動(dòng)力加載模塊,最大圍壓、軸向荷載、振動(dòng)頻率分別為2 MPa、20 kN、5 Hz,采用0.000 01 mm高精度傳感器實(shí)時(shí)精確測(cè)定軸向應(yīng)變,對(duì)試樣施加軸向荷載。核磁共振(NMR)采用共振頻率為12 MHz,采樣線圈尺寸為25.4 mm。
試驗(yàn)土樣取自安徽合肥某公路施工現(xiàn)場(chǎng)的軟黏土,如圖2 a)所示,其物理性質(zhì)指標(biāo)如表1所示。納米CaCO3由杭州恒格納米科技有限公司生產(chǎn),呈白色粉末狀,粒徑小于等于20 nm,如圖2 b)所示,表2為其具體技術(shù)指標(biāo)。將軟黏土放入105 ℃干燥箱中脫水24 h,冷卻破碎后過(guò)2 mm篩,保存在透明密封袋中待用。按最佳含水量20%將水、軟黏土和納米CaCO3顆?;旌蠑嚢杈鶆虿簩?shí)制成直徑50 mm,高度100 mm的重塑土樣。用剩余土料制成直徑為15 mm,高度為20 mm的圓柱試樣進(jìn)行飽和與固結(jié)后用于NMR試驗(yàn)。
1.2 試驗(yàn)方案
進(jìn)行 GDS動(dòng)三軸試驗(yàn)前,先將試樣放入真空桶中抽真空飽和,再放入GDS真/動(dòng)三軸儀中對(duì)土樣固結(jié),隨后進(jìn)行循環(huán)加載試驗(yàn),采用正弦波加載,振動(dòng)頻率選為1 Hz[25],動(dòng)應(yīng)力幅值分10級(jí)逐級(jí)遞增施加,固定每級(jí)振動(dòng)次數(shù)為10次。試驗(yàn)考慮了納米CaCO3摻量、圍壓、固結(jié)應(yīng)力比3個(gè)影響因素,納米CaCO3摻量選取0%、0.10%、0.25%、0.50%、0.75%、1.00%[26],圍壓選取100、150、200 kPa[27],實(shí)際工程中土體常處于非等向固結(jié)狀態(tài),因此固結(jié)應(yīng)力比選取1.00、1.25、1.50[28]。試樣軸向應(yīng)變達(dá)到8%時(shí),視為破壞終止試驗(yàn)。試驗(yàn)方案如表3所示。
2 動(dòng)力特性分析
2.1 動(dòng)應(yīng)力-動(dòng)應(yīng)變曲線
2.1.1 納米CaCO3摻量的影響
圖3為圍壓σ3=100 kPa、固結(jié)應(yīng)力比kc=1時(shí),不同納米CaCO3摻量下重塑軟黏土動(dòng)應(yīng)力-動(dòng)應(yīng)變關(guān)系曲線。由圖可知,該曲線隨納米CaCO3摻量增加逐漸向上移動(dòng),這是由于黏土中SiO2、Al2O3、Fe2O3含量較高,主要成分為游離氧化鐵[9],納米CaCO3的pH值為10.0,大于黏土中氧化鐵膠體的pH值,摻入納米CaCO3后使土體中Fe2O3含量減少,形成鈣質(zhì)膠結(jié)物,以薄膜形式存在,作為結(jié)構(gòu)聯(lián)結(jié)處的骨架支撐點(diǎn)。隨著摻量增加,Ca2+離子增加并與土體內(nèi)部負(fù)離子形成鈣質(zhì)膠結(jié)物增大了土顆粒間的相互作用力,使得重塑軟黏土抗變形能力增強(qiáng)。由于納米CaCO3摻量在小于等于0.50%時(shí),每條曲線的上移幅度明顯高于摻量大于0.50%后每條曲線的上移幅度,故后續(xù)試驗(yàn)納米CaCO3摻量均選取了0.50%。
2.1.2 固結(jié)應(yīng)力比的影響
圖4為納米CaCO3摻量μ=0.50%時(shí),不同固結(jié)應(yīng)力比下軟黏土動(dòng)應(yīng)力-應(yīng)變關(guān)系曲線。由圖可知,當(dāng)固結(jié)應(yīng)力比kc在1.00~1.25之間時(shí),動(dòng)應(yīng)變隨固結(jié)應(yīng)力比的增大而減小,而固結(jié)應(yīng)力比在1.25~1.50之間存在某一定值,一旦超過(guò)該值后,動(dòng)應(yīng)變隨固結(jié)應(yīng)力比的增大而增大??梢岳斫鉃楫?dāng)固結(jié)應(yīng)力比較小時(shí),土顆粒在靜偏應(yīng)力作用下被壓得緊密,土顆粒間不容易產(chǎn)生相對(duì)滑移,土體內(nèi)部骨架結(jié)構(gòu)較穩(wěn)定,隨著固結(jié)應(yīng)力比增大到1.25~1.50之間某一值時(shí),土體能承受的最大應(yīng)力小于土體所承受的靜偏應(yīng)力,此時(shí)會(huì)在出現(xiàn)較小動(dòng)應(yīng)變時(shí)內(nèi)部出現(xiàn)相對(duì)滑移,土體失穩(wěn),故在高固結(jié)應(yīng)力比下土體抵抗變形能力下降。
2.1.3 圍壓的影響
圖5為納米CaCO3摻量μ=0.50%時(shí),不同圍壓下軟黏土動(dòng)應(yīng)力-動(dòng)應(yīng)變關(guān)系曲線。由圖可知,動(dòng)應(yīng)變較小時(shí),曲線較為陡峭,隨著動(dòng)應(yīng)變?cè)龃螅€逐漸趨于平緩。這是由于重塑軟黏土中膠結(jié)物質(zhì)具有良好的減震效果:在應(yīng)變較小的加載初期,膠結(jié)體減震效果顯著,使動(dòng)荷載傳遞效率變高,能耗減小,曲線較為陡峭;而隨著動(dòng)應(yīng)變的增大,土體產(chǎn)生短暫的“瞬時(shí)”功,膠結(jié)物質(zhì)被破壞,荷載傳遞效果較差,曲線逐漸趨于平緩。軟黏土動(dòng)應(yīng)變隨著圍壓的增大不斷減小,可以理解為高圍壓下土體被壓得更加密實(shí),土體內(nèi)部孔隙比減小,土顆粒間相互作用力增大,土體抗荷載破壞能力增強(qiáng)。
2.2 動(dòng)彈性模量的變化規(guī)律
動(dòng)彈性模量為動(dòng)應(yīng)力差值與動(dòng)應(yīng)變差值的比值,即:
Ed=σdmax-σdminεdmax-εdmin 。(1)
式中:σdmax、σdmin和εdmax、εdmin分別為一個(gè)滯回圈中最大與最小動(dòng)應(yīng)力和動(dòng)應(yīng)變。動(dòng)彈性模量取每級(jí)動(dòng)力加載中第4—8次動(dòng)彈性模量的平均值。
2.2.1 納米CaCO3摻量的影響
不同摻量納米CaCO3重塑軟黏土的動(dòng)彈性模量-動(dòng)應(yīng)變關(guān)系曲線如圖6所示。由圖可知,摻入納米CaCO3后軟黏土的動(dòng)彈性模量-動(dòng)應(yīng)變曲線相較于素軟黏土有明顯的上移。隨著納米CaCO3摻量的增加,重塑軟黏土的動(dòng)彈性模量從17.8%逐漸增大到25.6%。
2.2.2 固結(jié)應(yīng)力比的影響
圖7為相同圍壓、不同固結(jié)應(yīng)力比時(shí)納米CaCO3重塑軟黏土動(dòng)彈性模量-動(dòng)應(yīng)變幅值變化曲線。由圖可知,在1.00<kc<1.25時(shí),曲線隨著固結(jié)應(yīng)力比的增加逐漸上移,但在固結(jié)應(yīng)力比為1.25~1.50時(shí),存在某一定值,當(dāng)kc超過(guò)定值時(shí),納米CaCO3重塑軟黏土動(dòng)彈性模量反而減小。這是由于當(dāng)固結(jié)應(yīng)力比較小時(shí),土體所受靜偏應(yīng)力使得土體更加密實(shí),土顆粒間較難發(fā)生相對(duì)滑移;而隨著固結(jié)應(yīng)力比的增大,土體所受靜偏應(yīng)力超過(guò)承載極限,土體內(nèi)部結(jié)構(gòu)發(fā)生破壞,土顆粒間出現(xiàn)相對(duì)滑移,孔隙比增大,動(dòng)彈性模量減小,土體抵抗變形能力降低。這與動(dòng)應(yīng)力-動(dòng)應(yīng)變曲線變化規(guī)律一致。
2.2.3 圍壓的影響
圖8為不同圍壓、相同固結(jié)應(yīng)力比時(shí)納米CaCO3重塑軟黏土動(dòng)彈性模量-動(dòng)應(yīng)變曲線。由圖可知,曲線隨著圍壓的增大而上移。這是由于土體間孔隙減少,土顆粒之間的相互作用增強(qiáng),更難發(fā)生相對(duì)滑移,在相同條件下,動(dòng)彈性模量隨圍壓增大而增大,土體抵抗變形的能力增強(qiáng)。
由圖6、圖7和圖8可知,在試驗(yàn)的不同條件下重塑軟黏土的動(dòng)彈性模量-動(dòng)應(yīng)變曲線均先陡峭下降后趨于平緩,變形較小時(shí),以彈性形變?yōu)橹?,?dòng)彈性模量最大,隨著動(dòng)應(yīng)變的增大,土體產(chǎn)生塑性形變,使動(dòng)彈性模量逐漸減小并趨于某一定值。
2.3 動(dòng)模量比衰減模型
圖9為重塑軟黏土動(dòng)模量比與動(dòng)應(yīng)變衰減關(guān)系曲線。由圖可知,在相同條件下,Ed/Ed0隨著圍壓增大而增大,而隨著固結(jié)應(yīng)力比的增大先增大后減小。
眾多學(xué)者對(duì)不同土體已經(jīng)建立了相應(yīng)的動(dòng)模量比衰減模型,其中Davidenkov模型[29]考慮了圍壓的影響,即:
EdEd0=11+(aεd)b ,(2)
式中:a、b為擬合參數(shù)。
經(jīng)過(guò)曲線擬合,可得:a=0.473 4,b=0.819 7,R2=0.966 7。將其代入式(2)可得納米CaCO3重塑軟黏土動(dòng)模量衰減模型:
EdEd0=11+(0.473 4εd)0.819 7。(3)
式(3)可以較好地描述納米CaCO3重塑軟黏土的衰減規(guī)律。
2.4 阻尼比變化規(guī)律
土的阻尼比反映了土體在動(dòng)荷載作用下耗散能量的性質(zhì),是衡量土體動(dòng)力性能的重要參數(shù),可用1個(gè)周期內(nèi)所損耗的能量ΔW(約為1個(gè)滯回圈與坐標(biāo)軸圍成的面積,如圖10所示)與該周期所儲(chǔ)存的總能量W(圖10中三角形OAB的面積)的比值表示[30]。即:
λ=14πΔWW=14πS橢圓S△OAB 。(4)
研究發(fā)現(xiàn)滯回曲線面積越大,則1個(gè)周期內(nèi)損耗能量ΔW越多,其震動(dòng)耗能能力越強(qiáng)[31]。圖11為不同圍壓下?lián)p耗能量與動(dòng)應(yīng)變的關(guān)系曲線。可以看出,不同圍壓下,ΔW隨動(dòng)應(yīng)變?cè)黾硬粩嘣龃?,即隨動(dòng)應(yīng)變逐漸增加,導(dǎo)致土體消耗能量逐漸變大。同一動(dòng)應(yīng)變下,損耗能量-動(dòng)應(yīng)變曲線隨著圍壓的增加而下移,表明隨著圍壓增大,重塑軟黏土的滯回耗能能力增強(qiáng)。
由于圖11顯示損耗能ΔW與動(dòng)應(yīng)變?chǔ)興類似于冪函數(shù)關(guān)系,經(jīng)對(duì)ΔW進(jìn)行冪函數(shù)擬合后得到ΔW與εd擬合關(guān)系式為
ΔW=α(εd)β+c ,(5)
式中:ΔW為1個(gè)循環(huán)周期所損耗的能量;α,β為擬合參數(shù)。由表4可知,R2均大于0.99。
2.4.1 納米CaCO3摻量的影響
圖12為不同納米CaCO3摻量下λ-εd關(guān)系曲線。由圖可知,不同摻量下的土體阻尼比均隨動(dòng)應(yīng)變的增加先減小后增大,而未摻入納米CaCO3的素軟黏土阻尼比隨動(dòng)應(yīng)變的增加逐漸增大,這是由于軟黏土摻入納米CaCO3后孔隙間出現(xiàn)膠結(jié)物,使得土顆粒間作用力增大,土體結(jié)構(gòu)更加密實(shí)。動(dòng)應(yīng)變較低時(shí),原本骨架中存在的孔隙減少、顆粒間的間距縮短,使得土顆粒在循環(huán)荷載下不易發(fā)生錯(cuò)動(dòng),增加了動(dòng)荷載傳遞能量的效率,能量損耗減小,導(dǎo)致阻尼比出現(xiàn)先減小的階段;隨著動(dòng)應(yīng)變逐漸增大,土體產(chǎn)生塑性變形后,試樣結(jié)構(gòu)被破壞,能量損耗增加,使得阻尼比不斷增大。
在相同動(dòng)應(yīng)變下的重塑軟黏土阻尼比隨納米CaCO3摻量的增加而減小,說(shuō)明隨著納米CaCO3摻量的增加,土顆粒間的作用力不斷增大,損耗能量降低,阻尼比不斷減小,說(shuō)明納米CaCO3可以有效降低軟黏土的阻尼比。
2.4.2 固結(jié)應(yīng)力比的影響
圖13為不同固結(jié)應(yīng)力比下納米CaCO3重塑軟黏土λ-εd曲線。由圖可知,阻尼比與動(dòng)應(yīng)變無(wú)明顯線性關(guān)系,隨著動(dòng)應(yīng)變的增大,不同固結(jié)應(yīng)力比土樣的阻尼比先減小后逐漸增大。這是由于重塑軟黏土后,試樣結(jié)構(gòu)更加密實(shí),土顆粒間相互作用力增大。在循環(huán)荷載下,固結(jié)應(yīng)力并非越來(lái)越大。在固結(jié)應(yīng)力比增大初期,土體內(nèi)部結(jié)構(gòu)越來(lái)越密實(shí),損耗能量降低從而阻尼比減?。欢?dāng)固結(jié)應(yīng)力比超過(guò)某一值時(shí),土體失穩(wěn),使荷載作用在土體上的影響變大,損耗能量增加,故阻尼比增大。
2.4.3 圍壓的影響
圖14為不同圍壓下納米CaCO3重塑軟黏土λ-εd的關(guān)系曲線。從圖可以看出,不同圍壓下重塑軟黏土的阻尼比隨圍壓增大逐漸減小,這是由于循環(huán)荷載過(guò)程中隨著圍壓的增大,土體內(nèi)部結(jié)構(gòu)被壓縮得緊密,土體內(nèi)部孔隙比減小,土顆粒間相互作用力增大,內(nèi)部結(jié)構(gòu)穩(wěn)定性提高,使土體顆粒在循環(huán)荷載下較難發(fā)生相對(duì)滑移,能量傳遞效率增強(qiáng),能量損耗變少,阻尼比減小。
3 核磁共振(NMR)試驗(yàn)
為進(jìn)一步研究納米CaCO3重塑軟黏土內(nèi)部的孔隙結(jié)構(gòu),利用核磁共振(NMR)試驗(yàn)對(duì)試樣孔隙結(jié)構(gòu)進(jìn)行分析。試驗(yàn)中孔隙水弛豫時(shí)間T2對(duì)應(yīng)了不同孔徑的孔隙,信號(hào)強(qiáng)度反映了該孔徑孔隙所對(duì)應(yīng)的數(shù)量。
圖15為不同摻量重塑軟黏土在σ3=100 kPa,kc=1.00下的T2曲線,主要呈雙峰結(jié)構(gòu),有不明顯第3個(gè)峰出現(xiàn),從左到右依次對(duì)應(yīng)著微孔、中孔和大孔[32]。由圖可以看出,土樣主要以孔隙直徑為0.1~1 nm的微孔[33]為主,中孔隙比例極少,而在納米CaCO3重塑軟黏土中大孔隙幾乎不存在。NMR曲線所圍區(qū)域?qū)?yīng)的峰面積反映了孔隙體積,對(duì)比不同納米CaCO3摻量下重塑土T2曲線可知,信號(hào)強(qiáng)度峰值隨納米CaCO3摻量增大而下移,主峰與橫坐標(biāo)圍成面積減小,說(shuō)明摻入納米CaCO3顆粒對(duì)重塑軟黏土的微孔孔隙填充,孔隙率減小,對(duì)土體結(jié)構(gòu)穩(wěn)定性有明顯的提升。
圖16為納米CaCO3摻入前、后軟黏土T2分布曲線。對(duì)比發(fā)現(xiàn),在相同固結(jié)應(yīng)力比與圍壓下軟黏土摻入納米CaCO3后峰值較素軟黏土有明顯降低,曲線與橫坐標(biāo)圍成的面積顯著減小。重塑軟黏土的孔隙率小于素軟黏土的孔隙率。摻入納米CaCO3能提升重塑軟黏土穩(wěn)定性且在不同環(huán)境下納米CaCO3均能填充軟黏土的微孔孔徑。信號(hào)強(qiáng)度峰值隨著固結(jié)應(yīng)力比增大先減小后增強(qiáng),曲線與橫坐標(biāo)圍成的面積先減小后增大,孔隙率先減小后增大;隨著圍壓的增大,孔隙率不斷減小。這與動(dòng)三軸試驗(yàn)分析結(jié)果一致,從微觀角度解釋了應(yīng)力-應(yīng)變曲線及阻尼比隨固結(jié)應(yīng)力比與圍壓變化的原因。
4 結(jié) 語(yǔ)
1)在納米CaCO3摻量小于1.00%時(shí),隨著納米CaCO3摻量增加,重塑軟黏土的動(dòng)應(yīng)變不斷減小。摻入納米CaCO3能夠抑制土體動(dòng)應(yīng)變,可以有效改善軟黏土的動(dòng)力性能。
2)相同圍壓下,納米CaCO3重塑軟黏土動(dòng)應(yīng)變隨固結(jié)應(yīng)力比增大先減小后增加;相同固結(jié)應(yīng)力比下,圍壓處于較高水平下產(chǎn)生的動(dòng)應(yīng)變相對(duì)于低圍壓下的動(dòng)應(yīng)變較小。
3)相同圍壓下,摻入0.50%納米CaCO3重塑軟黏土的εdmax較素軟黏土提高了25.6%。重塑軟黏土的動(dòng)彈性模量隨納米CaCO3摻量、圍壓的增加均逐漸增大,而隨固結(jié)應(yīng)力比增大先增大后減小。動(dòng)彈性模量-動(dòng)應(yīng)變曲線隨動(dòng)應(yīng)變?cè)龃笾饾u下降后趨于穩(wěn)定。
4)隨著動(dòng)應(yīng)變?cè)龃螅{米CaCO3重塑軟黏土阻尼比先減小后逐漸增大,增大圍壓可降低阻尼比,增大固結(jié)應(yīng)力比使阻尼比先減小后增加。
5)隨著納米CaCO3摻量、固結(jié)應(yīng)力比、圍壓的增加,重塑軟黏土孔隙比均逐漸減小,表明納米CaCO3可有效填充軟黏土內(nèi)部孔隙,增強(qiáng)其動(dòng)力性能。
6)納米CaCO3可以提高軟黏土的抗變形能力,提升其動(dòng)力性能,在實(shí)際工程中可摻入0.50%的納米CaCO3以提高軟黏土的承載能力。
在試驗(yàn)設(shè)計(jì)階段,考慮到經(jīng)濟(jì)原因,納米CaCO3的摻量較小,從而得出了摻量增加對(duì)軟黏土的各項(xiàng)動(dòng)力特性均有提升作用的結(jié)論。但隨著摻量繼續(xù)增加,軟黏土動(dòng)力性能是否持續(xù)提升、是否存在最佳摻量還有待進(jìn)一步研究,且試驗(yàn)土樣為重塑土,與實(shí)際工程土體存在區(qū)別,在今后實(shí)驗(yàn)中擬考慮增大摻量或?qū)⒓{米CaCO3摻入軟土路基,對(duì)其動(dòng)力性能進(jìn)行研究,并根據(jù)實(shí)際情況給出工程意見(jiàn)。
參考文獻(xiàn)/References:
[1] 文
江泉,剛寶珍,李淑芬.軟基處理中水泥改良軟土試驗(yàn)研究[J].路基工程,1995(3):45-48.
WEN Jiangquan,GANG Baozhen,LI Shufen.Experimental study on cement improving soft soil in soft foundation treatment[J].Subgrade Engineering,1995(3):45-48.
[2] 莊心善,潘睿捷,夏順磊.循環(huán)荷載作用下NaCl溶液對(duì)黏土動(dòng)力特性影響及微觀機(jī)理分析[J].河北科技大學(xué)學(xué)報(bào),2023QvC87f6B4ewUULA5j7lPRMPeeosBBhT0QGF6iYv3cc0=,44(4):403-410.
ZHUANG Xinshan,PAN Ruijie,XIA Shunlei.Influence of NaCl solution on dynamic characteristics of clay under cyclic loading and microscopic mechanism analysis[J].Journal of Hebei University of Science and Technology,2023,44(4):403-410.
[3] SINGLE S M,Combined effects of nano-SiO2.nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume[J].Materials Science and Engineering: A,2011,528(22/23):7012-7019.
[4] MOLAABASI H,KHAJEH A,NADERI S S.Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands[J].Journal of Materials in Civil Engineering,2018.DOI: 10.1061/(ASCE)MT.1943-5533.0002197.
[5] YILDIRIM O M,MOROYDOR D E.A comparative study:Effects of different nanoparticles on the properties of gold mine tailings containing cement mortars[J].Construction and Building Materials,2019,202:396-405.
[6] LARA L T,HERNNDEZ Z J B,HORTA R J,et al.Expansion reduction of clayey soils through surcharge application and lime treatment[J].Case Studies in Construction Materials,2017,7:102-109.
[7] SHARMA L K,SIRDESAI N N,SHARMA K M,et al.Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study[J].Applied Clay Science,2018,152:183-195.
[8] 余玉翔,陳雪梅.石灰石中鎂含量對(duì)納米碳酸鈣制備及性能的影響[J].無(wú)機(jī)鹽工業(yè),2015,47(12):43-46.
YU Yuxiang,CHEN Xuemei.Effects of magnesium content in limestone on preparation and property of nano-sized CaCO3[J].Inorganic Chemicals Industry,2015,47(12):43-46.
[9] 李佳明,陳學(xué)軍,黃翔,等.納米碳酸鈣對(duì)紅黏土的影響及其作用機(jī)理分析[J].桂林理工大學(xué)學(xué)報(bào),2020,40(1):109-116.
LI Jiaming,CHEN Xuejun,HUANG Xiang,et al.Effect and mechanism analysis of nano calcium carbonate on red clay[J].Journal of Guilin University of Technology,2020,40(1):109-116.
[10]KHALID N,ARSHAD M,MUKRI M,et al.Influence of nano-soil particles in soft soil stabilization[J].Electronic Journal of Geotechnical Engineering,2015,20(2):731-738.
[11]JIAN Zhanbao,XING Xuandong,SUN P C.The effect of nanoalumina on early hydration and mechanical properties[J].Construction and Building Materials,2019,202:169-176.
[12]WANG Sheng,WANG Jingfei,YUAN Chaopeng,et al.Development of the nano-composite cement: Application in regulating grouting in complex ground conditions[J].Journal of Mountain Science,2018,15(7):1572-1584.
[13]GHASABKOLAEI N,JANALIZADEH A,JAHANSHAHI M,et al.Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles:An experimental study[J].The European Physical Journal Plus,2016.DOI: 10.1140/epjp/i2016-16134-3.
[14]SOLEIMANI K S,JANALIZADEH C A.Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand[J].Journal of Materials in Civil Engineering,2017.DOI: 10.1061/%28ASCE%29MT.1943-5533.0001761.
[15]程子揚(yáng),陳國(guó)夫,屠艷平.納米CaCO3對(duì)粉煤灰再生骨料混凝土性能及微結(jié)構(gòu)的影響[J].建筑材料學(xué)報(bào),2023,26(3):228-235.
CHENG Ziyang,CHEN Guofu,TU Yanping.Effect of nano-CaCO3 on properties and microstructure of fly ash recycled aggregate concrete[J].Journal of Building Materials,2023,26(3):228-235.
[16]劉明杰,魏風(fēng),楊雪梅,等.納米CaCO3模板法合成石油瀝青基多孔類石墨烯炭材料 [J].新型炭材料,2018,33(4):316-323.
LIU Mingjie,WEI Feng,YANG Xuemei,et al.Synthesis of porous graphene-like carbon materials for high-performance supercapactitors from petroleum pitch using nano-CaCO3 as a template[J].New Carbon Materials,2018,33(4):316-323.
[17]郭青林,李平,張博,等.微納米Ca(OH)2加固遺址土室內(nèi)試驗(yàn)研究[J].巖土力學(xué),2023,44(8):2221-2228.
GUO Qinglin,LI Ping,ZHANG Bo,et al.Laboratory test of micro-nano Ca(OH)2 reinforced earthen sites[J].Rock and Soil Mechanics,2023,44(8):2221-2228.
[18]王志兵,劉金明,顧翔.纖維和納米材料改良花崗巖殘積土的力學(xué)試驗(yàn)及機(jī)理研究[J].水資源與水工程學(xué)報(bào),2022,33(4):185-191.
WANG Zhibing,LIU Jinming,GU Xiang.Mechanical test and mechanism study of granite residual soil modified by fiber and nanomaterials[J].Journal of Water Resources and Water Engineering,2022,33(4):185-191.
[19]GHASABKOLAEI N,CHOOBBASTI A J,ROSHAN N,et al.Geotechnical properties of the soils modified with nanomaterials:A comprehensive review[J].Archives of Civil and Mechanical Engineering,2017,17(3):639-650.
[20]WANG Tianzuo,WANG Changming,ZHANG Zhimin,et al.Mechanical property of cement-stabilized soil with nano-CaO and reinforcement mechanism analysis[J]. Chemical Engineering Transaction,2016,51:1195-1200.
[21]TANZADEH R,VAFAEIAN M,YUSEFZADEH F M.Effects of micro-nano-lime (CaCO3) particles on the strength and resilience of road clay beds[J].Construction and Building Materials,2019,217:193-201.
[22]王沖,劉俊超,張超,等.納米 CaCO3對(duì)水泥基材料性能與結(jié)構(gòu)的影響及機(jī)理[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(6):22-28.
WANG Chong,LIU Junchao,ZHANG Chao,et al.Influence and mechanism of nano-CaCO3 on properties and structures of cement-based materials[J].Journal of Hunan University (Natural Sciences),2016,43(6):22-28.
[23]鄧友生,張克欽,付云博,等.納米碳酸鈣改性再生混凝土抗壓性能研究[J].公路,2023,68(4):319-324.
DENG Yousheng,ZHANG Keqin,F(xiàn)U Yunbo,et al.Research on the compressive properties of recycled concrete modified by nano-CaCo3[J].Highway,2023,68(4):319-324.
[24]陳學(xué)軍,胡舒?zhèn)?,黃耀意,等.納米碳酸鈣影響下紅黏土強(qiáng)度特性試驗(yàn)研究[J].工程地質(zhì)學(xué)報(bào),2017,25(5):1293-1298.
CHEN Xuejun,HU Shuwei,HUANG Yaoyi,et al.Experimental study on strength characteristics of red clay under influence of nano-CaCO3[J].Journal of Engineering Geology,2017,25(5):1293-1298.
[25]羅金.室內(nèi)試驗(yàn)公路交通荷載參數(shù)的確定[J].低溫建筑技術(shù),2015,37(3):121-123.
LUO Jin.Determination of traffic load parameters of highway in laboratory test[J].Low Temperature Architecture Technology,2015,37(3):121-123.
[26]CHEN Qingsheng,YAN Ge,ZHUANG Xinshan,et al.Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions[J].Transportation Geotechnics,2022.DOI: 10.1016/j.trgeo.2021.100700.
[27]董城,楊獻(xiàn)章,劉文劼,等.湘南紅黏土公路路基壓實(shí)度標(biāo)準(zhǔn)研究[J].公路交通科技,2017,34(2):42-49.
DONG Cheng,YANG Xianzhang,LIU Wenjie,et al.Study on compaction degree criterion of red clay highway subgrade in southern Hunan[J].Journal of Highway and Transportation Research and Development,2017,34(2):42-49.
[28]白顥,孔令偉.固結(jié)比對(duì)石灰土動(dòng)力特性的影響試驗(yàn)研究[J].巖土力學(xué),2009,30(6):1590-1594.
BAI Hao,KONG Lingwei.Experimental research on influence of consolidation ratio on dynamic characteristics of lime-treated soil[J].Rock and Soil Mechanics,2009,30(6):1590-1594.
[29]張如林,樓夢(mèng)麟.基于達(dá)維堅(jiān)科夫骨架曲線的軟土非線性動(dòng)力本構(gòu)模型研究[J].巖土力學(xué),2012,33(9):2588-2594.
ZHANG Rulin,LOU Menglin.Study of nonlinear dynamic constitutive model of soft soils based on Davidenkov skeleton curve[J].Rock and Soil Mechanics,2012,33(9):2588-2594.
[30]謝定義.土動(dòng)力學(xué)[M].北京:高等教育出版社,2011.
[31]劉靖宇,劉朝暉,王旭東,等.動(dòng)態(tài)回彈模量滯回曲線形態(tài)參數(shù)研究[J].公路交通科技,2017,34(10):6-12.
LIU Jingyu,LIU Chaohui,WANG Xudong,et al.Study on morphological parameters of hysteretic curve of dynamic resilient modulus[J].Journal of Highway and Transportation Research and Development,2017,34(10):6-12.
[32]李甜果,孔令偉,王俊濤,等.基于核磁共振的季凍區(qū)膨脹土三峰孔隙結(jié)構(gòu)演化特征及其力學(xué)效應(yīng)[J].巖土力學(xué),2021,42(10):2741-2754.
LI Tianguo,KONG Lingwei,WANG Juntao,et al.Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J].Rock and Soil Mechanics,2021,42(10):2741-2754.
[33]吳連波.頁(yè)巖核磁共振橫向弛豫時(shí)間與孔徑分布量化關(guān)系及應(yīng)用[J].油氣地質(zhì)與采收率,2024,31(1):36-43.
WU Lianbo.Quantitative relationship between shale NMR transverse relaxation time and pore size distribution and its application[J].Petroleum Geology and Recovery Efficiency,2024,31(1):36-43.