摘要:目的 "探討膝關(guān)節(jié)退行性病變MRI影像學特征,并分析MRI定量指標對膝關(guān)節(jié)退行性病變的診斷價值。方法 "選擇2019年2月~2023年4月湖北民族大學附屬民大醫(yī)院接診的疑似膝關(guān)節(jié)退行性病變患者162例?;颊邫z查前均先休息30 min后行MRI掃描,并對對內(nèi)側(cè)髁、外側(cè)髁T1、T2、T2*值及髕骨脂肪含量(FF)值進行測量。在MRI掃描后1周內(nèi)行膝關(guān)節(jié)鏡檢查,根據(jù)鏡檢結(jié)果是否符合膝關(guān)節(jié)退行性病變將患者分為觀察組(n=93)與對照組(n=69)。比較2組各MRI指標,并以ROC曲線分析各指標單獨檢測與聯(lián)合檢測對膝關(guān)節(jié)退行性病變的診斷價值。結(jié)果 "MRI常規(guī)掃描對關(guān)節(jié)軟骨變性檢出率僅為66.67%,半月板退變檢出率為61.53%。關(guān)節(jié)邊緣骨質(zhì)增生、關(guān)節(jié)腔隙狹窄、關(guān)節(jié)積液檢出率較高,分別為89.47%、92.86%、93.33%。觀察組患者內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)均高于對照組,差異有統(tǒng)計學意義(Plt;0.05)。ROC分析結(jié)果顯示內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)對膝關(guān)節(jié)退行性該病診斷截斷值分別為1018.92、39.27、22.34、994.71、39.91、22.74、79.18%,曲線下面積分別為0.911、0.892、0.619、0.813、0.904、0.917、0.791(Plt;0.05)。結(jié)論 "MRI常規(guī)掃描對關(guān)節(jié)軟骨變性、半月板退變檢出率較低,內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)均可用于膝關(guān)節(jié)退行性病變的診斷。
關(guān)鍵詞:膝關(guān)節(jié)退行性病變;MRI;診斷價值;ROC曲線分析
Value of MRI diagnosis of degenerative knee joint lesions and its imaging features
LI Xiaojun1, LI Xuebing1, CHEN Yidi2, YAO Peng1, YANG Zao1, HU Chunyang1, GONG Yan1
1Department of Radiology, Minda Hospital of Hubei Minzu University, Enshi 445099, China; 2Department of Radiology, West China Hospital, Sichuan University, Chengdu 610044, China
Abstract: Objective To explore the changes in MRI imaging features of degenerative lesions of the knee joint and analyze the diagnostic value of MRI quantitative indicators for it. Methods " A total of 162 patients with suspected degenerative lesions of the knee joint who were admitted to Minda Hospital, Hubei University for Nationalities from February 2019 to April 2023 were selected. Before examination, patients rested for 30 min before undergoing MRI scans, and measured the T1, T2, T2* values of the medial and lateral condyles, as well as the patellar fat fraction (FF) values. Knee arthroscopy was performed within 1 week after MRI scanning, and the patients were divided into observation group (n=93) and control group (n=69) according to whether the microscopic findings were consistent with degenerative lesions of the knee joint. The MRI indexes of the two groups were compared, and the diagnostic value of each index for degenerative lesions of the knee joint was analyzed by ROC curve. Results The detection rate of articular cartilage degeneration by routine MRI scanning was only 66.67%, and the detection rate of meniscus degeneration was 61.53%. The detection rates of hyperostosis at the joint margin, joint cavity stenosis, and joint effusion were 89.47%, 92.86%, and 93.33%, respectively. The medial condylar T1 value, medial condylar T2 value, medial condylar T2* value, lateral condylar T1 value, lateral condylar T2 value, lateral condylar T2* value and FF (%) of the patients in the observation group were higher than those in the control group, and the difference was statistically significant (Plt;0.05). ROC analysis results showed that the cutoff values of medial condylar T1, medial condylar T2, medial condylar T2*, lateral condylar T1, lateral condylar T2, lateral condylar T2* and FF for the diagnosis of degenerative lesions of the knee joint were 1018.92, 39.27, 22.34, 994.71, 39.91, 22.74, 79.18%, respectively, and the AUCs were 0.911, 0.892, 0.619, 0.813, 0.904, 0.917, 0.791 (Plt;0.05). Conclusion Routine MRI scanning has a low detection rate for articular cartilage degeneration and meniscus degeneration. The values of medial condyle T1, medial condyle T2, medial condyle T2*, lateral condyle T1, lateral condyle T2, lateral condyle T2* and FF (%) can be used for the diagnosis of degenerative lesions of the knee joint.
Keywords: degenerative lesions of the knee joint; MRI; diagnostic value; ROC curve analysis
膝關(guān)節(jié)退行性病變多因關(guān)節(jié)軟骨損傷、磨損所致,在中老年人群中高發(fā)。膝關(guān)節(jié)退行性病變的病理機制涉及多個因素,最終導致軟骨的損傷和退化,引發(fā)膝關(guān)節(jié)疼痛、重癥、僵硬、活動受限等臨床表現(xiàn)[1] 。因膝關(guān)節(jié)軟骨缺少血管、淋巴、神經(jīng)等的營養(yǎng)支持,在出現(xiàn)損傷后修復難度大,隨著病情進展可引起關(guān)節(jié)畸形、功能障礙,最終致患者喪失基本生活能力[2-3] 。早期發(fā)現(xiàn)膝關(guān)節(jié)退行性病變,并指導臨床及時采取保護、治療措施有助于延緩病情,對于提高患者生活質(zhì)量具有重要的價值。既往研究主要采用形態(tài)改變、關(guān)節(jié)間隙變化等MRI指標評估患者膝關(guān)節(jié)退行性病變情況,無法實現(xiàn)早期診斷,出現(xiàn)上述指標改變時患者多已病情較嚴重,失去了早期診斷的價值[4] 。近年研究發(fā)現(xiàn)MRI生理定量指標可及時發(fā)現(xiàn)軟骨生化成分改變,并對軟骨損傷程度進行定量評估[5] ;同時,MRI化學位移呈現(xiàn)還可通過測量骨髓脂肪含量變化而用于評估骨量減少情況(膝關(guān)節(jié)退行性病變與骨量減少密切相關(guān))[6] 。但上述指標聯(lián)合檢測對膝關(guān)節(jié)退行性病變的診斷價值如何,目前尚無定論。本研究將上述指標進行聯(lián)合檢測以及早發(fā)現(xiàn)膝關(guān)節(jié)軟骨早期損傷及骨量變化情況,通過分析上述MRI定量指標對膝關(guān)節(jié)退行性病變的診斷價值,旨在為膝關(guān)節(jié)退行性病變的早診斷、早干預、早治療提供參考,現(xiàn)報道如下。
1 "資料與方法
1.1 "一般資料
選擇2019年2月~2023年4月湖北民族大學附屬民大醫(yī)院接診的疑似膝關(guān)節(jié)退行性病變患者162例。納入標準:有關(guān)節(jié)疼痛、腫脹、僵硬等疑似膝關(guān)節(jié)退行性病變的表現(xiàn);患者意識清醒,可配合檢查;患者已獲知情同意。排除標準:風濕性關(guān)節(jié)炎的患者、化膿性關(guān)節(jié)炎、痛風等其他膝關(guān)節(jié)疾病患者;既往有半月板修補、韌帶重建等膝關(guān)節(jié)手術(shù)史的患者;有MRI檢查禁忌證或不能耐受長時間進行MRI檢查者;圖像偽影嚴重,影響評估者。162例患者中,男66例,女96例,年齡45~73(54.20±11.03)歲;BMI 18.92~27.03(20.63±3.92)kg/m2。根據(jù)是否符合膝關(guān)節(jié)退行性病變,將患者分為觀察組(n=93)與對照組(n=69)。2組患者性別、年齡、BMI指數(shù)差異均無統(tǒng)計學意義(Pgt;0.05,表1)。本研究已獲我院倫理委員會審核通過(倫理編號:P2023006)。
1.2 "方法
1.2.1 "MRI掃描 " 患者檢查前均先休息30 min,采用GE 3.0T SIGNA "Pioneer磁共振掃描儀進行檢查?;颊哐雠P,足先進,受檢膝蓋置膝關(guān)節(jié)線圈中,并使關(guān)節(jié)微屈約30°。固定膝關(guān)節(jié)使掃描中心位于髕骨下緣中點,參照文獻[7] 方法分別行矢狀位、軸狀位及冠狀位掃描T2WI脂肪抑制,矢狀位T1WI、T1-mapping、T2-mapping及T2*-mapping序列掃描。獲得T1-mapping、T2-mapping及T2*-mapping偽彩圖與解剖圖。DIXON法:參照文獻[8] 以3D容積內(nèi)插屏氣檢查序列對膝關(guān)節(jié)進行掃描,獲得同相位圖、反相位圖、水相圖及脂像圖。
1.2.2 "圖像處理 " 在工作站中處理mapping偽彩圖,由2位具高級職稱影像科醫(yī)生參照文獻方法對內(nèi)側(cè)髁、外側(cè)髁T1、T2、T2*值及髕骨脂肪含量(FF)值進行測量[7-8]。將受檢膝關(guān)節(jié)股骨內(nèi)、外側(cè)髁承重面三等分,放大后每部分軟骨層面避開積液及骨質(zhì),取2 mm2 感興趣區(qū)測量T2值后于相同位置取相同大小感興趣區(qū)測量T2*和T1值,將3處平均值作為股骨內(nèi)、外側(cè)髁T1、T2、T2* 值。通過信號強度(SI)計算FF(%)=[SIfat/(SIfat+SIwater)]×100%。
1.2.3 "關(guān)節(jié)鏡檢查 " 在MRI掃描后1周內(nèi)以Smithamp;nephew 560P HD成像系統(tǒng)行膝關(guān)節(jié)鏡檢查,根據(jù)鏡檢結(jié)果為金標準進行膝關(guān)節(jié)退行性病變診斷。比較病例組與對照組各MRI指標,并以ROC曲線分析各指標單獨檢測與聯(lián)合檢測對膝關(guān)節(jié)退行性病變的診斷價值。
1.3 "統(tǒng)計學分析
采用SPSS21.4軟件分析數(shù)據(jù),計數(shù)資料以n(%)表示,組間比較行卡方檢驗;計量資料以均數(shù)±標準差表示,組間比較行t檢驗;以ROC法分析各指標單獨檢測與聯(lián)合檢測對膝關(guān)節(jié)退行性病變的診斷效能。以Plt;0.05為差異有統(tǒng)計學意義。
2 "結(jié)果
2.1 "膝關(guān)節(jié)退行性病變患者影像學特征分析
本研究中MRI常規(guī)掃描對關(guān)節(jié)軟骨變性檢出率僅為66.67%,半月板退變檢出率為61.53%。關(guān)節(jié)邊緣骨質(zhì)增生、關(guān)節(jié)腔隙狹窄、關(guān)節(jié)積液檢出率較高,分別為89.47%、92.86%、93.33%(表2)。
2.2 "2組MRI定量指標比較
觀察組患者內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)均高于對照組,差異有統(tǒng)計學意義(Plt;0.001,表3)。
2.3 "ROC曲線分析
ROC曲線分析結(jié)果顯示,內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF對膝關(guān)節(jié)退行性該病診斷截斷值分別為1018.92、39.27、22.34、994.71、39.91、22.74及79.18%,AUC分別為0.911、0.892、0.619、0.813、0.904、0.917、0.791,均有統(tǒng)計學意義(Plt;0.05,圖1、表4)。
3 "討論
膝關(guān)節(jié)退行性病變?yōu)榕R床常見病,該病發(fā)生機制復雜,目前尚未被完全闡釋,普遍認為其發(fā)生與坐姿習慣、膝關(guān)節(jié)勞損、局部炎癥刺激、環(huán)境等因素有關(guān)[9-10] 。該病早期癥狀缺乏特異性,難以引起足夠的重視,若得不到及時有效的治療可致病情持續(xù)進展而影響療效。MRI為膝關(guān)節(jié)退行性病變常用診斷方法,本研究結(jié)果顯示,常規(guī)的MRI掃描對關(guān)節(jié)邊緣骨質(zhì)增生、關(guān)節(jié)腔隙狹窄、關(guān)節(jié)積液等較嚴重的膝關(guān)節(jié)退行性病變檢出率較高,而對于關(guān)節(jié)軟骨變性、半月板退變等早期病變診斷難度較大??紤]主要與常規(guī)MRI掃描對于關(guān)節(jié)軟骨變性、半月板退變等早期病變的診斷根據(jù)關(guān)節(jié)面光整程度、“蟲蝕狀”改變等影像學特征進行分析,在早期病變時上述特征難以被發(fā)現(xiàn),因此結(jié)合客觀性更強、敏感度更高的量化指標有助于提高診斷效能,提高早診率[11-12] 。
MRI軟骨生理學定量技術(shù)與化學位移成像技術(shù)均為近年發(fā)展的新技術(shù),軟骨生理學定量分析主要通過分析組織固有弛豫值改變而實現(xiàn)對關(guān)節(jié)軟骨內(nèi)部變化的分析。有研究將其用于分析膝關(guān)節(jié)軟骨變化情況,但少有學者將該技術(shù)用于膝關(guān)節(jié)退行性病變的診斷;化學位移成像則是通過對測定的組織信號計算脂肪分數(shù)而反映機體脂肪含量的改變,因骨質(zhì)疏松的發(fā)生與骨髓腔內(nèi)脂肪含量增多有關(guān),近年也有研究將該指標用于反應骨質(zhì)疏松情況,但將其用于膝關(guān)節(jié)退行性病變診斷者較少[13-17] 。本研究結(jié)果顯示:觀察組患者內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)均高于對照組,且ROC分析結(jié)果顯示上述指標用于膝關(guān)節(jié)退行性病變具有較高的診斷效能。膝關(guān)節(jié)軟骨主要由軟骨細胞及細胞外基質(zhì)組成,細胞外基質(zhì)包括水、膠原蛋白多糖及膠原糖胺聚合糖[18-19] 。在T2-mapping序列中軟骨含水量、膠原纖維含量及排列方向的改變均可引起檢測值的改變;T1值除受膠原含量變化影響外,蛋白多糖含量的改變也可引起該指標的異常改變[20-21] 。T2*-mapping序列與T2-mapping序列相比,其使用的是磁梯度而非180°聚相射頻脈沖,因而對于磁場的不均勻性更為敏感,加上T2*-mapping序列的TE更短,因而其對軟骨膠原蛋白結(jié)構(gòu)改變更為敏感[22-23] 。因此,上述3種序列可由不同成分的改變反應膝關(guān)節(jié)軟骨的變化,對于膝關(guān)節(jié)退行性病變的診斷效能更高。膝關(guān)節(jié)退行性病變的早期表現(xiàn)除關(guān)節(jié)軟骨退化外,大量患者還伴有骨質(zhì)量改變[24-25] 。骨骼主要由鈣等無機物質(zhì)與骨皮質(zhì)、骨小梁等有機物組成,鈣等無機物變化對于骨質(zhì)量的影響已進行了大量的研究,有機物對骨質(zhì)量的影響近年逐漸被關(guān)注,骨髓腔內(nèi)的脂肪細胞與成骨細胞均由充質(zhì)干細胞分化而來,骨髓內(nèi)脂肪細胞增多將引起成骨細胞活動受抑制而影響骨生成,因而骨髓腔內(nèi)脂肪水平更高膝關(guān)節(jié)退行性病變風險越大[26-27] 。本研究發(fā)現(xiàn)觀察組患者FF水平更高,F(xiàn)F值是根據(jù)脂肪質(zhì)子與水質(zhì)子共振頻率不同,在重復時間內(nèi)設(shè)定2個或以上的特定回波時間所獲得同相位及反相位圖計算后所得到的脂肪分數(shù),其水平升高提示骨髓腔內(nèi)脂肪水平更高,成骨細胞抑制更明顯。通過上述指標的檢測可由不同方面反映膝關(guān)節(jié)軟骨改變及骨質(zhì)量變化情況,有助于提高膝關(guān)節(jié)軟骨退行性病變的診斷效能[28] 。
綜上所述,MRI常規(guī)掃描對關(guān)節(jié)軟骨變性、半月板退變檢出率較低,內(nèi)側(cè)髁T1值、內(nèi)側(cè)髁T2值、內(nèi)側(cè)髁T2*值、外側(cè)髁T1值、外側(cè)髁T2值、外側(cè)髁T2*值及FF(%)值可用于膝關(guān)節(jié)退行性病變的診斷。因本研究為單中心研究,樣本量有限,取得的結(jié)果可能存在一定的偏倚,后續(xù)也將采取多中心、大樣本的研究,并進行長期跟蹤隨訪及與其他診斷方法進行比較,以進一步凸顯MRI定量指標對膝關(guān)節(jié)退行性病變的早期診斷價值。
參考文獻:
[1] "Khurshedovna AS, Khazratkulovich RZ, Servetovna AA, et al. Radiation visualization of chronic joint diseases[J]. Cent Asian J Med Nat Sci, 2021, 2(2): 12-17.
[2] "Shan S, Rehman A, Ehsan J. Diagnostic value of dynamic ultrasonography in detection of meniscal injury in correlation with MRI knee findings keeping it as reference standard[J]. Pakistan J Med Res, 2023, 62(2): 49-52.
[3] "Li L, Yang XF, Yang LF, et al. Biomechanical analysis of the effect of medial meniscus degenerative and traumatic lesions on the knee joint[J]. Am J Transl Res, 2019, 11(2): 542-56.
[4] "Lee LS, Chan PK, Fung WC, et al. Imaging of knee osteoarthritis: a review of current evidence and clinical guidelines[J]. Musculoskeletal Care, 2021, 19(3): 363-74.
[5] "朱 "莉, 鄒文遠, 敖 鋒. 三種MRI生理學定量技術(shù)對早期膝關(guān)節(jié)軟骨損傷的診斷價值[J]. 陜西醫(yī)學雜志, 2021, 50(3): 293-6.
[6] "Bodden J, Ok AH, Joseph GB, et al. Joint-adjacent adipose tissue by MRI is associated with prevalence and progression of knee degenerative changes: data from the osteoarthritis initiative[J]. J Magn Reson Imaging, 2021, 54(1): 155-65.
[7] "Sieroń D, Jab?ońska I, Lukoszek D, et al. Knee diameter and cross-section area measurements in MRI as new promising methods of chondromalacia diagnosis-pilot study[J]. Medicina, 2022, 58(9): 1142.
[8] "Berton A, Longo UG, Candela V, et al. Quantitative evaluation of meniscal healing process of degenerative Meniscus lesions treated with hyaluronic acid: a clinical and MRI study[J]. J Clin Med, 2020, 9(7): 2280.
[9] "Nebelung S, D?tsch L, Shah D, et al. Functional MRI mapping of human Meniscus functionality and its relation to degeneration[J]. Sci Rep, 2020, 10(1): 2499.
[10] Huang GS, Peng YJ, Hwang DW, et al. Assessment of the efficacy of intra?articular platelet rich plasma treatment in an ACLT experimental model by dynamic contrast enhancement MRI of knee subchondral bone marrow and MRI T2 "measurement of articular cartilage[J]. Osteoarthritis Cartilage, 2021, 29(5): 718-27.
[11] 李建安, 何 "衛(wèi), 汪青山, 等. MRI檢查與X線平片對膝關(guān)節(jié)退行性骨關(guān)節(jié)病變中的診斷價值對比[J]. 吉林醫(yī)學, 2019, 40(4): 739-41.
[12]Gao KT, Pedoia V, Young KA, et al. Multiparametric MRI characterization of knee articular cartilage and subchondral bone shape in collegiate basketball players[J]. J Orthop Res, 2021, 39(7): 1512-22.
[13] Linka K, Thüring J, Rieppo L, et al. Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition[J]. Osteoarthr Cartil, 2021, 29(4): 592-602.
[14] 王珊珊, 陳祖欽, 賀思健, 等. 磁共振化學位移成像聯(lián)合體質(zhì)指數(shù)評估青年骨量減少的價值[J]. 武警醫(yī)學, 2020, 31(3): 233-6.
[15] Mohammed HT, Yoon S, Hupel T, et al. Unnecessary ordering of magnetic resonance imaging of the knee: a retrospective chart review of referrals to orthopedic surgeons[J]. PLoS One, 2020, 15(11): e0241645.
[16] Zhao Y, Zhu ZH, Chang J, et al. Predictive value of the morphology of proximal tibiofibular joint for total knee replacement in patients with knee osteoarthritis[J]. J Orthop Res, 2021, 39(6): 1289-96.
[17] Ciliberti FK, Guerrini L, Gunnarsson AE, et al. CT- and MRI-based 3D reconstruction of knee joint to assess cartilage and bone[J]. Diagnostics, 2022, 12(2): 279.
[18]Farag Abd El-Ati Mohamed AK, Farok Aggag M, Mohammed Zayed E, et al. Mri versus ultrasound in diagnosis of meniscal injury in the knee joint[J]. Al Azhar Med J, 2023, 52(2): 649-60.
[19] Kapustina I, Morcos G, Wieland M, et al. Worrisome and incidental signs on knee radiographs in clinical practice: traumatic and degenerative lesions[J]. Appl Radiol, 2023: 8-16.
[20]Ozeki N, Koga H, Sekiya I. Degenerative Meniscus in knee osteoarthritis: from pathology to treatment[J]. Life, 2022, 12(4): 603.
[21] Ramezanpour S, Kanthawang T, Lynch J, et al. Impact of sustained synovitis on knee joint structural degeneration: 4-year MRI data from the osteoarthritis initiative[J]. J Magn Reson Imaging, 2023, 57(1): 153-64.
[22]Uritani D, Koda H, Yasuura Y, et al. Factors associated with subjective knee joint stiffness in people with knee osteoarthritis: a systematic review[J]. Int J Rheum Dis, 2023, 26(3): 425-36.
[23] Ma?ecki K, Niedzielski K, Korczyc-St?pnicka A, et al. A clinical, radiological and isokinetic evaluation in patients with recurrent patellar dislocation undergoing MPFL reconstruction according to Avikainen: a prospective study evaluating early degenerative changes after a minimum 10?year follow?up period[J]. BMC Musculoskelet Disord, 2023, 24(1): 147.
[24]Wang B, Wang L, Wang YY, et al. Clinical diagnostic value of magnetic resonance imaging in knee joint sports injury[J]. J Med Imaging Health Inform, 2021, 11(2): 453-61.
[25]Hung TNK, Vy VPT, Tri NM, et al. Automatic detection of Meniscus tears using backbone convolutional neural networks on knee MRI[J]. J Magn Reson Imaging, 2023, 57(3): 740-9.
[26] Rana S, Hossen M, Islamn A, et al. Interpretation of the common MRI findings in patients with painful knee joint[J]. Eur J Med Health Sci, 2021, 3(1): 19-26.
[27] Elshimy A, Osman AM, Awad MES, et al. Diagnostic accuracy of point-of-care knee ultrasound for evaluation of meniscus and collateral ligaments pathology in comparison with MRI[J]. Acta Radiol, 2023, 64(7): 2283-92.
[28]Ivanov S, Trizlov D. Painful anterior knee schwannoma: a case report[J]. JIMAB, 2023, 29(2): 4990-3.
(編輯:熊一凡)