摘 要:鑒于Janus分離膜特殊的結(jié)構(gòu)與性能,其在眾多領(lǐng)域均展現(xiàn)出巨大潛力。通過靜電紡絲法制備的Janus納米纖維膜具有高比表面積、細長纖維結(jié)構(gòu)和可控性等優(yōu)勢,受到廣泛關(guān)注。為更好了解靜電紡Janus納米纖維膜的發(fā)展近況,對近年來靜電紡Janus納米纖維膜的研究進展進行了綜述。重點介紹了靜電紡Janus納米纖維膜的制備方法,及其在水處理、空氣過濾、生物醫(yī)用等領(lǐng)域中的應(yīng)用,討論了靜電紡Janus納米纖維膜的制備及應(yīng)用過程中的優(yōu)勢和缺點,并對未來發(fā)展進行展望。綜述結(jié)果可為靜電紡Janus納米纖維膜的發(fā)展提供一定參考。
關(guān)鍵詞:靜電紡絲;Janus納米纖維膜;制備方法;水處理;空氣過濾;生物醫(yī)用
中圖分類號:TQ342
文獻標志碼:A
文章編號:1009-265X(2024)10-0001-10
近年來,Janus分離膜是膜分離研究領(lǐng)域的一個新興概念,在不同領(lǐng)域均展示出巨大潛力,受到研究者的廣泛關(guān)注。Janus分離膜是一種特殊的薄膜材料,因其雙面具有不同性質(zhì)而得名,類似于羅馬神話中的兩面神Janus。Janus分離膜其中一面具有親水性(疏油性),而另一面則具有疏水性(親油性),該特性使其在油水分離、膜蒸餾、催化降解等領(lǐng)域中具有獨特的優(yōu)勢[1-3]。
與其他分離膜相比,靜電紡納米纖維膜具有高比表面積、細長纖維結(jié)構(gòu)和可控性等特點[4],在分離、催化和生物醫(yī)用等領(lǐng)域具有廣泛的應(yīng)用潛力。然而,以單一聚合物為原料制備的納米纖維膜,存在功能單一、應(yīng)用領(lǐng)域窄等缺陷,開發(fā)功能多樣化、性能更為優(yōu)異的納米纖維膜迫在眉睫。相較于傳統(tǒng)靜電紡納米纖維膜,靜電紡Janus納米纖維膜在眾多領(lǐng)域均有更為巨大的潛力。
Janus納米纖維膜主要利用不對稱浸潤性產(chǎn)生的協(xié)同作用[5],使其在兩相或多相體系中實現(xiàn)單向傳輸,進而實現(xiàn)兩相或多相體系的分離。因此,如何實現(xiàn)膜兩側(cè)非對稱浸潤性是其核心問題。鑒于此,本文對近年來發(fā)表的相關(guān)研究成果進行綜述,介紹靜電紡絲技術(shù)制備納米纖維膜的原理和影響因素;對靜電紡Janus納米纖維膜的制備方法及其應(yīng)用進行重點闡述,并對靜電紡Janus納米纖維膜未來發(fā)展進行展望,以期為靜電紡Janus納米纖維膜的開發(fā)和創(chuàng)新提供參考。
1 靜電紡絲
1.1 靜電紡絲法簡介
目前,制備納米纖維的方法主要有微相分離法、拉伸法、模板合成法、閃蒸紡絲法、海島紡絲法及靜電紡絲法等[6-9]。其中,靜電紡絲法具有設(shè)備結(jié)構(gòu)簡單、纖維結(jié)構(gòu)可控性高及制備過程連續(xù)性高等優(yōu)點,是制備納米纖維的主要技術(shù)之一。靜電紡絲是指在高壓電場作用下,聚合物溶液或熔體射流發(fā)生形變而形成“泰勒錐”,然后經(jīng)拉伸、細化及固化過程而制得納米纖維。靜電紡絲納米纖維具有纖維直徑小、孔隙率高、比表面積高等優(yōu)點,在過濾、催化、能源、生物醫(yī)藥等領(lǐng)域已得到廣泛應(yīng)用[10-14]。
1.2 靜電紡絲影響因素
靜電紡絲過程中,通過調(diào)控不同因素可以實現(xiàn)對纖維形態(tài)和性質(zhì)的控制。影響纖維形態(tài)的因素包括以下幾個方面:1)聚合物性質(zhì):聚合物的分子量、流變性質(zhì)、表面張力等對靜電紡絲過程有重要影響。高分子量的聚合物通常有更高的紡絲穩(wěn)定性和纖維質(zhì)量[15]。2)溶液濃度:溶液的濃度會影響紡絲過程中電荷的累積和液滴的形成。較高的溶液濃度通常有助于形成均勻而穩(wěn)定的納米纖維。3)溶劑性質(zhì):溶劑對聚合物的溶解度、表面張力等有影響。合適的溶劑選擇可以改善紡絲過程中的流動性和纖維形態(tài)。4)電場參數(shù):電場強度、頻率和極性等參數(shù)會直接影響紡絲的效果和纖維形態(tài)。適當(dāng)調(diào)節(jié)電場參數(shù)可以控制纖維的直徑、排列方式和三維結(jié)構(gòu)。5)距離和噴射速度:紡絲距離和噴射速度會影響纖維的拉伸和固化過程。適當(dāng)?shù)木嚯x和速度可以得到所需的纖維形態(tài)和尺寸。6)環(huán)境條件:溫度、濕度和空氣流動情況等環(huán)境條件也可能對紡絲過程產(chǎn)生一定影響[16]。
2 靜電紡Janus納米纖維膜的制備及結(jié)構(gòu)調(diào)控
2.1 順序靜電紡絲法
順序靜電紡絲法是基于傳統(tǒng)靜電紡絲法,按照先后順序逐層紡絲制得納米纖維再復(fù)合成Janus納米纖維膜的方法[17]。與傳統(tǒng)靜電紡絲法相同,順序靜電紡絲法可通過聚合物溶液性質(zhì)、紡絲參數(shù)等調(diào)控所得納米纖維膜結(jié)構(gòu)。除此之外,順序靜電紡絲法也可通過聚合物溶液紡絲順序及時間對納米纖維結(jié)構(gòu)與性能進行調(diào)控,以制備特定結(jié)構(gòu)與性能的納米纖維膜[18]。順序靜電紡絲法通常以不同選擇潤濕性聚合物為原料或添加不同性能添加劑實現(xiàn)Janus納米纖維膜的非對稱浸潤性。
Chen等[19]以聚偏氟乙烯-六氟丙烯(Poly(vinylidene fluoride-co-hexafluoropropylene),PVDF-HFP)為成纖聚合物,以氟化SiO2為添加劑,通過靜電紡絲法制得疏水性納米纖維層;然后以聚丙烯腈(Polyacrylonitrile,PAN)為成纖聚合物,以親水性SiO2為添加劑,制得親水性納米纖維層,并使用化學(xué)氧化法在親水層上包覆聚吡咯材料,最終制得光熱Janus納米纖維膜。該纖維膜在光熱膜蒸餾測試中,水通量為44.4 kg/(m2·h),脫鹽率達到99.99%,太陽能利用效率為92.20%,表現(xiàn)出優(yōu)異海水淡化性能。Wu等[20]通過順序靜電紡絲法制得Janus納米纖維膜,其制備示意圖如圖1所示。從圖1中觀察到,首先以PAN為成纖聚合物,以蠟燭煙灰為親水性添加劑,通過靜電紡絲法制得親水性納米纖維層;然后以上述納米纖維層為接收基體,PAN為成纖聚合物,ZIF-8(Zeolitic imidazolate framework-8)為疏水性添加劑,通過靜電紡絲法制得疏水性納米纖維層,最終制得Janus納米纖維。該纖維膜能有效分離含油廢水,分離性能優(yōu)異。
順序靜電紡絲法具有性能優(yōu)異、結(jié)構(gòu)易控等特點,是制備Janus納米纖維膜常用方法之一。然而,順序靜電紡絲法也面臨一些挑戰(zhàn),如紡絲順序或噴絲頭參數(shù)對纖維結(jié)構(gòu)與性能影響明顯,納米纖維層的結(jié)合性需進一步加強。
2.2 靜電紡絲法和物理方法結(jié)合
除順序靜電紡絲法外,靜電紡絲法常與其他物理方法相結(jié)合以制備Janus納米纖維膜,如旋涂法、浸漬法、真空抽濾法和靜電噴涂法等[21-24]。其中,靜電噴涂法和靜電紡絲法相結(jié)合是常用方法之一。靜電噴涂法是指在高壓電場作用下,液滴產(chǎn)生定向運動,并沉積于接收體表面的方法[25]。使用靜電噴涂法,聚合物稀溶液或無機粒子溶液會在高壓電場作用下產(chǎn)生霧化現(xiàn)象,在接收體表面形成微納串珠-納米纖維結(jié)構(gòu),從而賦予所得膜特定的選擇潤濕性。目前,研究者常結(jié)合靜電紡絲法和靜電噴涂法制備Janus納米纖維膜。
Li等[26]通過靜電紡絲法和靜電噴涂法結(jié)合制備了Janus納米纖維膜,其制備流程如圖2所示。從圖2中觀察到,首先通過靜電紡絲法制得PAN納米纖維層,經(jīng)高溫?zé)釅禾幚?,制得親水性納米纖維層;然后以PVDF-HFP溶液為靜電紡絲液,以聚苯乙烯/聚二甲基硅氧烷混合溶液為靜電噴涂液,制得疏水性納米纖維層,最終制得Janus納米纖維膜。該纖維膜在膜蒸餾過程中,水通量為27.7 L/(m2·h),脫鹽率達到100%,在連續(xù)膜蒸餾測試中表現(xiàn)出優(yōu)異的性能穩(wěn)定性。Li等[27]通過仿生改性制得PAN@聚多巴胺(Polydopamine,PDA)親水性納米纖維層后,以其為接收基體,以絲素蛋白溶液和聚己內(nèi)酯/姜黃素溶液為靜電紡絲液制得疏水性納米纖維層,然后將胺化介孔二氧化硅-殼聚糖溶液靜電噴涂至疏水納米纖維層表面,最終制得具有優(yōu)異載藥性和緩釋性、抗菌性、抗氧化性及液體單向輸送能力的Janus納米纖維膜。
靜電紡絲法和靜電噴涂法結(jié)合,不僅解決納米300262e547ca49e128eab1fd4e0da834微球之間相互堆疊不牢固的問題,而且賦予納米纖維膜獨特的3D凹凸表面結(jié)構(gòu),所得納米纖維膜具有穩(wěn)定性高、界面相容性好等特點。然而,靜電噴涂法所得納米微球大小不一,導(dǎo)致膜性能不均一,且靜電噴涂法需溶劑揮發(fā)快,溶劑種類選擇有限,這限制了其在納米纖維膜改性領(lǐng)域中的廣泛應(yīng)用。
2.3 靜電紡絲法和化學(xué)方法結(jié)合
靜電紡絲法和化學(xué)方法結(jié)合是將納米纖維膜單側(cè)(雙側(cè))或單側(cè)連續(xù)多次進行化學(xué)交聯(lián),或在溶液內(nèi)部添加化學(xué)物質(zhì),使膜的另一側(cè)具有相反的性質(zhì),實現(xiàn)兩側(cè)非對稱浸潤性,從而制得Janus納米纖維膜的方法。常用的化學(xué)改性方法有化學(xué)沉積法和接枝300262e547ca49e128eab1fd4e0da834改性法(等離子表面處理法、化學(xué)修飾法)。
Liu等[28]以聚偏氟乙烯(Polyvinylidene difluoride,PVDF)為成纖聚合物,通過靜電紡絲法制得PVDF疏水性納米纖維膜;將PVDF疏水性納米纖維膜浸于PDA溶液中,使PDA沉積在PVDF納米纖維上,納米纖維膜上層浸潤性轉(zhuǎn)變?yōu)橛H水性,制得PVDF@PDA Janus納米纖維膜。該纖維膜對水包油乳液具有高分離通量。Zhang等[29]以聚乙烯醇(Polyvinyl alcohol,PVA)、殼聚糖、環(huán)丙沙星和蝦青素混合溶液為紡絲液,對靜電紡絲所得納米纖維層等離子表面處理改性,制得親水性納米纖維層;然后以上述納米纖維層為接收基體,PVDF為成纖聚合物,通過靜電紡絲法制得疏水性納米纖維層;最后以PVDF/SiO2混合溶液為靜電噴涂液在疏水性納米纖維層表面構(gòu)建納米微球結(jié)構(gòu),制得超疏水性納米纖維層,最終制得Janus納米纖維膜。該纖維膜作為傷口敷料可有效緩解滲出液流失,為傷口提供濕潤環(huán)境,從而加快藥物釋放,促進傷口愈合。Cheng等[30]通過靜電紡絲法和化學(xué)修飾法結(jié)合制得Janus納米纖維膜,其制備流程如圖3所示。從圖3中觀察到,首先以PVDF為成纖聚合物,通過靜電紡絲法制得疏水性納米纖維層;以醋酸纖維素(Cellulose acetate,CA)為成纖聚合物,制得親水性納米纖維層,并使用NaOH溶液對親水性納米纖維層堿處理,使醋酸纖維素纖維脫乙酰,接枝更多羥基,提高親水性納米纖維層浸潤性,最終制得dCA/PVDF Janus納米纖維膜。該纖維膜具有優(yōu)異的分離乳液性能,可重復(fù)性和耐酸堿性。
化學(xué)改性法對納米纖維改性效果顯著,但劣勢也較為明顯,如改性步驟繁瑣、降低膜的穩(wěn)定性、成本較高等。
3 靜電紡Janus納米纖維膜應(yīng)用
3.1 油水分離
近年來,含油廢水等水污染問題日益加重,對生態(tài)環(huán)境和人類身體健康造成了嚴重危害。相較于傳統(tǒng)油水分離技術(shù),膜分離技術(shù)具有操作簡單、成本低和高分離效率等優(yōu)勢,在油水分離領(lǐng)域具有較大的應(yīng)用潛力。在分離膜中,相較于單一浸潤性的納米纖維膜,Janus納米纖維膜有較高油水分離通量,已廣泛應(yīng)用于油水分離領(lǐng)域[31]。
含油廢水常以油水乳液的形式存在,包括油包水乳液和水包油乳液,對穩(wěn)定油水乳液的分離需經(jīng)破乳化過程,分離過程較難。因此,能夠分離不同類型油水乳液的Janus納米纖維膜具有較大的應(yīng)用潛力。Xiao等[32]受荷葉表面性能啟發(fā),通過順序靜電紡絲法制備PAN親水納米纖維層和PVDF疏水納米纖維中間層;然后以PVDF為成纖聚合物,甲基三乙氧基硅烷(Methyltriethoxysilane,MTES)為添加劑,通過靜電噴涂法,在PVDF疏水納米纖維中間層上構(gòu)建類似荷葉粗糙表面結(jié)構(gòu),最終制得三層PAN/PVDF/PVDF-MTES Janus納米纖維膜。該纖維膜親水性納米纖維層的水接觸角低至0°,疏水納米纖維層的水接觸角高達170°。圖4為該纖維膜油水分離原理示意圖,由圖可以觀察到,當(dāng)疏水層為上層時,該纖維膜對油水混合物和油包水乳液,分離效率達98%以上;當(dāng)親水層為上層時,該纖維膜對水包油乳液分離效率達93%以上。在分離水包油乳液時,Janus納米纖維膜的通量通常會嚴重降低,是因為在分離乳液過程中,未充分發(fā)揮親水層和疏水層的協(xié)同作用。因此,制備Janus納米纖維膜的關(guān)鍵在于如何發(fā)揮親水層和疏水層的協(xié)同作用。Zhang等[33]通過靜電紡絲法制得PAN/Zn(Ac)2納米纖維層和PVDF-HFP疏水性納米纖維層,然后通過原位生長法在PAN/Zn(Ac)2納米纖維表面生長親水性ZnO納米針,使得PAN/Zn(Ac)2納米纖維層浸潤性由疏水性轉(zhuǎn)變?yōu)橛H水性,最終制得多層復(fù)合Janus納米纖維膜。ZnO納米針穿透PVDF-HFP納米纖維層,此特殊的多層貫穿連接結(jié)構(gòu)可以協(xié)同發(fā)揮親水層的尺寸篩選機制和疏水層的聚集機制,使所得膜具有優(yōu)異的油水分離性能。該膜的平均孔徑為1.1 μm,僅依靠重力可高效分離平均粒徑為650 nm的水包甲苯乳液,通量可達32100 L/(m2·h·bar),所得濾液含油量低至4 mg/L,為實現(xiàn)高效分離水包油乳液開辟了新途徑。
雖然靜電紡Janus納米纖維膜已成功應(yīng)用于油水分離領(lǐng)域,但其在實際應(yīng)用中,會不可避免地受到污染,進而導(dǎo)致Janus納米纖維膜出現(xiàn)性能衰減、結(jié)構(gòu)被破壞等問題,極大限制了Janus納米纖維膜應(yīng)用。因此,開發(fā)具有優(yōu)異抗污染性能和分離性能且結(jié)構(gòu)穩(wěn)定的Janus納米纖維膜是未來的研究方向之一。
3.2 膜蒸餾
隨著淡水資源緊缺問題日益嚴重,對海水淡化技術(shù)的研究迫在眉睫。其中,膜蒸餾技術(shù)具有操作簡單和分離效率高等優(yōu)點,已廣泛應(yīng)用于海水淡化領(lǐng)域。疏水膜在膜蒸餾過程中,抗污染性低,滲透通量和分離效率衰減快,導(dǎo)致其使用周期短。研究發(fā)現(xiàn),相較于疏水膜,Janus納米纖維膜具有獨特的多孔結(jié)構(gòu)和對稱選擇潤濕性,可有效提升其抗污染性,提升膜蒸餾性能[34]。
Zhu等[35]以PVDF為成纖聚合物,以NH3·H2O和三甲氧基十七烷基硅烷(trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane,17-FAS)為添加劑,通過靜電紡絲法制得PVDF納米纖維層;然后以PVA和聚丙烯酸(Polyacrylic acid,PAA)為原料,通過靜電噴涂法在PVDF納米纖維層表面構(gòu)建親水性微/納串珠層;通過經(jīng)熱處理法使得NH3·H2O和17-FAS發(fā)生反應(yīng),使得PVDF納米纖維層的選擇潤濕性由疏水親油轉(zhuǎn)變?yōu)槭杷栌?,最終制得Janus納米纖維。該纖維膜的疏水性納米纖維層水接觸角高達157°,親水性納米纖維層的水下油接觸角高達156°。在膜蒸餾處理含油含鹽廢水的過程中,膜滲透通量可達27 L/(m2·h),脫鹽效率可達99%,表現(xiàn)出了優(yōu)異的膜蒸餾性能及抗油污性能。Ju等[36]以PVA為成纖聚合物,以炭黑為無機添加劑,通過靜電紡絲法制得親QsvPLc/68rVh+yxMLt8S1Lwz55unMFOlqg9p3aZ/3hA=水光熱納米纖維層;然后以PVDF為成纖聚合物,通過靜電紡絲法制得納米纖維中間層;最后以聚四氟乙烯(Polytetrafluor oethylene,PTFE)為成纖聚合物,通過氣流紡絲法制得疏水性納米纖維層,經(jīng)高溫?zé)崽幚砗螅罱K制得三層Janus納米纖維膜。當(dāng)炭黑添加量為15%時,在1 kW/m2光照強度下,滲透通量可達1.05 L/(m2·h),脫鹽率大于99.99%,光熱轉(zhuǎn)換效率可達71.4%。當(dāng)膜蒸餾處理含十二烷基硫酸鈉、油和CaCl2的含鹽廢水時,連續(xù)運行60 h后,Janus膜的滲透通量仍可達1.035 L/(m2·h),且脫鹽率大于99.98%,表現(xiàn)出優(yōu)異的高光熱轉(zhuǎn)換性能和抗污染性。
目前,靜電紡Janus納米纖維膜獨特性能可有效地降低膜污染,相較于疏水性膜,使用壽命較長,但其廢棄時造成的無機鹽、有機物質(zhì)和微生物等膜污染問題仍無法不可避免。尤其,當(dāng)化學(xué)品或油性污染物接觸膜表面時,膜污染問題尤其嚴重,因此,在膜蒸餾領(lǐng)域,減少或避免膜污染問題是Janus納米纖維膜的未來研究方向之一。
3.3 催化降解
工業(yè)廢水成分復(fù)雜,其中染料、重金屬離子等污染物性能穩(wěn)定,僅通過物理分離無法徹底處理。為此,科研人員常將催化劑引入納米纖維膜,從而賦予其優(yōu)異的催化降解性能[37-39]。
Xu等[40]以PVDF-HFP為成纖聚合物,通過靜電紡絲法制得疏水性納米纖維層;然后以PAN為成纖聚合物,以吡啶配位鈷單原子納米催化劑為添加劑,制得親水性納米纖維層。所得Janus納米纖維膜在2 min內(nèi)對苯胺的去除率可達92%,表現(xiàn)出優(yōu)異的催化降解性能。此外,所得Janus納米纖維膜具有優(yōu)異的膜蒸餾性能和油水分離性能。Han等[41]以聚苯乙烯為成纖聚合物,通過靜電紡絲法制得疏水性納米纖維層;然后以PAN、聚乙烯吡咯烷酮、TiO2納米粒子和酞菁鐵的混合溶液為紡絲液,通過靜電紡絲法制得親水性納米纖維層,超聲去除聚乙烯吡咯烷酮以構(gòu)建蜂窩狀結(jié)構(gòu),制得Janus納米纖維膜。該纖維膜疏水納米纖維層水接觸角可達140°,親水納米纖維層水接觸角僅為28°。疏水層作為氣體通道,將O2輸送至親水催化層,同時光敏劑酞菁鐵提高了TiO2對可見光的捕獲能力,促進活性氧生成,進一步提高所得Janus納米纖維膜對有機污染物的降解效率。
靜電紡Janus納米纖維膜具有多級可調(diào)控的結(jié)構(gòu),在催化降解領(lǐng)域具有巨大的應(yīng)用潛力,但其結(jié)構(gòu)穩(wěn)定性和抗污染性差、催化物質(zhì)單一等問題,很大程度上限制其廣泛應(yīng)用。因此,迫切需要開發(fā)具有穩(wěn)定結(jié)構(gòu)的納米纖維膜和多功能催化劑,以實現(xiàn)對不同物質(zhì)的催化降解。
3.4 空氣過濾
靜電紡納米纖維膜具有高孔隙率和高比表面積等優(yōu)點,在空氣過濾領(lǐng)域具有廣泛的應(yīng)用[42]。研究人員發(fā)現(xiàn)單一親水性材料易被污染和破壞,單一疏水性材料由于其低水蒸氣滲透性而不適合長期佩戴。因此,在空氣過濾領(lǐng)域,具有不同表面選擇潤濕性的Janus納米纖維膜逐漸得到廣泛應(yīng)用。
Chen等[43]以PVDF為成纖聚合物,通過靜電紡絲法制得串珠結(jié)構(gòu)疏水性納米纖維層,然后以PAN為成纖聚合物,甲基溴化銨為添加劑,制得親水性納米纖維層。在5.33 cm/s的空氣速度下,所得雙層串珠/無珠Janus納米纖維膜對PM0.3過濾效率高達99.17%,壓降僅為83 Pa,品質(zhì)因子為0.0578 Pa- 表明其具有優(yōu)異的空氣過濾性能,Janus納米纖維膜的空氣過濾原理如圖5所示。甲基溴化銨增加了纖維的總體偶極矩,進而增強了纖維與NaCl顆粒的相互作用,從而提高其過濾能力,同時也賦予所得膜優(yōu)異的抗菌性。Cui等[44]以PAN為成纖聚合物,TiO2納米粒子為添加劑,通過靜電紡絲法制得親水性納米纖維層;然后以PVDF-HFP為成纖聚合物,SiO2納米粒子為添加劑,通過靜電紡絲法制得疏水性納米纖維層。上述所得Janus納米纖維膜對PM0.225和PM0.875-7.25的過濾效率分別高達99.56%和100%,壓降僅為27 Pa。在連續(xù)過濾測試中,所得膜對PM2.5的過濾效率高達100%,壓降保持不變,表現(xiàn)出優(yōu)異的空氣過濾性能。
得益于獨特的結(jié)構(gòu)與性能,靜電紡Janus納米纖維膜在空氣過濾領(lǐng)域具有較為廣泛的應(yīng)用。隨著膜功能化研究的不斷深入,開發(fā)低壓降,多功能(如耐高溫、光催化、吸附有毒氣體、自清潔等)的靜電紡Janus納米纖維膜已成為當(dāng)前研究的趨勢,以滿足更嚴苛條件下的高效空氣過濾。
3.5 傷口敷料
傷口敷料長期與血液、皮膚和其他組織接觸,需要為創(chuàng)口和創(chuàng)面提供適宜的微環(huán)境[45]。然而,傳統(tǒng)紗布生物相容性和滲透性較差,不能滿足上述要求。靜電紡納米纖維膜用作傷口敷料時,高孔隙率確保了氣液交換,膜的結(jié)構(gòu)與細胞基質(zhì)結(jié)構(gòu)類似,可以促進細胞生長繁殖[46]。靜電紡Janus納米纖維膜的親水層和傷口直接接觸,疏水外層隔絕外界水分和微生物,免受外界微生物干擾。Janus納米纖維膜在傷口敷料領(lǐng)域展示的這些優(yōu)勢為傷口敷料朝功能化方向發(fā)展提供了一條途徑。
Zhu等[47]以多孔銅網(wǎng)為接收基體,聚己內(nèi)酯(Polycaprolactone,PCL)為成纖聚合物,通過靜電紡絲法制備疏水性納米纖維層;然后將PCL納米纖維層從多孔銅網(wǎng)上剝離,并以其為接收基體,以PCL為成纖聚合物,聚乙二醇和去鐵胺為添加劑,通過靜電紡絲法制得親水性納米纖維層。所親水納米纖維層的水接觸角低至0°,疏水納米纖維層的水接觸角為133°,具有優(yōu)異的單向輸水性。親水層貼近傷口,促進傷口周圍液體滲出,網(wǎng)狀結(jié)構(gòu)的設(shè)計,有利于細胞的生長和附著。疏水層負載的去鐵胺既避免了傷口直接接觸引起的細胞毒性,又能促進血管的生成活性,為傷口愈合提供一種方法。除了在納米纖維膜上負載藥物促進傷口愈合,靜電紡Janus納米纖維膜還有優(yōu)異的止血性能。Hui等[48]以PCL溶液為紡絲液,在靜電紡絲PCL納米纖維過程中,空氣噴涂PAA/聚乙烯亞胺-羧甲基纖維素粉末,制得親水性納米纖維層;然后停止空氣噴涂,繼續(xù)靜電紡絲PCL納米纖維,制得疏水性納米纖維層,最終制得Janus納米纖維膜。該纖維膜的親水納米纖維層的水接觸角低至4°,疏水納米纖維層的水接觸角為134°。Janus納米纖維膜的使用原理如圖6所示,該纖維膜可在1 min內(nèi)實現(xiàn)血液凝固,與醫(yī)用紗布和市售明膠止血海綿相比,止血時間縮短4/5,傷口失血量減少2/3,止血效果顯著。
3.6 其他應(yīng)用
除了上述應(yīng)用之外,Janus納米纖維膜在摩擦納米發(fā)電機、食品保鮮、智能紡織品等領(lǐng)域也具有較大的應(yīng)用潛力。Xie等[49]通過順序靜電紡絲法制備了一種基于柔性二維Janus膜和聚甲基丙烯酸甲酯納米帶陣列的新型摩擦納米發(fā)電機,拓展了Janus納米纖維膜的應(yīng)用領(lǐng)域,為開發(fā)新型摩擦納米發(fā)電機提供了新型復(fù)合材料和理論支持。Jiao等[50]通過順序靜電紡絲法制備了PVA/聚氨酯Janus納米纖維膜,該纖維膜具有良好的單向?qū)?、吸水性和抗菌性,能有效延長肉類的保鮮時間。Tang等[51]通過順序靜電紡絲法和浸漬法結(jié)合制備了一種基于MXene的多功能柔性Janus納米纖維膜,該纖維膜具有優(yōu)異的光熱轉(zhuǎn)換性能和溫度傳感能力,展示了在Janus納米纖維膜在智能和可穿戴電子產(chǎn)品領(lǐng)域的廣闊應(yīng)用前景。隨著制備技術(shù)、改性方法等方面研究的不斷深入,靜電紡Janus納米纖維膜受到了越來越多的關(guān)注,應(yīng)用范圍不斷拓寬。
4 結(jié)論與展望
本文首先簡要介紹了靜電紡絲技術(shù)制備納米纖維膜的原理和影響因素,然后對順序靜電紡絲法、靜電紡絲法和物理方法結(jié)合、靜電紡絲法和化學(xué)方法結(jié)合制備Janus納米纖維膜進行詳細闡述,最后對Janus納米纖維膜在不同領(lǐng)域的應(yīng)用進行了介紹,表明了其在不同領(lǐng)域的應(yīng)用潛力。雖然靜電紡絲技術(shù)制備Janus納米纖維膜具有較大潛力,但仍面臨以下挑戰(zhàn):
a)雙面性質(zhì)差異的平衡:Janus納米纖維膜兩面通常具有不同的化學(xué)或物理性質(zhì)。在制備過程中,需要平衡不同溶劑溶解度、表面張力等物性差異,以確保紡絲過程順利進行,并獲得可控的Janus結(jié)構(gòu)。
b)納米纖維膜穩(wěn)定性:Janus納米纖維膜的雙面可能具有不同的機械性能和穩(wěn)定性,這會影響到整個納米纖維膜的穩(wěn)定性。如何提高Janus納米纖維膜的力學(xué)強度和穩(wěn)定性是一個關(guān)鍵問題。
c)應(yīng)用領(lǐng)域的限制:靜電紡Janus納米纖維膜目前在實際應(yīng)用中的限制較多,需要進一步研究和探索其在過濾、分離、催化等領(lǐng)域的實際應(yīng)用能力,并解決相應(yīng)的技術(shù)難題。
目前,靜電紡絲技術(shù)制備Janus納米纖維膜已取得了一些進展。例如,通過改變纖維膜的厚度、纖維形狀或表面形態(tài)等,可以實現(xiàn)對納米纖維膜性能的調(diào)節(jié)。未來的靜電紡Janus納米纖維膜的發(fā)展趨勢主要包括以下幾個方面:
a)新型功能性材料的應(yīng)用:開發(fā)出新型的功能性材料,如納米顆粒、聚合物、金屬等,用于制備Janus納米纖維膜,并實現(xiàn)對其性能的調(diào)控。
b)表面改性技術(shù)的研究:通過表面改性技術(shù),如化學(xué)修飾、物理處理等,改變納米纖維膜的表面性質(zhì),從而實現(xiàn)對其浸潤性能的調(diào)節(jié)。
c)功能性納米纖維膜的應(yīng)用研究:探索Janus納米纖維膜在領(lǐng)域中的應(yīng)用,如過濾分離、催化、能源轉(zhuǎn)換等,實現(xiàn)其廣泛應(yīng)用。
參考文獻:
[1]SHARMA C, GUPTA R, GEORGE J K, et al. Janus resorcinol-formaldehyde-based membrane with opposite wettability for efficient separation of oil and water emulsion [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132246.
[2]WANG C, MA Z, QIU Y, et al. Patterned dense Janus membranes with simultaneously robust fouling, wetting and scaling resistance for membrane distillation [J]. Water Research, 2023, 242: 120308.
[3]ZHANG L, PAN S, LIU Y, et al. Janus carbon nitride membrane for robust and enhanced nanofluidic power generation from wastewater [J]. Water Research, 2023, 242: 120285.
[4]朱染染, 岳洪印, 陳永輝, 等. 靜電紡PCL纖維膜的制備及其性能 [J]. 現(xiàn)代紡織技術(shù), 2023, 31(1): 130-135.
ZHU Ranran, YUE Hongyin, CHEN Yonghui, et, al. Preparation and properties of membranes based on PCL by electrospinning [J]. Advanced Textile Technology, 2023, 31(1): 130-135.
[5]ZHANG Y, LI T T, REN H T, et al. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning [J]. RSC Advances, 2020, 10(6): 3529-3538.
[6]WU W, SOTA H, HIROGAKI T, et al. Investigation of air filter properties of nanofiber non-woven fabric manufactured by a modified melt-blowing method along with flash spinning method [J]. Precision Engineering, 202 68: 187-196.
[7]AN H J, CHOI Y C, OH H J, et al. Structure development in high-speed melt spinning of high-molecular weight poly(ethylene terephthalate)/polypropylene islands-in-the-sea bicomponent fibers [J]. Polymer, 202 238: 124365.
[8]GAO M, LI J, WANG Z, et al. Hierarchical nickel cobaltite nanoneedle arrays armored flexible electrospinning carbon nanofibers membrane for electrochemical deionization [J]. Separation and Purification Technology, 2024, 328: 125084.
[9]高翼飛, 肖長發(fā), 冀大偉, 等. 熔融紡絲-拉伸法制備PVDF中空纖維膜及其油-水分離性能 [J]. 高等學(xué)?;瘜W(xué)學(xué)報, 202 42(6): 2065-2071.
GAO Yifei, XIAO Changfa, JI Dawei, et al. Preparation of PVDF hollow fiber membranes via melt spinning-stretching method and its oil-water separation performance [J]. Chemical Journal of Chinese Universities, 202 42(6): 2065-2071.
[10]李簫, 劉元軍, 趙曉明. 靜電紡絲納米纖維基吸聲材料的研究進展 [J]. 現(xiàn)代紡織技術(shù), 202 30(5): 246-258.
LI Xiao, LIU Yuanjun, ZHAO Xiaoming. Research progress of electrospinning nanofiber-based sound-absor-bing materials [J]. Advanced Textile Technology, 202 30(5): 246-258.
[11]蘇芳芳, 經(jīng)淵, 宋立新, 等. 我國靜電紡絲領(lǐng)域研究現(xiàn)狀及其熱點:基于CNKI數(shù)據(jù)庫的可視化文獻計量分析[J]. 東華大學(xué)學(xué)報(自然科學(xué)版), 2024,50(1):45-54.
SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: Visual bibliometric analysis based on CNKI database[J]. Journal of Donghua University (Natural Science), 2024,50(1):45-54.
[12]JIAO Y, JING C, WANG Y, et al. Electrospinning synthesis of Co3O4 porous nanofiber monolithic catalysts for the room-temperature indoor catalytic oxidation of formaldehyde at low concentrations [J]. Applied Surface Science, 2023, 639: 158215.
[13]高磊, 牛家?guī)V, 金欣, 等. 超細纖維合成革柔軟改性的研究進展[J]. 皮革科學(xué)與工程, 202 32(4): 54-59.
GAO Lei, NIU Jiarong, JIN Xin, et al. Research progress on soft modification of microfiber synthetic leather[J]. Leather Science and Engineering, 202 32(4): 54-59.
[14]朱豆豆, 付少海, 張繼超. 基于靜電紡絲技術(shù)的防水透濕微納米纖維膜研究進展[J]. 服裝學(xué)報, 2023, 8(2): 95-101.
ZHU Doudou, FU Shaohai, ZHANG Jichao. Research progress on waterproof and moisture permeable micro-nanofibrous membranes based on electrospinning technology[J]. Journal of Clothing Research, 2023, 8(2): 95-101.
[15]宋凱,袁文博,王旭杰,等.基于 Hofmeister 效應(yīng)改性明膠靜電紡絲纖維膜的制備與表征[J].皮革科學(xué)與工程,2023.33(4): 7-10.
SONG Kai, YUAN Wenbo, WANG Xujie, et al. Preparation and characterization of modified gelatin electrospun fiber films based on hofmeister effect[J]. Leather Science and Engineering, 2023, 33(4): 7-10.
[16]CHENG N, MIAO D, WANG C, et al. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation [J]. Chemical Engineering Journal, 2023, 460: 141581.
[17]SAJESH K M, KIRAN K, NAIR S V, et al. Sequential layer-by-layer electrospinning of nano SrCO3/PRP loaded PHBV fibrous scaffold for bone tissue engineering [J]. Composites Part B: Engineering, 2019, 167: 754.
[18]WANG P, LI Y, ZHANG C, et al. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylce-llulose nanofibrous film for sustained release of curcumin [J]. Food Chemistry, 2020, 308: 125599.
[19]CHEN Z, LI J, ZHOU J, et al. Photothermal Janus PPy-SiO2@PAN/F-SiO2@PVDF-HFP membrane for high-efficient, low energy and stable desalination through solar membrane distillation [J]. Chemical Engineering Journal, 2023, 451: 138473.
[20]WU M, XIANG B, MU P, et al. Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil-water emulsion [J]. Separation and Purification Technology, 202 297: 121532.
[21]GAO Y, SANG X, CHEN Y F, et al. Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery [J]. Journal of Materials Science, 2020, 55(8): 3549-3560.
[22]ZHANG X, ZHU Y, FANG W, et al. Thin film composite structured Janus membrane for fast gravity-driven separation of a trace of blood [J]. Journal of Membrane Science, 202 620: 118853.
[23]ZHANG C, LAN X, LIU Q, et al. Bi-functional Janus all-nanomat separators for acid scavenging and manganese ions trapping in LiMn2O4 lithium-ion batteries [J]. Materials Today Physics, 202 24: 100676.
[24]YANG R, LI X, WANG X, et al. Preparation of PVA/Ag antibacterial hydrophobic slow-release composite films with core-shell structure by one-step method [J]. Materials Letters, 2023, 352: 135086.
[25]HE T, CHEN F. Enhanced separation performance of composite nanofiltration membranes via electrostatic air spray PSS/PEI interlayer [J]. Desalination, 2024, 573: 117221.
[26]LI S M, LI L Z, ZHONG J H, et al. Engineering beads-on-string structural electrospun nanofiber Janus membrane with multi-level roughness for membrane distillation [J]. Desalination, 202 539: 115950.
[27]LI T T, SUN L, ZHANG Y, et al. Chitosan-based antibacterial microspheres loaded multifunctional Janus composite membranes with unidirectional biofluid transport, antioxidant and pH-responsive monitoring [J]. Chemical Engineering Journal, 2023, 472: 144820.
[28]LIU M, WANG J, DING Y, et al. Highly efficient recovery of viscous oil through nondispersive solvent extraction using polydopamine modified PVDF Janus membrane [J]. Journal of Water Process Engineering, 2023, 54: 103946.
[29]ZHANG W, GUAN X, QIU X, et al. Bioactive composite Janus nanofibrous membranes loading Ciprofloxacin and Astaxanthin for enhanced healing of full-thickness skin defect wounds [J]. Applied Surface Science, 2023, 610: 155290.
[30]CHENG C, WEI Z, GU J, et al. Rational design of Janus nanofibrous membranes with novel under-oil superhydro-philic/superhydrophobic asymmetric wettability for water-in-diesel emulsion separation [J]. Journal of Colloid and Interface Science, 202 606: 1563-1571.
[31]WANG H X, ZHOU H, NIU H T, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance [J]. Advanced Materials Interfaces, 2015, 2(4):1-7.
[32]XIAO Y, XIAO F, JI W, et al. Bioinspired Janus membrane of polyacrylonitrile/poly (vinylidene fluoride)@poly (vinylidene fluoride)-methyltriethoxysilane for oil-water separation [J]. Journal of Membrane Science, 2023, 687: 122090.
[33]ZHANG X, ZHU Y, ZHANG F, et al. Hydrophilic/hydrophobic nanofibres intercalated multilayer membrane with hierarchical structure for efficient oil/water separation [J]. Separation and Purification Technology, 202 288: 120672.
[34]AFSARI M, SHIRAZI M M A, GHORBANI A H, et al. Triple-layer nanofiber membrane with improved energy efficiency for treatment of hypersaline solution via membrane distillation [J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110638.
[35]ZHU Z, ZHONG L, CHEN X, et al. Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation [J]. Journal of Membrane Science, 2020, 615: 118499.
[36]JU J, HUANG Y, LIU M, et al. Construction of electrospinning Janus nanofiber membranes for efficient solar-driven membrane distillation [J]. Separation and Purification Technology, 2023, 305: 122348.
[37]劉巍, 廖偉龍, 寧楊, 等. 納米纖維負載MnOx催化劑在甲醛催化凈化中的應(yīng)用[J]. 天津工業(yè)大學(xué)學(xué)報, 2023, 42(4): 44-50.
LIU Wei, LIAO Weilong, NING Yang, et al. Application of nanofiber-supported MnOx catalyst in catalytic purification of formaldehyde[J]. Journal of Tiangong University, 2023, 42(4): 44-50.
[38]QI X, ZHU Y, SONG L, et al. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts [J]. Applied Catalysis A: General, 2023, 656: 119130.
[39]朱永軍, 宋立新, 熊杰. 柔性碳基復(fù)合納米纖維膜光催化降解PET纖維與析氫 [J]. 絲綢, 202 59(10): 66-73.
ZHU Yongjun, SONG Lixin, XIONG Jie. Photocatalytic degradation of PET fibers and hydrogen evolution by flexible carbon-based composite nanofiber membranes [J]. Journal of Silk, 202 59(10): 66-73.
[40]XU C, XU S, SONG J, et al. Janus C-PAN/PH membrane for simulated shale gas wastewater (SGW) treatment in membrane distillation: Integrating surface property and catalytic degradation for anti-fouling [J]. Journal of Membrane Science, 2023, 683: 121785.
[41]HAN Z, FEI J, LI J, et al. Enhanced dye-sensitized photocatalysis for water purification by an alveoli-like bilayer Janus membrane [J]. Chemical Engineering Journal, 202 407: 127214.
[42]殷妮,劉福娟.空氣過濾用納米纖維膜研究進展[J].現(xiàn)代紡織技術(shù),202 29(5):26-36.
YIN Ni, LIU Fujuan. Research progress on nanofiber membranes in air filtration[J]. Advanced Textile Techno-logy, 202 29(5): 26-36.
[43]CHEN J, RAO Y, ZHU X, et al. Electrospun nanofibrous membranes with asymmetric wettability for unidirectional moisture transport, efficient PM capture and bacteria inhibition [J]. Journal of Membrane Science, 202 662: 121006.
[44]CUI W, FAN T, LI Y, et al. Robust functional Janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation [J]. Journal of Membrane Science, 202 663: 121018.
[45]YANG Q, GUO J, ZHANG S, et al. PVA/PEO/PVA-g-APEG nanofiber membranes with cytocompatibility and anti-cell adhesion for biomedical applications [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130638.
[46]石佳博,張睿禎,盛理,等. 生物大分子基納米復(fù)合功能膜的制備及應(yīng)用研究進展[J].皮革科學(xué)與工程,2023,33(3):24-30.
SHI Jiabo, ZHANG Ruizhen, SHENG Li, et al. Research progress on the preparation and application of multifunctional biopolymer: Based nanocomposite films[J]. Leather Science and Engineering,2023,33(3):24-30.
[47]ZHU Y, ZHOU W, XIANG J, et al. Deferoxamine-loaded Janus electrospun nanofiber dressing with spatially designed structure for diabetic wound healing [J]. Materials & Design, 2023, 233: 112166.
[48]HUI C, GAO Y, YAN B Y, et al. Collocalia birds inspired Janus-structured bandage with strong wet tissue adhesion for rapid hemostasis and wound healing [J]. Chemical Engineering Journal, 2023, 464: 142458.
[49]XIE Y, MA Q, YUE B, et al. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities [J]. Chemical Engineering Journal, 2023, 452: 139393.
[50]JIAO X, XIE J, DU H, et al. Antibacterial smart absorbent pad with Janus structure for meat preservation [J]. Food Packaging and Shelf Life, 2023, 37: 101066.
[51]TANG Y, YAN J, WANG J, et al. MXene based flexible Janus nanofibrous membrane composite for unidirectional water transportation [J]. Composites Science and Tech-nology, 2023, 239: 110032.
Research progress in electrospun Janus nanofiber membranes
WANG Qi, CHEN Mingxing, ZHANG Wei, WU Yanjie, WANG Xinya
(a.College of Textile and Garments; b.Hebei Province Technology Innovation Center of Textile and Garment,
Hebei University of Science and Technology, Shijiazhuang 050018, China)
Abstract:
The Janus separation membrane, a special kind of thin film material, is named for its two sides having different properties. One side of the Janus membrane is hydrophilic (oleophobic), while the other side is hydrophobic (oleophilic), which gives the Janus membrane a unique advantage in oil-water separation, membrane distillation, catalytic degradation and other fields. Electrospun Janus nanofiber membranes have attracted much attention due to their advantages of high specific surface area, slender fiber structure, and controllability. In order to better understand the research progress of electrospun Janus nanofiber membranes, this paper reviewed the recent research in this field. The preparation methods of electrospun Janus nanofiber membranes and their applications in various fields were highlighted.
First, this paper described the method and principle to prepare Janus nanofiber membranes through electrostatic spinning. In electrospinning, the polymer solution or melt was deformed under the action of high voltage electric field to form the "Taylor cone", and then the nanofibers were prepared by stretching, refining and curing. In this paper, the commonly used methods for the preparation of Janus nanofiber membranes based on electrospinning technology, such as sequential electrospinning, electrospinning combined with physical methods, and electrospinning combined with chemical methods, were summarized, and their principles, advantages and disadvantages were described in detail.
Then, this paper detailed the applications of electrospun Janus nanofiber membranes in various fields. In this paper, recent advances in the application of Janus nanofiber membranes in oil-water separation were introduced. The synergistic role played by the sieving mechanism of porous structure and the aggregation mechanism of symmetrically selected wettability in the oil-water separation process was emphasized in this part. Secondly, its application in membrane distillation was introduced. Researchers found that, in membrane distillation, the lower the resistance to pollution of the hydrophobic membrane is, the lower its permeability and separation efficiency will be. The unique porous structure and symmetrical selective wettability of the Janus nanofiber membrane can effectively improve its pollution resistance and enhance its membrane distillation performance. Then its application in catalytic degradation was described. Based on the multi-level controllable structure of electrospun Janus nanofiber membranes, researchers often introduce catalysts to give Janus nanofiber membranes excellent catalytic degradation performance, in order to remove dyes, heavy metal ions and other pollutants that cannot be thoroughly treated by physical separation. Finally, the applications of electrospun Janus nanofiber membranes inair filtration and biomedicine were introduced, which fully indicates that the unique structure and properties of electrospun Janus nanofiber membranes play an important role in in these two aspects.
In summary, this paper reviews the recent research progress of electrospun Janus nanofiber membranes, and introduces their preparation methods and applications in various fields. Through the discussion of their advantages and disadvantages, as well as the prospect of future development, it is hoped that the paper can provide some reference for the research and application of electrospun Janus nanofiber membranes.
Keywords:
electrospinning; Janus nanofiber membranes; preparation method; water treatment; air filtration; biomedical use