• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    自拍欧美九色日韩亚洲蝌蚪91| 午夜精品在线福利| 久久久久久亚洲精品国产蜜桃av| 真人做人爱边吃奶动态| 免费少妇av软件| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| 国产片内射在线| 亚洲中文字幕一区二区三区有码在线看 | 国产极品粉嫩免费观看在线| 丁香六月欧美| 精品久久久久久,| av福利片在线| 欧美激情久久久久久爽电影 | а√天堂www在线а√下载| 国产精品永久免费网站| 免费在线观看影片大全网站| 黄频高清免费视频| 久久久久久久久免费视频了| 亚洲成人精品中文字幕电影| 如日韩欧美国产精品一区二区三区| 级片在线观看| 国产午夜福利久久久久久| 91成年电影在线观看| 老司机福利观看| 欧美一区二区精品小视频在线| 久久精品91无色码中文字幕| 亚洲色图综合在线观看| 美女免费视频网站| 91国产中文字幕| 黄色成人免费大全| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 97碰自拍视频| 一夜夜www| 色av中文字幕| 侵犯人妻中文字幕一二三四区| 免费观看人在逋| 最近最新中文字幕大全电影3 | 在线观看午夜福利视频| 天天一区二区日本电影三级 | 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 精品少妇一区二区三区视频日本电影| 午夜福利,免费看| 免费在线观看亚洲国产| 99久久久亚洲精品蜜臀av| 18禁美女被吸乳视频| 波多野结衣巨乳人妻| 午夜a级毛片| 十八禁网站免费在线| 久久午夜亚洲精品久久| 天天一区二区日本电影三级 | 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 精品日产1卡2卡| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 19禁男女啪啪无遮挡网站| 长腿黑丝高跟| av在线天堂中文字幕| 丝袜人妻中文字幕| 可以在线观看的亚洲视频| 最新在线观看一区二区三区| www.www免费av| 一区二区三区激情视频| 日本免费a在线| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 免费在线观看完整版高清| 国产精品电影一区二区三区| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 欧美午夜高清在线| 在线播放国产精品三级| 一a级毛片在线观看| 91麻豆av在线| 亚洲伊人色综图| 精品欧美国产一区二区三| 女性被躁到高潮视频| 久久亚洲精品不卡| 久久伊人香网站| 亚洲国产精品999在线| 欧美老熟妇乱子伦牲交| or卡值多少钱| 丝袜美足系列| 中文字幕人妻丝袜一区二区| 我的亚洲天堂| АⅤ资源中文在线天堂| 免费在线观看日本一区| 午夜福利,免费看| 国产99久久九九免费精品| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 欧美日韩福利视频一区二区| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 亚洲成人国产一区在线观看| 18禁裸乳无遮挡免费网站照片 | 一级作爱视频免费观看| 日韩欧美在线二视频| 欧美日本视频| 午夜视频精品福利| 久久精品影院6| 青草久久国产| 91大片在线观看| 亚洲 欧美 日韩 在线 免费| 日本 av在线| 久久亚洲真实| 在线国产一区二区在线| 久久久国产精品麻豆| 91在线观看av| 狠狠狠狠99中文字幕| 午夜福利影视在线免费观看| 免费不卡黄色视频| 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 成人手机av| av有码第一页| 夜夜看夜夜爽夜夜摸| 国产精华一区二区三区| 悠悠久久av| 如日韩欧美国产精品一区二区三区| 999久久久精品免费观看国产| 国产成人精品无人区| 黄色成人免费大全| 大型av网站在线播放| 国产亚洲精品一区二区www| 成在线人永久免费视频| 成人永久免费在线观看视频| 两性夫妻黄色片| 老司机靠b影院| 女人精品久久久久毛片| 美女高潮喷水抽搐中文字幕| 国产1区2区3区精品| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 真人一进一出gif抽搐免费| 乱人伦中国视频| 亚洲第一欧美日韩一区二区三区| 欧美激情 高清一区二区三区| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 国内久久婷婷六月综合欲色啪| 亚洲av美国av| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| 日韩中文字幕欧美一区二区| 精品熟女少妇八av免费久了| 两个人免费观看高清视频| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 欧美日韩中文字幕国产精品一区二区三区 | 日韩视频一区二区在线观看| 国产激情欧美一区二区| а√天堂www在线а√下载| 亚洲欧美激情在线| 亚洲免费av在线视频| 久久狼人影院| 成人18禁高潮啪啪吃奶动态图| 俄罗斯特黄特色一大片| 亚洲全国av大片| aaaaa片日本免费| 久热这里只有精品99| 午夜免费鲁丝| 天天添夜夜摸| av免费在线观看网站| 97超级碰碰碰精品色视频在线观看| 久久中文看片网| 欧美绝顶高潮抽搐喷水| 久久久国产成人免费| 午夜a级毛片| 男男h啪啪无遮挡| 亚洲九九香蕉| 999精品在线视频| 色尼玛亚洲综合影院| 亚洲久久久国产精品| 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 亚洲欧美精品综合一区二区三区| 满18在线观看网站| 天天躁夜夜躁狠狠躁躁| 一本综合久久免费| 亚洲精品在线美女| 国产成人免费无遮挡视频| 国产精品香港三级国产av潘金莲| 一区在线观看完整版| 搞女人的毛片| 久久精品影院6| 9色porny在线观看| 久久国产乱子伦精品免费另类| 成人手机av| 久久香蕉精品热| 国产成人精品久久二区二区91| 国产aⅴ精品一区二区三区波| 国产又爽黄色视频| 午夜免费鲁丝| 18美女黄网站色大片免费观看| 午夜a级毛片| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 男女之事视频高清在线观看| 色在线成人网| 亚洲va日本ⅴa欧美va伊人久久| 欧美人与性动交α欧美精品济南到| 男女做爰动态图高潮gif福利片 | 国产99久久九九免费精品| 禁无遮挡网站| 亚洲第一av免费看| 热re99久久国产66热| www.www免费av| 精品一品国产午夜福利视频| 在线国产一区二区在线| 欧美日韩一级在线毛片| 在线天堂中文资源库| 亚洲av五月六月丁香网| 国产单亲对白刺激| 午夜福利在线观看吧| 久久国产乱子伦精品免费另类| 国产精品乱码一区二三区的特点 | 亚洲色图综合在线观看| 高清毛片免费观看视频网站| 国产av一区二区精品久久| 一本大道久久a久久精品| 在线av久久热| 亚洲aⅴ乱码一区二区在线播放 | 日本欧美视频一区| 国产精品一区二区精品视频观看| 9色porny在线观看| tocl精华| 亚洲精品在线观看二区| 性少妇av在线| 国产精品自产拍在线观看55亚洲| 曰老女人黄片| 在线观看免费午夜福利视频| 国产成人系列免费观看| 欧美日本视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品九九99| 久久欧美精品欧美久久欧美| 看黄色毛片网站| 久99久视频精品免费| 99国产综合亚洲精品| 波多野结衣高清无吗| 黄色a级毛片大全视频| 桃红色精品国产亚洲av| 99国产精品免费福利视频| 亚洲全国av大片| 精品久久久久久久人妻蜜臀av | 在线观看日韩欧美| 黄色毛片三级朝国网站| 日本免费一区二区三区高清不卡 | 国产人伦9x9x在线观看| 国产亚洲精品久久久久久毛片| 国产精品久久久人人做人人爽| 久久精品91无色码中文字幕| 高清在线国产一区| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 欧美色视频一区免费| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 91国产中文字幕| 亚洲最大成人中文| 丝袜美腿诱惑在线| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱 | av视频免费观看在线观看| 亚洲人成伊人成综合网2020| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲av片天天在线观看| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 脱女人内裤的视频| 欧美老熟妇乱子伦牲交| 国产精品永久免费网站| 韩国精品一区二区三区| 一级作爱视频免费观看| 亚洲中文字幕一区二区三区有码在线看 | 精品国产乱子伦一区二区三区| 99re在线观看精品视频| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 亚洲精华国产精华精| 无限看片的www在线观看| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三区在线| 国产成人影院久久av| 欧美性长视频在线观看| 亚洲av日韩精品久久久久久密| 9色porny在线观看| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 妹子高潮喷水视频| 成人手机av| 黄色成人免费大全| 亚洲五月天丁香| 一本综合久久免费| 极品教师在线免费播放| 午夜日韩欧美国产| 亚洲av电影在线进入| 中文字幕久久专区| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 亚洲少妇的诱惑av| 国产成人av教育| 免费在线观看影片大全网站| 成人手机av| 国产精品98久久久久久宅男小说| 午夜亚洲福利在线播放| 在线国产一区二区在线| 免费高清视频大片| 午夜成年电影在线免费观看| 99re在线观看精品视频| 亚洲第一欧美日韩一区二区三区| 午夜福利18| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 久久亚洲真实| 少妇熟女aⅴ在线视频| 99国产精品免费福利视频| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 欧美中文日本在线观看视频| 波多野结衣av一区二区av| 国产成人av教育| 身体一侧抽搐| 国产精华一区二区三区| 国产精品免费视频内射| 欧美成人一区二区免费高清观看 | 色综合站精品国产| 男男h啪啪无遮挡| 亚洲成av片中文字幕在线观看| svipshipincom国产片| 一级a爱片免费观看的视频| 国产国语露脸激情在线看| 亚洲中文字幕一区二区三区有码在线看 | 99香蕉大伊视频| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 淫秽高清视频在线观看| 国产精品野战在线观看| 天堂√8在线中文| 午夜久久久久精精品| 国产精品久久久人人做人人爽| 老司机福利观看| 人人妻,人人澡人人爽秒播| av福利片在线| 午夜福利高清视频| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 日韩有码中文字幕| 大型黄色视频在线免费观看| 国产国语露脸激情在线看| 12—13女人毛片做爰片一| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 国产精品1区2区在线观看.| 欧美成人性av电影在线观看| 亚洲国产精品合色在线| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| 一夜夜www| 韩国av一区二区三区四区| 久久久精品欧美日韩精品| 精品卡一卡二卡四卡免费| 久久精品影院6| 免费观看精品视频网站| 在线天堂中文资源库| 亚洲天堂国产精品一区在线| 亚洲视频免费观看视频| svipshipincom国产片| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 国产精品秋霞免费鲁丝片| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 悠悠久久av| 大香蕉久久成人网| 久久久久久免费高清国产稀缺| 免费看十八禁软件| 久久精品91蜜桃| 在线观看免费日韩欧美大片| 久久精品91蜜桃| 香蕉国产在线看| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 黄片大片在线免费观看| 一边摸一边抽搐一进一出视频| 国产精品av久久久久免费| 91九色精品人成在线观看| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 亚洲av熟女| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| www日本在线高清视频| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| 亚洲一码二码三码区别大吗| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 亚洲国产欧美日韩在线播放| 精品熟女少妇八av免费久了| 日韩欧美国产一区二区入口| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 嫩草影院精品99| 91精品国产国语对白视频| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| 久久人妻福利社区极品人妻图片| 国产精品乱码一区二三区的特点 | 精品少妇一区二区三区视频日本电影| 香蕉国产在线看| 免费在线观看影片大全网站| 99久久国产精品久久久| 国产野战对白在线观看| 成人三级做爰电影| 日韩欧美一区视频在线观看| 国产av一区在线观看免费| 亚洲激情在线av| 亚洲第一电影网av| 欧美老熟妇乱子伦牲交| 免费在线观看日本一区| 亚洲无线在线观看| 在线十欧美十亚洲十日本专区| 看片在线看免费视频| 在线永久观看黄色视频| 最新美女视频免费是黄的| 在线天堂中文资源库| 国产亚洲精品av在线| av视频在线观看入口| 女同久久另类99精品国产91| 免费在线观看黄色视频的| 村上凉子中文字幕在线| 午夜久久久在线观看| 18禁国产床啪视频网站| 国产精品野战在线观看| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 久久性视频一级片| av天堂在线播放| 亚洲欧美精品综合久久99| 亚洲视频免费观看视频| 精品高清国产在线一区| 亚洲国产精品成人综合色| 久久精品91蜜桃| 国产精品秋霞免费鲁丝片| 啦啦啦免费观看视频1| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片 | 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 亚洲第一青青草原| 9191精品国产免费久久| 满18在线观看网站| 久久久久久免费高清国产稀缺| 很黄的视频免费| avwww免费| 9色porny在线观看| 久久中文字幕人妻熟女| 国产精品一区二区精品视频观看| 99精品久久久久人妻精品| 999久久久国产精品视频| www国产在线视频色| 1024香蕉在线观看| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区黑人| 国产午夜福利久久久久久| 日本vs欧美在线观看视频| 一a级毛片在线观看| 我的亚洲天堂| 日韩视频一区二区在线观看| 亚洲专区国产一区二区| 午夜老司机福利片| 国产在线观看jvid| 夜夜躁狠狠躁天天躁| 欧美日韩亚洲综合一区二区三区_| 女性被躁到高潮视频| 亚洲精华国产精华精| 动漫黄色视频在线观看| 欧美黄色淫秽网站| 国产免费av片在线观看野外av| 9色porny在线观看| 久久久久久久午夜电影| 精品卡一卡二卡四卡免费| 欧美不卡视频在线免费观看 | 国产在线精品亚洲第一网站| 国产一区二区三区视频了| 视频区欧美日本亚洲| 法律面前人人平等表现在哪些方面| 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕一级| 精品久久久久久成人av| 亚洲精品国产区一区二| 日日干狠狠操夜夜爽| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 欧美一区二区精品小视频在线| 亚洲黑人精品在线| 黄色毛片三级朝国网站| 婷婷六月久久综合丁香| 18禁黄网站禁片午夜丰满| 侵犯人妻中文字幕一二三四区| 免费观看精品视频网站| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| 成人精品一区二区免费| 夜夜爽天天搞| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 亚洲成人国产一区在线观看| 9色porny在线观看| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 久久久国产成人精品二区| 女人被躁到高潮嗷嗷叫费观| 电影成人av| 女性被躁到高潮视频| 国产精品 国内视频| 女同久久另类99精品国产91| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 正在播放国产对白刺激| 国产麻豆成人av免费视频| 午夜视频精品福利| 国产麻豆成人av免费视频| 神马国产精品三级电影在线观看 | 一本综合久久免费| 亚洲av熟女| 国产精品亚洲一级av第二区| tocl精华| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 一区福利在线观看| 黄色丝袜av网址大全| avwww免费| 久久国产精品人妻蜜桃| АⅤ资源中文在线天堂| 丁香六月欧美| АⅤ资源中文在线天堂| 精品高清国产在线一区| 免费看美女性在线毛片视频| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 夜夜看夜夜爽夜夜摸| 久9热在线精品视频| 精品电影一区二区在线| 国产区一区二久久| 亚洲欧美日韩无卡精品| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 可以在线观看毛片的网站| 成在线人永久免费视频| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 久久婷婷成人综合色麻豆| 亚洲人成伊人成综合网2020| 免费少妇av软件| 亚洲欧洲精品一区二区精品久久久| 99热只有精品国产| 丝袜美足系列| 日日干狠狠操夜夜爽| 欧美成人午夜精品| 亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片 | 黄色 视频免费看| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片 | 男女午夜视频在线观看| 亚洲男人的天堂狠狠| 一区二区日韩欧美中文字幕| 国产激情欧美一区二区| 久久精品成人免费网站| 国产成人系列免费观看| 成人精品一区二区免费| 男人的好看免费观看在线视频 | 亚洲成人久久性| 日本三级黄在线观看| 叶爱在线成人免费视频播放| 免费在线观看影片大全网站| 成人国语在线视频| 久久天堂一区二区三区四区| 久久国产亚洲av麻豆专区| 一夜夜www| 免费在线观看影片大全网站| 自拍欧美九色日韩亚洲蝌蚪91| 男女下面进入的视频免费午夜 |