• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GMSK相干及非相干調(diào)制解調(diào)算法研究

    2024-08-26 00:00:00余德本?張萬菊
    中國新通信 2024年13期

    摘要:高斯最小頻移鍵控(GMSK)調(diào)制具有很好的頻譜性能、恒包絡(luò)特性、抗干擾能力強,在通信系統(tǒng)中得到廣泛的應(yīng)用。本文研究了1Bit差分解調(diào)算法、2Bit差分解調(diào)算法、基于Viterbi的GMSK解調(diào)算法及基于Laurent分解的GMSK解調(diào)算法,并給出了GMSK解調(diào)算法的誤碼率對比。對算法進行仿真分析,相干解調(diào)算法優(yōu)于非相干解調(diào)算法;相干解調(diào)算法中,基于Viterbi的GMSK解調(diào)算法迭代次數(shù)多,實現(xiàn)復(fù)雜度高;基于Laurent分解的GMSK解調(diào)算法在BT為0.3時,可以只考慮線性部分,算法復(fù)雜度低,在工程中易于實現(xiàn);基于Laurent分解的GMSK解調(diào)算法在四種算法中性能最優(yōu)。

    關(guān)鍵詞: GMSK;Viterbi;Laurent分解

    一、引言

    高斯最小頻移鍵控(GMSK)由最小頻移鍵控(MSK)改進而來,在MSK調(diào)制器前,通過高斯低通濾波器,對其進行高斯脈沖成型產(chǎn)生[1]。GMSK調(diào)制屬于連續(xù)相位調(diào)制,具有頻譜性能好、恒包絡(luò)特性好、抗干擾能力強、FPGA實現(xiàn)容易等特點,確保信息傳輸?shù)陌踩€(wěn)定性。GMSK調(diào)制符合數(shù)字調(diào)制的要求,在通信系統(tǒng)中應(yīng)用廣泛[2]。

    GMSK信號解調(diào)算法分為非相干解調(diào)和相干解調(diào)[3]。非相干解調(diào)不需載波同步[4],容易實現(xiàn),在常規(guī)通信產(chǎn)品中應(yīng)用廣泛,但抗干擾性能差,尤其低信噪比時存在解調(diào)門限選取問題。相干解調(diào)性能優(yōu)越,但運算復(fù)雜。Kaleh G. K提出將GMSK信號進行Laurent分解[5],BbTb選擇合適時非線性GMSK信號可近似為線性信號,然后通過基于Viterbi的解調(diào)算法[6]和基于Laurent分解的解調(diào)算法[7-8]解調(diào)。

    通過仿真可知相干解調(diào)性能優(yōu)于非相干解調(diào),但Viterbi算法需要大量的匹配濾波器,在資源受限的環(huán)境中難以實現(xiàn)。預(yù)編碼可以改善基于Laurent分解的性能,現(xiàn)在很多接收機都是在Viterbi解調(diào)及Laurent分解的基礎(chǔ)上發(fā)展而來的。

    本文針對GMSK解調(diào)算法,研究了相位差分解調(diào)算法、基于Viterbi的GMSK解調(diào)算法、基于Laurent分解的GMSK解調(diào)算法,對比分析各GMSK解調(diào)算法解調(diào)性能、算法復(fù)雜性等。

    二、GMSK調(diào)制解調(diào)算法原理

    (一)GMSK調(diào)制

    GMSK調(diào)制的原理是通過MSK調(diào)制前使用高斯低通濾波器對信號進行預(yù)處理,從而生成GMSK信號。這一步驟的關(guān)鍵在于,高斯濾波器輸出的脈沖形狀直接影響了信號的相位路徑。由于高斯濾波后的脈沖邊緣平滑,沒有陡峭的轉(zhuǎn)折點,這使得相位路徑變得平滑,進而改善了信號的功率譜旁瓣衰減性能。因此,高斯低通濾波器的應(yīng)用在GMSK調(diào)制中具有顯著的優(yōu)勢和良好的性能表現(xiàn),尤其適合于需要較強抗干擾能力的通信系統(tǒng),如跳頻擴頻系統(tǒng)。

    GMSK信號可以表示為:

    (1)

    其中ωct為載波角頻率,φ(t,a)是信息相位。

    GMSK信號特性與3dB帶寬Bb及碼元周期Tb乘積BbTb有關(guān)。圖1展示了GMSK調(diào)制時不同BT值條件下的脈沖響應(yīng)g(t)和相移函數(shù)q(t)變化情況。

    隨著BT值減小,脈沖響應(yīng)曲線g(t)的持續(xù)時間越長,波形越平坦;同時隨著BT值減小,GMSK信號相移函數(shù)q(t)持續(xù)時間也越來越長,碼間串?dāng)_越來越嚴重。即過小的BbTb會給解調(diào)帶來不利的影響,出現(xiàn)碼間干擾的問題,導(dǎo)致GMSK信號解調(diào)性能損失。BbTb取值要綜合考慮,既要考慮波形帶外分量的影響,也要考慮碼間干擾影響。

    (二)GMSK解調(diào)

    GMSK信號解調(diào)分為相干解調(diào)和非相干解調(diào)。相干解調(diào)需要對GMSK信號進行頻率及相位估計,相干接收機的設(shè)計復(fù)雜度高。而非相干接收機的設(shè)計相對簡單,復(fù)雜度較低,但其誤碼性能不如相干解調(diào)。

    1.1Bit差分解調(diào)算法

    接收端接收到的GMSK信號經(jīng)過數(shù)字下變頻后恢復(fù)成I、Q兩路信號。采用1Bit差分檢測算法,將接收到的GMSK信號與經(jīng)過延時并移相的GMSK信號相乘,然后通過低通濾波器。通過輸出信號的相位變化來進行判決。通過1Bit差分檢測算法能夠找出傳輸碼元在1Bit周期時間內(nèi)的相位改變量,當(dāng)相位改變量大于或等于零時,接收到的數(shù)據(jù)是“1”;小于零時,接收到的數(shù)據(jù)是“0”;通過相位改變量的判決比較即可得到碼元信息。

    2. 2Bit差分解調(diào)算法

    當(dāng)采用2Bit差分解調(diào)算法時,接收端接收到的GMSK信號與經(jīng)過2bT時延的信號相乘,經(jīng)過低通濾波后,輸出經(jīng)過限幅器,去除振幅的影響,然后進行判決。與1Bit差分解調(diào)相比,2Bit差分解調(diào)需要進行差分編碼,差分編碼形式為。

    2Bit差分編碼最終判決時,輸出存在直流分量,判決門限應(yīng)該加入相應(yīng)的直流分量S,判決規(guī)則為大于S時,接收到的數(shù)據(jù)是“1”;小于S時,接收到的數(shù)據(jù)是“0”。因為門限S選取不確定,2Bit差分編碼存在檢測門限選取問題,門限選取無法達到最優(yōu)結(jié)果,門限值選取太大太小都容易誤判。而相對來說,1Bit差分解調(diào)選取零為判決門限,誤判機會較小。

    3. 基于Viterbi的GMSK解調(diào)算法

    Viterbi解調(diào)算法是一種最大似然譯碼算法,通過選擇具有最大路徑度量的支路進行路徑回溯來實現(xiàn)信號解調(diào)。n=N的最大似然譯碼就是求解n=N時的幸存路徑,因此Viterbi譯碼就是不斷求取幸存路徑的過程。接收的GMSK信號可以表示為。GMSK相位信息分解為相位狀態(tài)和當(dāng)前碼元間隔變化狀態(tài),相位有四種取值0,π/2,0,3π/2。當(dāng)前碼元間隔相位變化狀態(tài):

    (2)

    t=nTb時刻由相位兩部分共同決定了GMSK信號狀態(tài)表示為Sn=(θn,an-(L-1)/2,…,an+(L-1)/2-1);t=(n+1)Tb時刻由相位兩部分共同決定了GMSK信號狀態(tài)表示為Sn+1=(θn+1,an-(L-1)/2+1,…,an+(L-1)/2);其中,θn+1=θn+(π/2)an-(L-1)/2, Viterbi算法節(jié)點的路徑度量為:

    (3)

    在nTb≤t≤(n+1)Tb時間間隔內(nèi),路徑增量為:

    (4)

    最后根據(jù)Viterbi算法恢復(fù)發(fā)送碼元序列。

    基于Viterbi的GMSK解調(diào)算法運算過程總結(jié)如下:

    (1)在(n+1)Tb時,各節(jié)點狀態(tài)為Sn+1(i),i=0,1,…,Ns-1計算進入狀態(tài)Sn+1(i)路徑增量Z in+1。

    (2)增量Z in+1和nTb時路徑度量λn+1相加,得到(n+1)Tb時路徑度量λjn+1, j=1,2。

    (3)比較λjn+1,選取值最大路徑為幸存路徑。所有狀態(tài)通過步驟⑴到⑶,保存路徑信息和路徑度量。

    (4)設(shè)路徑的記憶長度為NT。(n+1)<Nt時,重復(fù)步驟⑴到⑶,(n+1)≥NT時找出(n+1)Tb時刻所有狀態(tài)中路徑度量最大的狀態(tài)Sn+1(i)。

    (5)找到以Sn+1(i)為終點的幸存路徑,然后回溯得到起點狀態(tài)Sn-NT+1,由Sn-NT+1得到(n-NT)Tb時信息碼元an-NT。

    (6)進入下一個碼元間隔,即n=n+1,返回步驟(1),直到接收序列結(jié)束。

    基于Viterbi的GMSK解調(diào)算法的迭代次數(shù)越多,解調(diào)性能越好,同時復(fù)雜度提高,在仿真時無影響,但在工程中實現(xiàn)基于Viterbi的GMSK解調(diào)算法需要大量的乘法器,占用硬件資源較多,在硬件資源受限的開發(fā)環(huán)境中難以實現(xiàn)。

    4.基于Laurent分解的GMSK解調(diào)算法

    GMSK信號是調(diào)制指數(shù)為0.5的單調(diào)制指數(shù)CPM調(diào)制信號,基于Laurent分解的GMSK解調(diào)把接收的調(diào)制信號進行Laurent分解,把CPM信號表示成有限個PAM信號疊加,然后把疊加分解的信號進行判決,得到接收碼元信息,Laurent分解在數(shù)字通信中更容易實現(xiàn)?;贚aurent分解的GMSK解調(diào)算法,GMSK信號可以寫成下面形式:

    (5)

    GMSK信號分為線性部分Sl(t)和非線性部分Snl(t)。隨著BT減小,Snl(t)能量增加;當(dāng)BT=0.3時,Snl(t)能量占全部能量1%以下,可以僅考慮Sl(t)部分,此時GMSK信號可近似表示為:

    (6)

    基于Laurent分解的GMSK相干解調(diào)原理如圖2所示。

    (1)匹配濾波器

    組成PAM脈沖的函數(shù)S0(t)表達式如下:

    (7)

    當(dāng)BbTb=0.3,L=3時,得到匹配濾波器CK(t)的表達式為:

    (8)

    由圖可以看出Laurent分解的主要脈沖分別為C0(t)和C1(t)。脈沖主要能量集中在C0(t),占據(jù)信號總能量的絕大部分以上,C1(t)能量較小,所以BbTb=0.3時可直接選取C0(t)部分,而忽略后面部分,即BbTb=0.3則可以只設(shè)計匹配濾波器C0(t),忽略剩余匹配濾波器的影響。

    (2)Wiener均衡器

    采用最大似然估計的線性均衡器來去除非線性脈沖影響。I、Q兩路選用相同的Wiener均衡器,可以去除碼間串?dāng)_,得到最優(yōu)判決。

    (3)低通濾波器

    在解調(diào)過程中,選擇了一個48階的升余弦濾波器作為低通濾波器,以濾除噪聲對解調(diào)信號的影響。這種濾波器能夠有效地平滑信號,減少噪聲干擾,提高解調(diào)的準(zhǔn)確性。

    三、解調(diào)算法性能對比分析

    在MATLAB環(huán)境中,對GMSK相干和非相干解調(diào)算法進行誤碼率對比仿真分析。BT值選取0.3,winner均衡系數(shù)選取0.074,低通濾波器選擇48階升余弦濾波器,在AWGN信道下,隨機產(chǎn)生3*10^5個比特調(diào)制碼元。仿真信噪比為0-20dB情況下1Bit非相干解調(diào)、2Bit非相干解調(diào)、基于Viterbi的GMSK解調(diào)算法和基于Laurent分解的GSMK相干解調(diào)算法誤碼率曲線。驗證不同算法對GMSK解調(diào)性能的影響,并對比分析了不同算法的性能特性。

    根據(jù)圖4可知,1Bit非相干解調(diào)在信噪比為20dB時誤碼率仍無法達到1e-4;當(dāng)誤碼率為1e-4時,2Bit非相干解調(diào)、基于Viterbi的GMSK解調(diào)算法和基于Laurent分解的GMSK解調(diào)算法信噪比分別為17dB、9.2dB和8.6dB。

    基于Laurent分解的GMSK解調(diào)算法相比基于Viterbi的GMSK解調(diào)算法獲得0.6dB的系統(tǒng)增益,相比2Bit非相干解調(diào)獲得8.4dB的系統(tǒng)增益。非相干解調(diào)算法中,2Bit非相干解調(diào)算法性能優(yōu)于1Bit非相干解調(diào)算法。同時,相干解調(diào)算法結(jié)果明顯優(yōu)于非相干解調(diào)算法,相干解調(diào)算法具有更好的抗干擾特性。在相干解調(diào)算法中,基于Laurent分解的GMSK解調(diào)算法優(yōu)于基于Viterbi的GMSK解調(diào)算法;基于Laurent分解的GMSK解調(diào)算法信噪比損失最小,在相同誤碼率下系統(tǒng)具有更好的增益,在四種算法中性能最優(yōu)。

    然后對比了不同定時誤差條件下,基于Laurent分解的GMSK解調(diào)算法誤碼性能;根據(jù)圖5可知,在誤碼率為1e-5情況下,與無定時誤差相比,定時誤差為0.5Tsample、Tsample時,系統(tǒng)增益損失較小;定時誤差為1.5Tsample時系統(tǒng)損失2.7dB增益。這表明基于Laurent分解的GMSK解調(diào)算法具有較好的抗定時誤差特性。

    四、結(jié)束語

    本文對1Bit差分解調(diào)算法、2Bit差分解調(diào)算法、基于Viterbi的GMSK解調(diào)算法和基于Laurent分解的GMSK解調(diào)算法等四種GMSK解調(diào)算法進行了理論研究和仿真分析。重點分析并對比了不同信噪比情況下四種GMSK解調(diào)算法的誤碼率性能,以及不同相位誤差情況下基于Laurent分解的GMSK解調(diào)算法的性能。通過仿真對比分析,相干解調(diào)算法結(jié)果明顯優(yōu)于非相干解調(diào)算法。

    在相干解調(diào)算法中,基于Viterbi的GMSK解調(diào)算法性能損失較小,但迭代次數(shù)多,需要用到大量乘法器,實現(xiàn)復(fù)雜度高,在資源受限的工程項目中難以實現(xiàn);而基于Laurent分解的GMSK解調(diào)算法性能損失小,在相同誤碼率下系統(tǒng)具有更好的增益和較好的抗定時誤差特性,且在BbTb取0.3時,非線性部分能量占總能量的比例很小,可以只考慮線性部分,算法復(fù)雜度降低,在工程中更易于實現(xiàn)。因此,基于Laurent分解的線性GMSK解調(diào)算法性能優(yōu)于基于Viterbi的GMSK解調(diào)算法,在四種算法中性能最優(yōu)。

    作者單位:余德本 畢節(jié)市大數(shù)據(jù)產(chǎn)業(yè)發(fā)展中心 畢節(jié)市工業(yè)和信息化局

    張萬菊 畢節(jié)市民營經(jīng)濟發(fā)展中心 畢節(jié)市工業(yè)和信息化局

    參考文獻

    [1]胡福.GMSK跳頻通信低復(fù)雜度非相干解調(diào)關(guān)鍵技術(shù)研究[D].電子科技大學(xué),2021.

    [2]唐智靈,李鋮,李思敏.任意信息速率的GMSK信號調(diào)制解調(diào)方法[J].電訊技術(shù),2019,59(11):1299-1305.

    [3]陳麗婷,康超,顧圣明等.GMSK信號的同步及相干解調(diào)算法[J].無線電工程,2021,51(05):346-351.

    [4]陳建斌,王剛,吳毅杰等.GMSK多通道接收機的非相干解調(diào)算法及FPGA實現(xiàn)[J].無線電通信技術(shù), 2023,49(04):746-752.

    [5]Kaleh G K. Simple Coherent Receivers for Partial Response Continuous Phase Modulation[J]. IEEE Select. Areas Commun. 1989.7(9): 1427-1436.

    [6]朱巖.GMSK信號維特比解調(diào)算法研究及其在信道衰落下性能分析[J].電子質(zhì)量,2022(03):6-12.

    [7]漆鋼.小BT參數(shù)突發(fā)信號解調(diào)技術(shù)研究[D].中國工程物理研究院, 2013.4.

    [8]朱磊,王世練,張煒.極小BT參數(shù)GMSK信號的低復(fù)雜度相干解調(diào)算法[J].通信技術(shù),2013,46(10):10-14.

    余德本(1993.03-),男,漢族,貴州畢節(jié),碩士研究生,高級工程師,通信技術(shù)及大數(shù)據(jù)方向。

    通訊作者:張萬菊(1993.09-),女,漢族,貴州畢節(jié),碩士研究生,計算機應(yīng)用技術(shù)。

    乌拉特前旗| 青浦区| 乌苏市| 冷水江市| 六安市| 青州市| 新沂市| 克东县| 靖江市| 皮山县| 耿马| 仲巴县| 罗田县| 沿河| 合阳县| 乡城县| 潍坊市| 泰州市| 行唐县| 铜鼓县| 淮安市| 图们市| 民勤县| 定兴县| 田阳县| 仙桃市| 安塞县| 海安县| 磐安县| 芮城县| 巴林右旗| 萨迦县| 鹤山市| 渭南市| 昂仁县| 都昌县| 虎林市| 苏州市| 东乌珠穆沁旗| 山阴县| 苗栗市|