• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats

    2011-12-25 06:41:14ZHOUJunSHIXiaMingPENGQingSongHUAGuoPengHUATianMiao
    Zoological Research 2011年5期
    關(guān)鍵詞:安徽師范大學(xué)靈長(zhǎng)類(lèi)皮層

    ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao

    (School of Life Science, Anhui Normal University, Wuhu 241000, China)

    Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats

    ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao*

    (School of Life Science, Anhui Normal University, Wuhu 241000, China)

    Psychophysical experiments on human and animal subjects have proven that aged individuals show significantly reduced visual contrast sensitivity compared with young adults. To uncover the possible neural mechanisms, we used extracellular single-unit recording techniques to examine the response of V1(primary visual cortex) neurons as a function of visual stimulus contrast in both old and young adult cats (Felis catus). The mean contrast sensitivity of V1neurons to visual stimuli in old cats decreased significantly relative to young adult cats, consistent with findings reported in old primates. These results indicate that aging can affect contrast sensitivity of visual cortical cells in both primate and non-primate mammalian animals, and might contribute to the reduction of perceptual visual contrast sensitivity in aged individuals. Further, V1cells of old cats exhibited increased responsiveness, decreased signal-to-noise ratio, and enlarged receptive field (RF) size compared with that of young adult cats, which indicated that decreased contrast sensitivity of V1neurons accompanied a reduction of intracortical inhibition during senescence.

    Contrast sensitivity; V1neurons; Old cats; Young adult cats

    Contrast sensitivity refers to the ability to detect subtle luminance contrast in visual signals and is widely accepted as an important index for visual quality assessment (Riusala et al, 2003; Ginsburg, 2006; Piermarocchi et al, 2006; Hua et al, 2010a). Psychophysical studies on human subjects have demonstrated that visual contrast sensitivity decreases significantly with age (Higgins et al, 1988; Santos et al, 2006), and this aged change has been observed at all stimulus spatial frequencies (Nomura et al, 2003). Age-related decline in visual contrast sensitivity cannot be suspended in subjects with corrected visual acuity of 1.0 or better (Nomura et al, 2003). Further, this senescent change cannot be completely attributed to the deterioration in optical factors as young healthy observers with simulated age-related pupil size reduction and ocular absorption and light scatter increase still show higher contrast sensitivity than older counterparts (Whitaker & Elliott, 1992). Also, this kind of decrease cannot be eliminated through increasing stimulus luminance (Higgins et al, 1988). Therefore, contrast sensitivity reduction in aged individuals cannot be accounted for by changes in optical factors, but seems more relevant to alterations occurring in the central nervous system.

    Previous investigations on single-cell responses in the visual system of aged primates has shown that receptive field properties, including contrast sensitivity of neurons at the subcortical level, are relatively unaffected by aging (Spear, 1993; Spear et al, 1994; Schmolesky et al, 2000). Some authors suggest that agerelated contrast sensitivity decline may reflect a visual cortex mechanism (Crassini et al, 1988; Pardhan et al, 1996; Bennett et al, 1999), where neurons display prominent contrast gain control (Ohzawa et al, 1982, 1985; Bonds, 1991; Heeger, 1992; Hua et al, 2010b). A recent study has shown that visual cortical cells of old macaque monkeys exhibit worse contrast sensitivity to visual stimuli than that of younger individuals. However, whether this aged change can be generalized to nonprimate mammalian species is unknown. The aim of our research was to determine if visual cortical cells of cats display a similar age-related reduction in contrast sensitivity. Using extracellular single-unit recording techniques, we systematically recorded the response of V1neurons to optimal visual stimuli with varied luminance contrast (0?1) and compared the mean contrast sensitivity of V1neurons in old and young adult cats to provide new evidence for the cortical mechanism underlying the reduction of visual contrast sensitivity during senescence.

    1 Materials and Methods

    1.1 Subjects

    Study subjects consisted of four young adult cats (2?3 a) and four old cats (12?14 a). Subjects were examined ophthalmoscopically before the experiment to confirm that no optical or retinal problems impaired their visual function. All experimental procedures were strictly in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

    1.2 Single-unit recording

    All cats were prepared for extracellular single-unit recording as described in previous researches (Hua et al, 2006; Hua et al, 2009; Hua et al, 2010b). Briefly, cats were anesthetized with ketamine HCl (20 mg/kg) and xylazine (2 mg/kg). After intubation of intravenous and tracheal cannulae, cats were placed in a stereotaxic apparatus with ear bars, eye bars and a bite bar. Pupils were maximally dilated with atropine (1%) and appropriate contact lenses were used to protect the corneas. Neosynephrine (5%) was administered to retract the nictitating membranes. Glucose (5%)-saline (0.9%) solution containing a mixture of urethane (20 mg/hr/kg body weight) and gallamine triethiodide (10 mg/hr/kg body weight) was infused intravenously to keep the animal anesthetized and paralyzed. Expired pCO2 was maintained at approximately 3.8%. Heart rate (180?220 pulses/min) and ECG were monitored throughout the experiment to assess anesthesia level. The skull and dura over V1(area 17) were removed with a fine operation under light microscope. Single-unit recording was performed using a glass microelectrode (with an impedance of 3?6 MΩ) which was driven by a hydraulic micromanipulator (NARISHIGE, Japan). The small hole over V1was filled with a 4% agar solution in saline and sealed with wax. After the preparation was complete, the optic discs of the two eyes were reflected onto a movable transparent tangent screen positioned 57 cm from the eyes and overlapped with the CRT monitor used for stimulus presentation. The area centralis of each eye was located prior to physiological recording based on the position of the optic discs reflected onto the tangent screen.

    1.3 Visual stimuli

    Drifting sinusoidal gratings shown on a CRT monitor (resolution 1 024×768, refresh rate 85 Hz) were used as visual stimuli. The program to generate the stimuli was written in MATLAB, using extensions provided by the high-level Psychophysics Toolbox (Brainard, 1997) and low-level VideoToolbox (Pelli, 1997). Once a single unit was isolated, the cell’s receptive field center was carefully located by consecutively presenting a series of computer-generated light spots on the CRT. By comparing the neuron’s response to a series of stimulus, we determined the preferred orientation and motion direction, preferred spatial and temporal frequency, and optimal stimulus size for each cell. The cell’s response to optimal stimulus with varied luminance contrast levels (0?1, starting from 0 with an increment of 0.1) were then systematically recorded. Each stimulus was presented monocularly to the dominant eye and repeated 4?6 times with a 3 min interval between trials for cellular functional recovery. The duration for each stimulus (5 cycles of grating) was less than 5 sec, which varied depending on the cell’s optimal stimulus temporal frequency. Before each stimulus was presented, spontaneous activity (baseline response) was acquired during a 1sec period while a mean luminance was shown on the screen. The mean luminance of each stimulus was 19 cd/m2, and the environmental ambient luminance on the cornea was 0.1 lux.

    1.4 Data acquisition and analysis

    After the signal was amplified with a microelectrode amplifier (NIHON KOHDEN, Japan) and differential amplifier (Dagan 2400A, USA), action potentials were fed into a window discriminator with an audio monitor. The original voltage traces (Fig. 1A, C) were digitized using an acquisition board (National Instruments, USA) controlled by IGOR software (WaveMetrics, USA), and saved for later analysis. The evoked response of a cell to a drifting sinusoidal grating was defined as the mean firing rate (after subtracting spontaneous activity) corresponding to the time of stimulus modulation, which was used to draw the orientation, spatial frequency, temporal frequency, stimulus size and contrast-response tuning curve (Fig. 1B, D). To assess contrast sensitivity of each cell to visual stimuli, we fitted the contrastresponse function of each cell with the Naka-Rushton equation (Albrecht, 1995) (Fig. 1B, D):

    WhereR(C) represents the neuron’s response to a visual stimulus with contrast value of C,Rmaxis the neuron’s maximal visually-evoked response to visual stimuli,Mis the neuron’s spontaneous activity or baseline response, C50corresponds to the stimulus contrast that evokes half of the neuron’s maximal response, andNrepresents the slope of the neuron’s response-contrast tuning curve. Threshold contrast (Tc) of each neuron is defined as the contrast that evokes a response 1.414 (the hypotenuse of a right triangle whose other sides are 1 and 1) times its baseline response (M). Contrast sensitivity of each neuron was assessed by the inverse of C50, called C50-contrast sensitivity (C50CS), and the inverse of Tc, called Tc-contrast sensitivity (TcCS). Cells with less than 95% goodness of fit were not included in our data analysis.

    Fig. 1 Response of sample cells to its optimal visual stimulus for young adult (A, B) and old cats (C, D)

    All values were expressed as mean±SD. Difference between different individuals and age groups were assessed using one-way or two-way analysis of variance (ANOVA) and Chi-square test.

    2 Results

    A total of 138 neurons from the four young adult cats and 128 neurons from the four old cats were studied (Tab.1). Neurons recorded from each group of cats were at the same range of depth from the pial surface of the brain, representing a random sample of neurons in all cortical layers. All neurons had receptive field within 8° visual degree from the central area of the dominant eye. No significant difference was found in the eccentricity distribution of neurons between the young adult and old cats (χ2(7)=9.624,P=0.211).

    2.1 Contrast sensitivity of V1 neurons

    Our results showed that most old cat neurons (84.37%) had a C50-contrast sensitivity value less than 3, whereas the majority of young adult cat neurons (68.12%) had a C50-contrast sensitivity larger than 3 (Fig. 2A). Two-way ANOVA indicated that the mean C50-contrast sensitivity of neurons in each old cat was significantly smaller than in any individual young adult cat (F(1,258)=75.181,P<0.0001) (Tab. 1). This age effect was independent of cat (F(3,258)=1.247,P>0.2). The average C50-contrast sensitivity of neurons in the old cat group was also significantly decreased compared with that in the young cat group (F(1,264)=82.377,P<0.0001).

    Fig. 2 Percentage of cells with different C50-contrast sensitivity (A) and Tc-contrast sensitivity (B) in old and young adult cats

    We also compared Tc-contrast sensitivity of neurons between old and young adult cats. Most old cat neurons (75.78%) had a Tc-contrast sensitivity value lower than 7, whereas most young cat neurons (74.64%) had a Tc-contrast sensitivity value higher than 7 (Fig. 2B). Statistical analysis showed that mean Tc-contrast sensitivity of neurons in each old cat was significantly declined compared with that in any individual young adult cat (F(1,258)=58.391,P<0.0001) (Tab.1). The age effect was independent of subjects (F(3,258)=1.474,P>0.2). Similarly, the average Tc-contrast sensitivity of neurons in the old cat group was significantly lower than in the young cat group (F(1,264)=64.906,P<0.0001).

    We concluded, therefore, that the contrast sensitivity of V1neurons in old cats was significantly decreased compared with that in young adult cats.

    2.2 Response property changes of V1 neurons

    Previous studies have shown that aging may lead to decreased intracortical inhibition, which could account for the changes in response properties of visual cortical cells (Schmolesky et al, 2000; Leventhal et al, 2003; Wang et al, 2005; Hua et al, 2006; Wang et al, 2006; Hua et al, 2008; Hua et al, 2009). To confirm if decreased contrast sensitivity of V1cells to visual stimuli was accompanied with a reduction in intracortical inhibition, we examined the responsiveness and the receptive field size of V1neurons in both age groups.

    Statistical analysis showed that maximal visuallyevoked response (Rmax) and spontaneous activity (M) of V1neurons in old cats increased significantly compared with that in young adult cats (Rmax:F(1,264)= 26.185,P<0.0001; M:F(1,264)= 165.608,P<0.0001) (Fig. 3A), but the mean amplitude of M increase (226.7%) was notably higher than that of Rmax(38.4%). This led to a significantly decreased signal-to-noise ratio (SNR) of V1neurons in old cats relative to young adult cats (Age effect:F(1,258)= 81.297,P<0.0001; Interaction of age and subjects:F(3,258)= 2.071,P>0.1) (Fig. 3B).

    2.3 Age-related changes of receptive field size

    The decreased contrast sensitivity of V1neurons in old cats may be a consequence of presenting improper stimulus size for neurons in old and young adult cats. To clarify this possibility, we evaluated the receptive field size of each neuron by measuring the optimal grating stimulus radius (in degree) from the size-tuning curve (Fig. 4A, B) and the optimal spatial frequency (OSF) from spatial frequency tuning curve.

    Fig. 3 Percentile of cells with different spontaneous activity (lines) and maximal response (markers) (A) and signal-to-noise ratio (B) of V1 neurons in old and young adult cats

    Fig. 4 Response-stimulus size tuning curve of sample cells from old and young adult cats

    Most young adult cat cells (63.7%) had an optimal stimulus radius less than 3, whereas the majority of old cat cells (71.1) had an optimal stimulus radius larger than 3 (Fig. 4C, D). The ANOVA results showed that the mean optimal stimulus radius of cells in old cats (3.7±1.3) was significantly higher than in young adult ones (2.8±1.3) (F(1,264)= 27.99,P<0.0001).

    Similarly, more than half young adult cat cells (55%) had an optimal spatial frequency higher than 0.4 c/deg. However, most old cat cells (71.1) had an optimal spatial frequency lower than 0.4 c/deg (Fig. 5). Statistical analysis indicated that the mean optimal spatial frequency of cells in old cats (0.26±0.18 c/deg) was significantly decreased compared with that in young adult cats (0.42±0.27 c/deg) (F(1,264)= 33.188,P<0.0001).

    Fig. 5 Percentage of cells with different range of optimal spatial frequencies in old and young adult cats

    Therefore, cells in old cats showed a significantly larger receptive field center than cells in young adult cats. This result supports the notion that aging leads to reduced intracortical inhibition.

    3 Discussion

    Psychophysical studies indicate that visual contrast sensitivity significantly declines during senescence (Higgins et al, 1988; Santos et al, 2006). This aged change is independent of optical factors, and likely relates to alterations in the central nervous system (Higgins et al, 1988; Whitaker & Elliott, 1992; Nomura et al, 2003). We suggested that a decrease of neuronal contrast sensitivity in the visual cortex contributed, at least in part, to visual contrast sensitivity decline in aged individuals because of the following experimental evidences: 1) Investigations have shown that neuronal response properties in the subcortical nucleus (LGN), including contrast sensitivity, are relatively unaffected by aging (Spear et al, 1994; Schmolesky et al, 2000); 2) Neurons in the visual cortex exhibit a distinct contrast gain control in response to varied stimulus contrast (Ohzawa et al, 1982, 1985; Bonds, 1991; Heeger, 1992; Hua et al, 2010b); 3). Our results indicated that the contrast sensitivity of V1neurons in old cats was significantly lower than in young adult cats, which concurred with findings reported in the V1and MT area of macaque monkeys (Yang et al, 2008).

    Functional degradation of visual cortical cells in old animals, including increased responsiveness, reduced signal-to-noise ratio, decreased response selectivity for visual stimuli, lagged response latency and increased adaptation to visual stimulation, have been reported in several mammalian species (Schmolesky et al, 2000; Mendelson & Wells, 2002; Wang et al, 2005; Hua et al, 2006; Wang et al, 2006; Zhang et al, 2008; Hua et al, 2009). It is widely suggested that compromised intracortical inhibition during aging could result in functional declines of visual cortical neurons in senescent individuals because: 1) The increased responsiveness and decreased stimulus selectivity of visual cortical neurons in old individuals can be modified by improving intracortical inhibition effects (Leventhal et al, 2003); and 2) Cortex in old animals shows a significantly decreased proportion of GABAergic neurons and GAD immunoreactive neurons compared with young adults (Ling et al, 2005; Hua et al, 2008).

    Mechanisms that mediate contrast sensitivity decrease in visual cortical cells to visual stimuli remains unclear. In this study, we observed that the decreased contrast sensitivity of V1neurons in old cats was accompanied with increased spontaneous activity, increased visually-evoked response, and a significantly enlarged receptive field size relative to young adult cats, which suggested compromised intracortical inhibition during aging. Whether a reduction in intracortical inhibition with age also underlies the decreased contrast sensitivity of V1neurons in old individuals needs further clarification.

    In summary, our results provide new evidence that aging significantly affected contrast sensitivity of visual cortical cells. This functional degradation was accompanied with a reduced intracortical inhibition during senescence.

    Albrecht DG. 1995. Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions [J].Vis Neurosci,12(6): 1191-1210.

    Bennett PJ, Sekuler AB, Ozin L. 1999. Effects of aging on calculation efficiency and equivalent noise [J].J Opt Soc Am A Opt Image Sci Vis,16(3): 654-668.

    Bonds AB. 1991. Temporal dynamics of contrast gain in single cells of the cat striate cortex [J].Vis Neurosci,6(3): 239-255.

    Brainard DH. 1997. The Psychophysics Toolbox [J].Spat Vis,10(4): 433-436.

    Crassini B, Brown B, Bowman K. 1988. Age-related changes in contrast sensitivity in central and peripheral retina [J].Perception,17(3): 315-332.

    Ginsburg AP. 2006. Contrast sensitivity: determining the visual quality and function of cataract, intraocular lenses and refractive surgery [J].Curr Opin Ophthalmol,17(1): 19-26.

    Heeger DJ. 1992. Normalization of cell responses in cat striate cortex [J].Vis Neurosci,9(2): 181-197.

    Higgins KE, Jaffe MJ, Caruso RC, deMonasterio FM. 1988. Spatial contrast sensitivity: effects of age, test-retest, and psychophysical method [J].J Opt Soc Am A,5(12): 2173-2180.

    Hua T, Li X, He L, Zhou Y, Wang Y, Leventhal AG. 2006. Functional degradation of visual cortical cells in old cats [J].Neurobiol Aging,27(1): 155-162.

    Hua T, Kao C, Sun Q, Li X, Zhou Y. 2008. Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex [J].Brain Res Bull,75(1): 119-125.

    Hua T, Li G, Tang C, Wang Z, Chang S. 2009. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats [J].Neurosci Lett,451(1): 25-28.

    Hua T, Wang Z, Xu J, Diao J. 2010a. Contrast detection learning improves visual contrast sensitivity of cat [J].Zool Res,31(2): 155-162.

    Hua T, Bao P, Huang CB, Wang Z, Xu J, Zhou Y, Lu ZL. 2010b. Perceptual learning improves contrast sensitivity of V1 neurons in cats [J].Curr Biol,20(10): 887-894.

    Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y. 2003. GABA and its agonists improved visual cortical function in senescent monkeys [J].Science,300(5620): 812-815.

    Ling LL, Hughes LF, Caspary DM. 2005. Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex [J].Neuroscience,132(4): 1103-1113.

    Mendelson JR & Wells EF. 2002. Age-related changes in the visual cortex [J].Vision Res,42(6): 695-703.

    Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. 2003. Agerelated change in contrast sensitivity among Japanese adults [J].Jpn J Ophthalm,47(3): 299-303.

    Ohzawa I, Sclar G, Freeman RD. 1982. Contrast gain control in the cat visual cortex [J].Nature,298(5871): 266-268.

    Ohzawa I, Sclar G, Freeman RD. 1985. Contrast gain control in the cat's visual system [J].J Neurophys,54(3): 651-667.

    Pardhan S, Gilchrist J, Elliott DB, Beh GK. 1996. A comparison of sampling efficiency and internal noise level in young and old subjects [J].Vision Res,36(11): 1641-1648.

    Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies [J].Spat Vis,10(4): 437-442.

    Piermarocchi S, Sartore M, Bandello F, Lanzetta P, Brancato R, Garattini L, Lumbroso B, Rispoli M, Pece A, Isola V, Pulazzini A, Menchini U, Virgili G, Tedeschi M, Varano M.2006. Quality of vision: A consensus building initiative for a new ophthalmologic concept [J].Eur J Ophthalm,16(6): 851-860.

    Riusala A, Sarna S, Immonen I. 2003. Visual function index .VF-14. in exudative age-related macular degeneration of long duration [J].Am J Ophthalmol,135(2): 206-212.

    Santos NA, Oliveira AB, Nogueira RM, Simas ML. 2006. Mesopic radial frequency contrast sensitivity function for young and older adults [J].Braz J Med Biol Res,39(6): 791-794.

    Schmolesky MT, Wang Y, Pu M, Leventhal AG. 2000. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys [J].Nat Neurosci,3(4): 384-390.

    Spear PD .1993. Neural bases of visual deficits during aging [J].Vision Res,33(18): 2589-2609.

    Spear PD, Moore RJ, Kim CB, Xue JT, Tumosa N. 1994. Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys [J].J Neurophys,72(1): 402-420.

    Wang H, Xie X, Li X, Chen B, Zhou Y. 2006. Functional degradation of visual cortical cells in aged rats [J].Brain Res,1122(1): 93-98.

    Wang Y, Zhou Y, Ma Y, Leventhal AG. 2005. Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys [J].Cereb Cortex,15(4): 403-408.

    Whitaker D, Elliott DB. 1992. Simulating age-related optical changes in the human eye [J].Doc Ophthalm,82(4): 307-316.

    Yang Y, Liang Z, Li G, Wang Y, Zhou Y, Leventhal AG. 2008. Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys [J].Neuroscience,156(3): 748-757.

    Zhang J,Wang X, Wang Y, Fu Y, Liang Z, Ma Y, Leventhal AG. 2008. Spatial and temporal sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys [J].Eur J Neurosci,28(1): 201-207.

    老年貓視皮層細(xì)胞對(duì)刺激反應(yīng)的對(duì)比敏感度下降伴隨皮層內(nèi)抑制作用減弱

    周 俊, 施夏明, 彭青松, 化國(guó)鵬, 華田苗*

    (安徽師范大學(xué) 生命科學(xué)學(xué)院,安徽 蕪湖241000)

    對(duì)人類(lèi)和動(dòng)物的心理學(xué)研究證實(shí), 老年個(gè)體的視覺(jué)對(duì)比敏感度相對(duì)青年個(gè)體顯著下降。為揭示其可能的神經(jīng)機(jī)制, 采用在體細(xì)胞外單細(xì)胞記錄技術(shù)研究青、老年貓(Felis catus)初級(jí)視皮層 (primary visual cortex,V1)細(xì)胞對(duì)不同視覺(jué)刺激對(duì)比度的調(diào)諧反應(yīng)。結(jié)果顯示, 老年貓V1細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的平均對(duì)比敏感度比青年貓顯著下降, 這與靈長(zhǎng)類(lèi)報(bào)道的研究結(jié)果相一致, 表明衰老影響視皮層細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的對(duì)比敏感度是靈長(zhǎng)類(lèi)和非靈長(zhǎng)類(lèi)哺乳動(dòng)物中普遍存在的現(xiàn)象, 并可能是介導(dǎo)老年性視覺(jué)對(duì)比敏感度下降的神經(jīng)基礎(chǔ)。另外, 與青年貓相比,老年貓初級(jí)視皮層細(xì)胞對(duì)視覺(jué)刺激的反應(yīng)性顯著增強(qiáng), 信噪比下降, 感受野顯著增大, 表明衰老導(dǎo)致的初級(jí)視皮層細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的對(duì)比敏感度下降伴隨著皮層內(nèi)抑制性作用減弱。

    對(duì)比敏感度; 初級(jí)視皮層細(xì)胞; 老年貓; 青年貓

    Q42; R338.8; Q954.671

    A

    0254-5853-(2011)05-0533-07

    2011-02-23;接受日期:2011-07-13

    10.3724/SP.J.1141.2011.05533

    date: 2011-02-23; Accepted date: 2011-07-13

    s: Supported by National Natural Science Foundation of China (31171082), Natural Science Foundation of Anhui Province (070413138) and the Key Research Foundation of Anhui Province Education Department (KJ2009A167)

    *Corresponding author (通信作者), E-mail: tmhua@mail.ahnu.edu.cn, tianmiaohua@gmail.com

    猜你喜歡
    安徽師范大學(xué)靈長(zhǎng)類(lèi)皮層
    靈長(zhǎng)類(lèi)生物醫(yī)學(xué)前沿探索中的倫理思考
    急性皮層腦梗死的MRI表現(xiàn)及其對(duì)川芎嗪注射液用藥指征的指導(dǎo)作用研究
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    基于復(fù)雜網(wǎng)絡(luò)的磁刺激內(nèi)關(guān)穴腦皮層功能連接分析
    Hemingway’s Marriage in Cat in the Rain
    基底節(jié)腦梗死和皮層腦梗死血管性認(rèn)知功能的對(duì)比
    中國(guó)靈長(zhǎng)類(lèi)動(dòng)物一覽表
    為什么人們都說(shuō)猴子聰明?
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    模擬初級(jí)視皮層注意機(jī)制的運(yùn)動(dòng)對(duì)象檢測(cè)模型
    校园春色视频在线观看| 精品人妻偷拍中文字幕| av专区在线播放| 国产亚洲精品久久久com| 超碰av人人做人人爽久久| 亚洲欧美成人综合另类久久久 | 亚洲成a人片在线一区二区| 久久6这里有精品| 色综合站精品国产| 国产高清激情床上av| 一进一出抽搐gif免费好疼| 国产毛片a区久久久久| 看免费成人av毛片| 尾随美女入室| 亚洲三级黄色毛片| 中文字幕人妻熟人妻熟丝袜美| 久久草成人影院| 国产黄色视频一区二区在线观看 | 哪里可以看免费的av片| 91aial.com中文字幕在线观看| 精品熟女少妇av免费看| 欧美+日韩+精品| 久久久欧美国产精品| 国产在线精品亚洲第一网站| 直男gayav资源| 能在线免费观看的黄片| 国产精品嫩草影院av在线观看| 一边摸一边抽搐一进一小说| 夜夜爽天天搞| 国产黄色小视频在线观看| 亚洲最大成人av| 中文欧美无线码| 在线观看66精品国产| 国产亚洲精品av在线| 国产精品人妻久久久久久| 亚洲天堂国产精品一区在线| 能在线免费观看的黄片| 久久人人爽人人片av| 欧美另类亚洲清纯唯美| 午夜久久久久精精品| 亚洲图色成人| 欧美成人精品欧美一级黄| 亚洲成人久久爱视频| 夜夜爽天天搞| 亚洲国产欧美人成| 美女大奶头视频| 又粗又爽又猛毛片免费看| 97人妻精品一区二区三区麻豆| 欧美日本亚洲视频在线播放| 日日啪夜夜撸| 18禁黄网站禁片免费观看直播| 欧美一区二区精品小视频在线| 日日啪夜夜撸| 久久99精品国语久久久| 边亲边吃奶的免费视频| 国产成人精品久久久久久| 夜夜看夜夜爽夜夜摸| 成人特级黄色片久久久久久久| 国语自产精品视频在线第100页| 小说图片视频综合网站| 亚洲一区二区三区色噜噜| 国内少妇人妻偷人精品xxx网站| 只有这里有精品99| 亚洲国产精品sss在线观看| 欧美三级亚洲精品| av福利片在线观看| 高清午夜精品一区二区三区 | 国产精品人妻久久久影院| 欧美日韩在线观看h| 精品熟女少妇av免费看| 亚洲第一电影网av| 六月丁香七月| 日韩欧美三级三区| 亚洲精品成人久久久久久| 日本五十路高清| 午夜福利高清视频| 亚洲最大成人中文| 免费人成在线观看视频色| 欧美高清性xxxxhd video| 少妇人妻精品综合一区二区 | 干丝袜人妻中文字幕| 乱系列少妇在线播放| 在线观看午夜福利视频| 日本三级黄在线观看| av卡一久久| 国产精品一及| 国产熟女欧美一区二区| 最近最新中文字幕大全电影3| av卡一久久| 青青草视频在线视频观看| 最新中文字幕久久久久| 亚洲激情五月婷婷啪啪| 小说图片视频综合网站| 在线播放无遮挡| 亚洲av不卡在线观看| 亚洲婷婷狠狠爱综合网| 国产私拍福利视频在线观看| 中文字幕av成人在线电影| 在线国产一区二区在线| 久久精品国产亚洲av天美| 精品日产1卡2卡| 又爽又黄无遮挡网站| 在线播放国产精品三级| 国内精品久久久久精免费| 色5月婷婷丁香| 国产精品一区二区在线观看99 | 丰满的人妻完整版| 国产成年人精品一区二区| 日本与韩国留学比较| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产日韩欧美精品在线观看| 亚洲av不卡在线观看| 日韩 亚洲 欧美在线| 一本久久中文字幕| 狂野欧美激情性xxxx在线观看| 日韩中字成人| 亚洲色图av天堂| av黄色大香蕉| 能在线免费观看的黄片| 69av精品久久久久久| 久久精品国产清高在天天线| av.在线天堂| 91精品一卡2卡3卡4卡| 色视频www国产| 春色校园在线视频观看| 99热网站在线观看| 天天躁夜夜躁狠狠久久av| 成人永久免费在线观看视频| 久久精品国产99精品国产亚洲性色| 插阴视频在线观看视频| 一区二区三区免费毛片| 麻豆国产av国片精品| 校园人妻丝袜中文字幕| 国产成人福利小说| 国产一区二区三区av在线 | 国产精品日韩av在线免费观看| 在线免费观看不下载黄p国产| 久久中文看片网| 九草在线视频观看| 青春草国产在线视频 | 国产成人影院久久av| 精品久久久久久久久av| 男人舔奶头视频| 欧美激情国产日韩精品一区| 中文字幕久久专区| 国产淫片久久久久久久久| 成年女人永久免费观看视频| 九九久久精品国产亚洲av麻豆| 久久久久网色| av在线观看视频网站免费| 欧美潮喷喷水| 亚洲成a人片在线一区二区| 在线观看美女被高潮喷水网站| 美女大奶头视频| 九草在线视频观看| 精品人妻一区二区三区麻豆| 午夜老司机福利剧场| 丰满人妻一区二区三区视频av| 1000部很黄的大片| h日本视频在线播放| 国产 一区 欧美 日韩| 一本一本综合久久| 一级毛片久久久久久久久女| 欧美bdsm另类| 身体一侧抽搐| 免费av观看视频| 老司机福利观看| 好男人视频免费观看在线| 色吧在线观看| 99视频精品全部免费 在线| 一本精品99久久精品77| 乱系列少妇在线播放| 欧美一区二区亚洲| 免费观看a级毛片全部| 久久热精品热| 在线a可以看的网站| 尾随美女入室| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品热视频| 一个人看的www免费观看视频| 桃色一区二区三区在线观看| 色播亚洲综合网| 综合色av麻豆| 综合色av麻豆| 一区二区三区四区激情视频 | 国产精品久久视频播放| 麻豆国产av国片精品| 人妻少妇偷人精品九色| 日本欧美国产在线视频| 日本一二三区视频观看| 久久韩国三级中文字幕| 色播亚洲综合网| 亚洲av熟女| 综合色丁香网| 99九九线精品视频在线观看视频| 国国产精品蜜臀av免费| 亚州av有码| 哪里可以看免费的av片| 亚洲国产欧洲综合997久久,| 午夜a级毛片| 免费观看a级毛片全部| 日韩欧美一区二区三区在线观看| 色综合亚洲欧美另类图片| 一边亲一边摸免费视频| 国国产精品蜜臀av免费| 噜噜噜噜噜久久久久久91| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区三区| 天美传媒精品一区二区| 亚洲av一区综合| 国产黄色小视频在线观看| videossex国产| 欧美xxxx黑人xx丫x性爽| 在线观看午夜福利视频| 春色校园在线视频观看| 日韩亚洲欧美综合| 久久久色成人| 国产精品美女特级片免费视频播放器| 久久精品夜色国产| 桃色一区二区三区在线观看| 国产单亲对白刺激| 老司机福利观看| 国产色爽女视频免费观看| 日韩大尺度精品在线看网址| 熟妇人妻久久中文字幕3abv| 色综合色国产| av福利片在线观看| 高清午夜精品一区二区三区 | 观看美女的网站| 校园人妻丝袜中文字幕| 亚洲aⅴ乱码一区二区在线播放| 中国美女看黄片| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 国产高潮美女av| 深夜精品福利| 男女边吃奶边做爰视频| 欧美一区二区国产精品久久精品| 综合色av麻豆| 91在线精品国自产拍蜜月| 好男人视频免费观看在线| 97热精品久久久久久| 成人欧美大片| 看黄色毛片网站| av在线亚洲专区| 一个人看的www免费观看视频| ponron亚洲| 亚洲乱码一区二区免费版| 久久精品夜夜夜夜夜久久蜜豆| 久久这里只有精品中国| 国产精品国产三级国产av玫瑰| 爱豆传媒免费全集在线观看| 淫秽高清视频在线观看| 女人十人毛片免费观看3o分钟| 日日干狠狠操夜夜爽| 欧美xxxx黑人xx丫x性爽| 午夜精品在线福利| 午夜爱爱视频在线播放| 久久久国产成人精品二区| 级片在线观看| 欧美一级a爱片免费观看看| 亚洲精华国产精华液的使用体验 | 五月玫瑰六月丁香| 成年女人永久免费观看视频| 一夜夜www| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久久久久| 真实男女啪啪啪动态图| 日韩成人伦理影院| 你懂的网址亚洲精品在线观看 | 亚洲成人av在线免费| 欧美三级亚洲精品| 日韩精品青青久久久久久| 久久精品国产亚洲av香蕉五月| 波多野结衣高清作品| 一夜夜www| 秋霞在线观看毛片| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 成人亚洲欧美一区二区av| 色哟哟哟哟哟哟| 亚洲精品日韩av片在线观看| www.色视频.com| 丰满乱子伦码专区| 亚洲五月天丁香| 久久99热6这里只有精品| 真实男女啪啪啪动态图| 免费看光身美女| 边亲边吃奶的免费视频| 波多野结衣高清作品| 中文字幕精品亚洲无线码一区| 亚洲成av人片在线播放无| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 高清在线视频一区二区三区 | 亚洲国产日韩欧美精品在线观看| 亚洲真实伦在线观看| 中国国产av一级| 国产精品一二三区在线看| 两性午夜刺激爽爽歪歪视频在线观看| 少妇被粗大猛烈的视频| 99久久无色码亚洲精品果冻| 国产在视频线在精品| 欧美一区二区精品小视频在线| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 色哟哟哟哟哟哟| 青青草视频在线视频观看| 精品久久久久久成人av| 插逼视频在线观看| АⅤ资源中文在线天堂| 少妇人妻精品综合一区二区 | 国产极品精品免费视频能看的| 国产一区二区在线av高清观看| 色视频www国产| 在线观看66精品国产| 亚洲国产欧洲综合997久久,| 在线免费观看不下载黄p国产| 两性午夜刺激爽爽歪歪视频在线观看| 草草在线视频免费看| 一本久久精品| 亚洲av中文字字幕乱码综合| 人人妻人人澡欧美一区二区| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 在线天堂最新版资源| 天堂√8在线中文| 国产单亲对白刺激| 亚洲色图av天堂| 我的女老师完整版在线观看| 国产精品美女特级片免费视频播放器| 国产成人一区二区在线| 99热网站在线观看| 51国产日韩欧美| 老熟妇乱子伦视频在线观看| 久久中文看片网| 三级毛片av免费| 日韩国内少妇激情av| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧美人成| 欧美成人免费av一区二区三区| 高清午夜精品一区二区三区 | 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 在线观看午夜福利视频| 成人美女网站在线观看视频| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 成人美女网站在线观看视频| 国产亚洲5aaaaa淫片| 国产成人影院久久av| 久久亚洲国产成人精品v| 久久久久久伊人网av| 最近2019中文字幕mv第一页| 亚洲最大成人中文| 亚洲自偷自拍三级| 男人狂女人下面高潮的视频| av.在线天堂| 综合色av麻豆| 校园春色视频在线观看| 国产女主播在线喷水免费视频网站 | 99riav亚洲国产免费| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| 一级毛片我不卡| 国产精品野战在线观看| 在线观看一区二区三区| 欧美色视频一区免费| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av| 午夜激情欧美在线| 内射极品少妇av片p| 国产成人精品婷婷| 如何舔出高潮| 国内精品美女久久久久久| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| 美女大奶头视频| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 欧美3d第一页| 成年女人看的毛片在线观看| 免费观看人在逋| 男女那种视频在线观看| 欧美+亚洲+日韩+国产| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 亚洲av免费在线观看| 日韩一区二区三区影片| 日本成人三级电影网站| 亚洲无线在线观看| 日韩欧美国产在线观看| 亚洲自拍偷在线| 99riav亚洲国产免费| 亚洲无线观看免费| 高清日韩中文字幕在线| 免费在线观看成人毛片| 白带黄色成豆腐渣| 变态另类丝袜制服| 特大巨黑吊av在线直播| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 国产高清视频在线观看网站| 国产亚洲欧美98| 在线观看66精品国产| 舔av片在线| 国产综合懂色| av在线观看视频网站免费| 99久久精品国产国产毛片| 伦精品一区二区三区| 日韩三级伦理在线观看| 婷婷色av中文字幕| 欧美精品一区二区大全| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 国产私拍福利视频在线观看| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 日本免费a在线| 99热精品在线国产| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 亚洲av中文字字幕乱码综合| 草草在线视频免费看| 欧美色欧美亚洲另类二区| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 伦精品一区二区三区| 一边亲一边摸免费视频| 日本三级黄在线观看| 99国产极品粉嫩在线观看| 最近手机中文字幕大全| 成人高潮视频无遮挡免费网站| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩av片在线观看| 国产麻豆成人av免费视频| 久久精品91蜜桃| 一个人观看的视频www高清免费观看| 在线播放无遮挡| 精品久久国产蜜桃| 日韩欧美国产在线观看| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 在线免费十八禁| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 极品教师在线视频| 此物有八面人人有两片| 99久国产av精品国产电影| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站| a级一级毛片免费在线观看| 亚洲国产欧美在线一区| 精品久久久久久久久久久久久| 国产午夜精品久久久久久一区二区三区| 久久久久网色| 全区人妻精品视频| 丝袜美腿在线中文| 亚洲,欧美,日韩| 九九热线精品视视频播放| 成人综合一区亚洲| 免费av毛片视频| 午夜精品国产一区二区电影 | 22中文网久久字幕| 午夜免费激情av| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| 亚洲欧美成人精品一区二区| 床上黄色一级片| 国产精品麻豆人妻色哟哟久久 | 亚洲性久久影院| or卡值多少钱| 赤兔流量卡办理| 国产精品日韩av在线免费观看| 国产成人a区在线观看| 美女黄网站色视频| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 亚洲人成网站在线播| 日本色播在线视频| 免费看av在线观看网站| 久久久午夜欧美精品| 精品人妻熟女av久视频| 色哟哟哟哟哟哟| 久久久色成人| 国产一区二区三区在线臀色熟女| 99久久精品一区二区三区| 五月玫瑰六月丁香| 男女那种视频在线观看| 日韩欧美三级三区| 真实男女啪啪啪动态图| 日韩欧美一区二区三区在线观看| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 啦啦啦啦在线视频资源| 国产三级在线视频| 美女 人体艺术 gogo| 久久精品人妻少妇| 三级毛片av免费| 日韩精品青青久久久久久| 精品人妻熟女av久视频| 91久久精品电影网| 99在线视频只有这里精品首页| av在线蜜桃| 久久久久网色| 边亲边吃奶的免费视频| 国产人妻一区二区三区在| 男的添女的下面高潮视频| 在线免费十八禁| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 欧美+亚洲+日韩+国产| 狂野欧美白嫩少妇大欣赏| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 日日啪夜夜撸| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 美女大奶头视频| 国产91av在线免费观看| 久久99热这里只有精品18| 在线播放国产精品三级| 国产精品一及| 欧美一级a爱片免费观看看| 国产av不卡久久| 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| 看黄色毛片网站| 亚洲av一区综合| 伦理电影大哥的女人| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 中国美女看黄片| 免费观看在线日韩| 久久久久网色| 亚洲欧美精品自产自拍| 可以在线观看的亚洲视频| 亚洲av中文av极速乱| 成年免费大片在线观看| 国产午夜精品久久久久久一区二区三区| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 大又大粗又爽又黄少妇毛片口| 国国产精品蜜臀av免费| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 中文资源天堂在线| 国产精品女同一区二区软件| 不卡视频在线观看欧美| 一区二区三区四区激情视频 | 在线观看美女被高潮喷水网站| 搞女人的毛片| 成年女人永久免费观看视频| 看片在线看免费视频| 中国国产av一级| 熟妇人妻久久中文字幕3abv| 丝袜美腿在线中文| 99视频精品全部免费 在线| 欧美色视频一区免费| 亚洲精品自拍成人| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 国产在线男女| 精品免费久久久久久久清纯| 亚洲av二区三区四区| 99久国产av精品国产电影| 国内少妇人妻偷人精品xxx网站| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 亚洲第一电影网av| 深夜精品福利| 日韩欧美在线乱码| 亚洲av熟女| 九九在线视频观看精品| 精品一区二区三区视频在线| 日韩av不卡免费在线播放| 桃色一区二区三区在线观看| 亚洲精品成人久久久久久| 日本三级黄在线观看| 国产高清视频在线观看网站| 小蜜桃在线观看免费完整版高清| 一级毛片久久久久久久久女| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 在线观看av片永久免费下载| 三级毛片av免费| 婷婷色综合大香蕉| 尤物成人国产欧美一区二区三区| 亚洲18禁久久av| 亚洲成av人片在线播放无| 69av精品久久久久久| 不卡一级毛片| 日本黄色片子视频|