• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae)

    2011-12-25 06:41:12WANGXiaoCanSUNXiaoYanSUNQianQianZHANGDaXiuHUJingYANGQunHAOJiaSheng
    Zoological Research 2011年5期
    關(guān)鍵詞:富集區(qū)鱗翅目蛺蝶

    WANG Xiao-Can, SUN Xiao-Yan, SUN Qian-Qian, ZHANG Da-Xiu , HU Jing, YANG Qun,*, HAO Jia-Sheng,,*

    (1. College of Life Science, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Paleontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    Complete mitochondrial genome of the laced fritillaryArgyreus hyperbius(Lepidoptera: Nymphalidae)

    WANG Xiao-Can1, SUN Xiao-Yan2, SUN Qian-Qian1, ZHANG Da-Xiu1, HU Jing1, YANG Qun2,*, HAO Jia-Sheng1,2,*

    (1. College of Life Science, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Paleontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    We investigated the complete mitochondrial genome (mitogenome) ofArgyreus hyperbius. The 15 156 bp long genome harbored the gene content (13 protein coding genes, 22 tRNA genes, 2 rRNA genes and an A+T-rich region) and the gene arrangement was identical to all known lepidopteran mitogenomes. Mitogenome sequence nucleotide organization and codon usage analyses showed that the genome had a strong A+T bias, accounting for A+T content of 80.8%, with a small negative AT skew (?0.019). Eleven intergenic spacers totaling 96 bp, and 14 overlapping regions totaling 34 bp were scattered throughout the whole genome. As has been observed in other lepidopteran species, 12 of the 13 protein-coding genes (PCGs) were initiated by ATN codons, while the COI gene was tentatively designated by the CGA codon. A total of 11 PCGs harbored the complete termination codon TAA, while the COI and COII genes ended at a single T residue. All of the 22 tRNA genes showed typical clover structures except that the tRNASer(AGN)lacks the dihydrouridine (DHU) stem which is replaced by a simple loop. The intergenic spacer sequence between the tRNASer(AGN)and ND1 also contained the ATACTAA motif, which is conserved in all other lepidopterans as well. Additionally, the 349 bp A+T-rich region was not comprised of large tandem repetitive sequences, but harbored a few structures common to other lepidopteran insects, such as the motif ATAGA followed by a 20 bp poly-T stretch, a microsatellite-like (AT)9element preceded by the ATTTA motif, and a 5 bp poly-A site present immediately upstream of tRNAMet. The mitochondrial genomic sequence features found in this study not only contribute to genetic diversity information of the group, but also are useful in future studies of the endangered nymphalid butterfly in population genetic dynamics, species conservation, phylogeography and evolution.

    Argyreus hyperbius; Nymphalidae; Lepidoptera; Mitochondrial genome

    The laced fritillary,Argyreus hyperbiusLinnaeus, is an oriental nymphalid butterfly species distributed in areas of south-east Asia, India, and north-east Africa. In recent decades, mainly owing to habitat destruction, numerous local populations have shown a sharp decline, and thus this species is considered endangered in some countries including China. Known as the “flying flower”,A. hyperbiuswas once wide-spread but is now rarely found in any large cities, such as Nanjing (Wu, 2008). To date, however, this once widely distributed species has received little attention. Detailed research focusing on aspects such as population genetic divergence, phylogeography and other relevant areas are required; thus, our study was conducted to assist in the protection and better understanding of this butterfly species.

    Animal mitochondrial genomes are generally a circular molecule, ranging from 15?20 kb in size, and with a few exceptions, they all encode 37 genes: 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (lrRNA and srRNA), and 22 transfer RNA genes and non-coding control elements regulating the transcription and replication of the mitochondrial genome (Taanman, 1999). Maternally inherited mtDNA is simple and stable in structure. These genes are predominantly encoded on both strands and are compactly arranged, with coding segments separated by none or only very short (a few base pairs) non-coding spacers, and in rare cases, a few genes overlap. Therefore, mitochondrial genes or genomes have been used as potential tools in studies of phylogenetics, phylogeography, phylogenetic chronology, and molecular diagnostics (Nardi et al, 2005; Simonsen et al, 2006) especially with the aid of PCR methodologies (Kocher et al, 1989; Yamauchi et al, 2004).

    Within the Lepidoptera order, the butterflies (Rhopalocera) account for nearly 16 000 species, and its largest subgroup (Nymphalidae) contain approximately 5000 species (DeVries, 2001). Despite this large taxonomic diversity, information about the nymphalid butterfly mitogenome is still limited, and to the best of our knowledge, only a few complete or nearly complete mitogenomes of nymphalid species are currently available on GenBank (Tab.1). Thus, newly added mitogenome sequences of nymphalid species can providefurther insights into their diversity and evolution. In this study, we sequenced the entire mitogenome of the nymphalid butterflyArgyreus hyperbiusand analyzed its nucleotide organization and major characteristics compared with those of other butterfly species to increase of understanding of mitogenomes and phylogenies of correlative butterflies.

    Tab. 1 Mitochondrial genomes employed in this study

    1 Materials and Methods

    1.1 Sample and DNA extraction

    AdultA. hyperbiusindividuals were collected on Huangshan Mountain in Anhui Province, China, on August 2006 (specimen voucher ZWX09). After collection, the fresh materials were preserved in 100% ethanol immediately and stored in a ?20 °C refrigerator before genomic DNA extraction.

    Whole genomic DNA was extracted and purified by the modified glass powder method, whereby rice-sharp thorax muscle taken and put into one 10 mL Eppendorf tube, washed twice with ddH2O, soaked for about 2?3 h, and then incubated with 500 μL DNA liquid (5 mmol/L of NaCl, 0.5% SDS, 15 mmol/L of EDTA, 10 mmol/L of Tris-HCl, pH 7.6) and 40 μL of Proteinase-K (20 mg/ml), After this, the muscle was bathed at 55 °C for 10?12 h and centrifuged at 4 000 rpm for 2 min. The liquid supernatant was diverted into a new 10 mL Eppendorf tube, to which 500 μL of 8 mol/L GuSCN and 40 μL of 50% clean glass liquid mixture was added and the solution was then bathed at 37 ℃ for 1?2 h, rocked for 1 h, and centrifuged at 4 000 r/min for 1 min. The supernatant was then removed and the sediments were twice cleaned with 75% alcohol and once with acetone, and dried thoroughly in a vacuum dryer at 45 °C. Then 60 μL of TE (10 mmol/L Tris-Cl, 1 mmol/L EDTA, pH 8.0) was added into the Eppendorf tube with powder, and bathed at 56 °C for 30 min, then finally speed up slowly till 4 000 r/min and centrifuged for 1 min. The supernatant containing the genomic DNA was then transferred into a clean 1.5 mL Eppendorf tube and preserved at ?20 °C till use (Hao et al, 2007).

    1.2 PCR amplification and sequencing

    Some universal primers for short fragment amplifications of 12S rRNA, COI, Cyt b genes were used for PCR (Simon et al, 1994; Simons & Weller, 2001). Long primers and some short ones including COIII and ND5 were designed by the multiple sequence alignments of all the available complete lepidopteran mitochondrial genomes (Tab. 1) using ClustalX1.8 (Thompson et al, 1997) and Primer Premier 5.0 software (Singh et al, 1998).

    Long PCRs were performed using TaKaRa LA Taq polymerase with the following cycling parameters: initial denaturation for 5 min at 95 °C, followed by 30 cycles at 95 °C for 50 s, 50 °C for 50 s, 68 °C for 2 min and 30 s; and a final extension step of 68 °C for 10 min. Short fragments were amplified with TaKaRa Taq polymerase: initial denaturation for 5 min at 94 °C, followed by 35 cycles at 94 °C for 1 min, 45?53 °C for 1 min, 72 °C for 2 min, and a final extension step of 72 °C for 10 min. The PCR products were detected via electrophoresis in 1.2% agarose gel, purified using the 3S Spin PCR Product Purification Kit and sequenced directly with an ABI-3730 automatic DNA sequencer.

    1.3 Sequence analysis

    The determined sequences were checked firstly with the NCBI Internet BLAST search function. Raw sequence files were proof read and assembled in BioEdit version 7.0 (Hall, 1999) as well as ClustalX 1.8 (Thompson et al, 1997). Transfer RNA gene analysis was conducted using tRNAscan-SE software v.1.21 (Lowe & Eddy, 1997). Putative tRNA genes not found by tRNAscan-SE were confirmed by sequence comparison betweenA. hyperbiusand other lepidopterans. Both PCGs and ribosomal RNA genes were identified by ClustalX1.8 software, and the PCGs nucleotide sequences were translated on the basis of the Invertebrate Mitochondrial Genetic Code. Nucleotide composition skewness (AT skew=(A?T)/(A+T), GC skew=(G?C)/(G+C) (Irwin et al, 1991)) and codon usage were calculated in MEGA 4.0 software (Kumar et al, 2004). TheA. hyperbiusmitogenome sequence data were deposited into the GenBank database under the accession number JF439070.

    2 Results

    2.1 Genome organization

    The mitogenome ofA. hyperbiuswas 15 156 bp in length (Fig. 1) and encoded 37 genes totally 13 PCGs (ATP6, ATP8, COI-III, ND1-6, ND4L, Cyt b), 2 ribosomal RNA genes for small and large subunits (srRNA and lrRNA), and 22 transfer RNA genes) and a non-coding A+T-rich region (the control region) (Tab. 2). Among these, 14 genes were encoded on the N strand, including 4 PCGs (ND1, ND4, ND4L, ND5), 2 ribosomal RNA genes for small and large subunits, and 8 transfer RNA genes (tRNAGln, tRNACys, tRNATyr, tRNAPhe, tRNAHis, tRNAPro, tRNALeu(CUN), tRNAVal). The remaining 22 genes and A+T-rich region were encoded on the J strand. Eleven intergenic spacers totaling 96 bp, and 14 overlapped regions totaling 34 bp were scattered throughout the whole genome.

    Fig. 1 Circular map of the Argyreus hyperbius mitochondrial genome

    2.2 PCGs, tRNA and rRNA genes, A+T-rich region

    Twelve of the 13 PCGs were initiated by ATN codons, while the COI gene was tentatively designated by the CGA codon; eleven PCGs harbored the complete termination codon TAA, while the COI and COII genes ended at a single T residue.

    Results showedA. hyperbiusharbored the typical set of 22 tRNA genes ranging from 61 to 71 bp in size. All the predicted secondary structures of theA. hyperbiustRNAs are shown in Fig. 2. Some 22 tRNA genes showed typical clover structures except that the tRNASer(AGN)lacked the dihydrouridine (DHU) stem, which was replaced by a simple loop. Seventeen tRNA genes has a total of 26 pair mismatches in their stems, among which, seven were in the DHU stems, nine in the amino acid acceptor stems, one in the TΨC stem, and nine in the anticodon stems, respectively.

    Based on the mitogenomes of the other insects, two rRNA genes (lrRNA and srRNA) were present inA. hyperbius. The 1 330 bp lrRNA and 778 bp srRNA were located between tRNALeu(CUN) and tRNAVal, and between tRNAValand the A+T-rich region, respectively.

    The 349 bp A+T-rich region was not comprised of large tandem repetitive sequences, but harbored a few structures common to other lepidopteran insects, such as motif ATAGA followed by a 20 bp poly-T stretch, a microsatellite-like (AT)9element preceded by the ATTTA motif, and a 5 bp poly-A site present immediately upstream of tRNAMet.

    2.3 Sequence variation and codon usage

    The A+T content of theA. hyperbiuswas 80.8%, and the whole mitogenome showed obvious A+T bias (Tab. 3). The relative synonymous codon usage (RSCU) in theA. hyperbiusmitochondrial PCGs was investigated and the results are summarized in Tab. 4. The four most frequently used codons were TTA (leucine, Leu), ATT (isoleucine, Ile), TTT (phenylalanine, Phe), and ATA (methionine, Met), accounting for 40.4% of all the codons in theA. hyperbiusmitogenome. These four codons were composed of A or T nucleotides, indicating their biased usage. The total number of non-stop codons (CDs) of theA. hyperbiusmitochondrial PCGs was 3 718. Among these amino acid codons, the Leu (14.20%), Ile (12.80%), Phe (10.27%), and Ser (8.50%) were the most frequently used.

    3 Discussion

    3.1 Genome organization

    The size of the mitogenome was congruent with the sizes of other known lepidopteran mitogenomes, ranging from 15 122 bp inMelanitis leda(unpublished, GenBank accession number JF905446) to 16 094 bp inPapilio maraho(unpublished, NC_014055). The gene content of theA. hyperbiusmitogenome was the same as the typical animal mitogenome, and the gene order and orientation were identical to the already determined lepidopteran mitogenomes. Compared with other lepidopterans, however, theA. hyperbiusmitogenome was relatively more compacted, with a total of only 96 bp intergenic spacers ranging from 2?52 bp in length. Additionally, a total of 34 bp overlapped regions were scattered throughout the whole genome. Its tRNA cluster existing ahead of NADH dehydrogenase subunit 2 (ND2) was arranged in M-I-Q order, which means the tRNAMet(M) was followed by tRNAIle(I) and tRNAGln(Q), which was similar to lycaenidCoreana raphaelis(Kim et al, 2006) and the noctuidOchrogaster lunifer(Salvato et al, 2008). As far as we know, all determined lepidopteran genomes, including that ofA. hyperbius, share the same order of gene arrangement but differ from that of hypothesized ancestral insects. This confirms the suggestion proposed by Boore et al (1998) that the Lepidoptera may have diverged from other insect orders for a certain period of time, forming an independent evolutionary lineage.

    Tab. 2 Organization of the Argyreus hyperbius mitochondrial genome

    Fig. 2 Predicted secondary clover-leaf structure of the Argyreus hyperbius 22 tRNA genes

    Tab. 3 Nucleotide composition and skewness in different regions of the Argyreus hyperbius mitogenome

    Tab. 4 The codon number and RSCU in the Argyreus hyperbius mitochondrial PCGs

    3.2 Protein-coding genes

    All protein-coding sequences except COI gene use standard ATN start codon inA. hyperbius(Tab. 2). Three PCGs (ND5, ND1 and ND6) were initiated by ATA (Met); six PCGs (COII, ATP6, COIII, ND4, ND4L and Cyt b) were initiated by ATG (Met), and three PCGs (ND2, ATP8 and ND3) were initiated by ATT (Ile), respectively. However, the COI gene generally uses noncanonical initial codons across different insect groups. The use of non-canonical initial codons for the COI gene has been reported in a number of other insect species. For example, Junqueira et al (2004) and Friedrich & Muqim (2003) proposed AAA or TCG as the initial site for COI in dipteranChrysomya chloropygaand in coleopteranTribolium castanaeum, respectively. Other studies have determined that TTG is the initiation codon for COI in some invertebrates such asAnopheles quadrimaculatus(Mitchell et al, 1993),Pyrocoelia rufa(Bae et al, 2004),Caligula boisdnvalii(Hong et al, 2008) andAcraea issoria(Hu et al, 2010). In addition, the tetranucleotide TTAG inCoreana raphaelis(Kim et al, 2006), the hexanucleotide TATTAG inOstrinia nubilalisandOstrinia furnicalis(Coates et al, 2005), TTTTAG inBombyx mori(Yukuhiro et al, 2002), ATTACG inPapilio xuthus(Feng et al, 2010), and TTAAAG inPieris rapae(Mao et al, 2010) have also been proposed as the COI start codon. In the case ofA. hyperbius, we tentatively presumed CGA as the start codon for COI, which was congruent withParnassius bremeri(Kim et al, 2009),Eumenis autonoe(Kim et al, 2010), andHyphantria cunea(Liao et al, 2010). Besides ATN, GTN has also been reported in Heterocera as the initiation codon for some PCGs. For instance, GTG has been reported as the start codon for COII inCaligula boisduvalii(Hong et al, 2008) andEriogyna pyretorum(Jiang et al, 2009), and for ND1 inOchrogaster lunifer(Salvato et al, 2008).Furthermore, ND4 and ND4L inOchrogaster luniferuse GTT as their initiation codon.

    Eleven of the 13 protein-coding genes had the common stop codon (TAA), while COI and COII terminated with a single T residue in theA. hyperbiusmitogenome. Similar cases have been found in most insect mitogenomes including all known lepidopteran mitogenomes. For example, a single T residue has been deemed the stop codon for COI, COII, ND5 and Cyt b, and a dinucleotide residue TA has been deemed the stop codon for ATP6, ND4, ND4L, ND6 inCoreana raphaelis(Kim et al, 2006); similarly, a single T has been considered the stop codon for COI, COII and ND4, while TA residue is considered the stop codon for ATP6 inHyphantria cunea(Liao et al, 2010). Incomplete stop codons produce functional stop codons in polycistronic transcription cleavage and polyadenylation processes (Ojala et al, 1981).

    Three of the 13 PCGs (ATP8, ATP6, ND6) inA. hyperbiuswere flanked by other PCGs at the 3' end: ATP8-ATP6, ATP6-COIII, and ND6-Cyt b were overlapped by seven (ATGATAA), one (A) and one (A) nucleotide, respectively. The 3' end region of these three genes had the potential to form hairpin-like structures, which are crucial for precise mRNA cleavage to generate mature PCGs (Kim et al, 2006; Fenn et al, 2007).

    Those genes encoded by the N strand are underlined. The tRNA genes are designated by single letter amino acid codes. L* and S* denote the tRNALeu(UUR)and tRNASer(UCN), respectively.

    3.3 Transfer RNA and ribosomal RNA genes

    All the tRNA genes showed typical clover structure, with the exception of the tRNASer(AGN)gene which lacks the dihydrouridine (DHU) stem and was replaced by a simple loop. This phenomenon has also been detected in other insect groups (Wolstenholme, 1992) including lepidopterans (Hong et al, 2008; Kim et al, 2006; Salvato et al, 2008; Liao et al, 2010). Seventeen tRNA genes had a total of 26 pair mismatches in their stems, among which eighteen G·U, seven U·U, and one A·C were present. These mismatches found in tRNAs can be corrected through RNA-editing mechanisms (Lavrov et al, 2000). To date, however, these modifications in insect tRNA genes are not well understood in light of their mechanism, although some researchers propose there to be a connection with rapid species evolution of insects (Takashi et al, 1991; Watanabe & Watanabe , 1994).

    Two rRNA genes were in the observed size range of known lepidopteran mitogenomes. For example, the 1 330 bp lrRNA was well within the range of other known lepidopterans (from 1 319 bp inA. melete(Hong et al, 2009) to 1 426 bp inH. cunea(Liao et al, 2010)). The case was similar with srRNA, in which size was also within the observed size range of other lepidopteran insects (from 434 bp inOstrinia nubilalis(Coates et al, 2005) to 808 bp inH. cunea)).

    3.4 Intergenic spacer sequences

    Because of their rapid evolutionary rates, intergenic spacer sequences (IGS) show remarkable differences even among closely related insect species. Except for the A+T-rich region, theA. hyperbiusmitogenome in this study was interleaved with 11 intergenic spacers totaling 96 bp and ranging in size from 2?52 bp (Fig. 1). The longest spacer (52 bp) located between the tRNAGlnand ND2 genes is a common feature to all lepidopteran mitogenomes, but has not yet been detected in nonlepidopteran species. This spacer showed a relatively high level of homology (62%) with its ND2 gene, which is similar to the 70% detected inParnassius bremeri(Kim et al, 2009) but significantly different from the 32% inSasakia charonda(unpublished, NC_014224). Accordingly, this spacer is thought to have originated from a partial duplication of the ND2 gene and undergone rapid sequence divergence for their noncoding nature among even closely related taxa (Kim et al, 2009). The other IGS more than 10 bp was present between the ND5 and tRNAHis, and this 15 bp long intergenic spacer exists in 15 of the 27 determined lepidopteran mitogenomes. Furthermore, a relatively conservative element of the nucleotides ATTTT was present within this spacer, which has also been found in determined insect species in the overwhelming majority of conditions. The IGS between tRNASer(UCN) and ND1 is common among lepidopteran insects, spanning from 9 bp inDiatraea saccharalis(unpublished, NC_013274) to 38 bp inOstrinia nubilalis(Coates et al, 2005). In the present study, however, it wsa nearly absent inA. hyperbiuswith only a 2 bp overlap, which is similar to findings onAcraea issoria(Hu et al, 2010),Sasakia charonda(unpublished, NC_014224), andCalinaga davidis(Xia et al, HQ658143) with 2-, 1-, 1- overlaps respectively. The conserved ATACTAA motif is regarded as a possible recognition site for the transcription termination peptide (mtTERM protein) and is usually located in the IGS between the tRNASer(UCN) and ND1 genes. However, this motif was detected within the NDI genes ofA. hyperbius. This is same asS. charondaandC. davidis, but it is present within the tRNASer(UCN) inEumenis autonoe(Kim et al, 2010) and absent in theSasakia charonda kuriymaensis(unpublished, NC_014223).

    3.5 A+T-rich region

    The A+T-rich region harbors the origin sites for transcription and replication (Taanman, 1999). InDrosophilaspecies, this region includes the replication origin for mtDNA heavy-strands and minor-strands (Clary & Wolstenholme, 1987). Saito et al (2005) precisely determined that the replication origin site for mtDNA minor-strand was located in this region inBombyx mori(Yukuhiro et al, 2002). In the present study, the A+T-rich region of theA. hyperbiusmitochondrial genome was located between the srRNA and tRNAMetgenes (Tab. 2) and was 349 bp in length. This was well within the range observed in the completely sequenced lepidopteran insects from 317 bp inMelanitis leda(unpublished, by our lab) to 747 bp inBombyx mandarina(Liao et al, 2010). The A+T-rich region exhibited a remarkably high A+T content (95.41%) and did not contain macrorepeat units. However, it included some microsatellite-like repeats (e.g. polyT, (AT)9, (TA)8and poly-A), as seen in other insect species. For example, the polyT stretch (20 bp), which is considered the structural signal for recognizing proteins in the mtDNA minor-strand initiation (Kim et al, 2009), was located 24 bp downstream from srRNA preceded by the motif ATAGA, which is conserved across the lepidoptera orders as well. The microsatellite-like repeat (AT)9element, located 235 bp downstream from srRNA, was preceded by the conserved motif ATTTA, which is similar to ATTTA(TA)8inManduca sexta(Cameron et al, 2008), ATTTA(AT)8inHyphantria cunea(Liao et al, 2010), ATTTA(AT)7inCoreana raphaelis(Kim et al, 2006), and ATTTA(AT)9inPieris rapae(Mao et al, 2010). Thus, this phenomenon may be characteristic of the insect AT-rich regions. Additionally, another microrepeat unit (TA)8and a 5 bp long poly-A stretch were situated at the 284 bp site downstream from srRNA, and immediately upstream tRNAMet, respectively.

    3.6 Sequence variation and codon usage

    The AT-skewness values of the J strand (majority or heavy strand) and N strand (minority or light strand) were ?0.135 and ?0.163, respectively, indicating the occurrence of more Ts than As in both the J and N strands; whereas, the GC skewness about the J and N strands were ?0.149 and 0.322, respectively, suggesting a contrary condition of Gs and Cs.

    For the 13 PCGs, the A+T content at the third codon position (92.9%) was higher than the first (74.5%) and second position (70.8%). The value of the A+T content of PCGs was 79.4% with a strong A+T bias. This result has been observed in other insects species, for examples, the AT contents ofSasakia charonda,Coreana raphaelis,Parnassius bremeriandHelicoverpa armigeraPCGs have been reported to be 78.2%, 81.5%, 80.1% and 79.4%, respectively.

    The relative synonymous codon usage (RSCU) analysis showed that TTA, ATT, TTT, and ATA were the four most frequently used codons, accounting for 40.4% of all codons in theA. hyperbiusmitogenome. These four codons were all composed of A or T nucleotides, which indicated their biased usage. Such results have also been detected in other sequenced lepidopteran insects. For example, these four codons account for 39.1% inTeinopalpus aureus, 44.1% inCoreana raphaelis, and 40.7% inHelicoverpa armigera. For amino acids, the Leu, Ile, Phe, and Ser were the most frequently used in theA. hyperbiusmitogenome PCGs, which is in agreement with findings for other lepidopteran insects (Fig. 3). The total number of nonstop codons (CDs) for theA. hyperbiusmitochondrial PCGs was 3 718, which accords with the range for other known butterfly species, from 3 695 inSasakia charondato 3 737 inCalinaga davidis. The codons per thousands codons(CDspT) of the Ile, Leu2 and Phe were more than 100, the CDspT of Met, Asn (asparagine), Gly (glycine), Ser2 and Tyr (tyrosine) were more than 50, and the Arg (arginine), Asp (aspartic acid), Glu (glutamic acid), Gln (glutamine), His (histidine) and Leu1 were below 20, with Cys (cysteine) the lowest at 8.61 inA. hyperbiusmitochondrial PCGs. Both the CDs and CDspT of theA. hyperbiusin this study shared similar patterns with those of other Papilionoidea butterfly species (Fig. 3).

    Fig. 3 Codon distribution in Papilionoidea mtDNAs

    Boore JL, Lavrov D, Brown WM. 1998. Gene translocation links insects and crustaceans [J].Nature, 393: 667-668.

    Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly,Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J].Mol Phylogenet Evol, 32: 978-985

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm,Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].Gene, 408: 112-123.

    Clary DO, Wolstenholme DR. 1987.Drosophilamitochondrial DNA: conserved sequences in the AT-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA [J].J Mol Evol,25: 116-125.

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences ofOstrinia nubilalisandOstrinia furnicalis[J].Int J Biol Sci, 1: 13-18.

    DeVries PJ. 2001. Nymphalidae. In: Levin SA (ed). Encyclopedia of Biodiversity[M]. Academic Press.

    Fenn JD, Cameron SL, Whiting MF. 2007. The complete mitochondrial genome of the Mormon cricket (Anabrussimplex: Tettigoniidae: Orthoptera) and an analysis of control region variability [J].Insect Mol Biol, 16: 239-252.

    Feng X, Liu DF, Wang NX, Zhu CD, Jiang GF. 2010. The mitochondrial genome of the butterflyPapilio xuthus(Lepidoptera: Papilionidae) and related phylogenetic analyses [J].Mol Biol Rep, 37: 3877-3888.

    Friedrich M, Muqim N. 2003. Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetleTribolium castanaeum[J].Mol Phylogenet Evol, 26(3):502-512.

    Hao JS, Su CY, Zhu GP, Chen N, Wu DX, Zhang XP. 2007. The molecular morphologies of mitochondrial 16S rDNA of the main butterfly lineages and their phylogenetic significances [J].Genet Mol Biol, 18(2): 111-123.

    Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J].Nucleic Acid Symp Ser, 41: 95-98.

    Hong G, Jiang S, Yu M, Yang Y, Li F, Xue F, Wei Z. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly,Artogeia melete(Lepidoptera: Pieridae) [J].Acta Biochim Biophys Sin,41: 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Huang JS, Jin BR, Kang PD, Kim K, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk mothCaligula biosducalii(Lepidoptera: Saturniidae) and comparison with other lepidopteran insects [J].Gene, 413: 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster,Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event [J].Mol Biol Rep, 37(7): 3431-3438.

    Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the cytochrome b gene of mammals [J].Mol Evol, 32:128-144.

    Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, Wei ZJ. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth,Eriogyna pyretorum(Lepidoptera: Saturniidae) [J].Int J Biol Sci, 5(4): 351-365.

    Junqueira ACM, Lessingera AC, Torresa TT, Silvab FR, Vettorec AL, Arrudad P, Espin AMA. 2004. The mitochondrial genome of the blowflyChrysomya chloropyga(Diptera: Calliphoridae) [J].Gene, 339: 7-15.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak,Coreana raphaelis(Lepidoptera: Lycaenidae) [J].Insect Mol Biol, 15: 217-225.

    Kim MI, Beak JY, Kim MJ, Jeong HC, Kim KJ, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly,Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects [J].Mol Cell, 28: 347-363.

    Kim MJ, Wan XL, Kim KG, H JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangeredEumenis autonoe(Lepidoptera: Nymphalidae) [J].Afr J Biotechnol, 9 (5): 735-754.

    Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers [J].Proc Natl Acad Sci USA, 86: 6196-6200.

    Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J].Brief Bioinform, 5: 150-163.

    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipedeLithobius forficatus[J].Proc Natl Acad Sci USA, 97: 13738-13742.

    Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm,Hyphantria cunea(Lepidoptera: Arctiidae) [J].Int J Biol Sci, 6(2):172-186.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].Nucleic Acids Res, 25: 955-964.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome ofPeris rapaeLinnaeus (Lepidoptera: Peridae) [J].Acta Entomol Sin, 53(11): 1295-1304.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome ofAnopheles quadrimaculatusspecies A: complete nucleotide sequence and gene organization [J].Genome, 36: 1058-1073.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria [J].Nature, 290: 470-474.

    Saito S, Tamura K, Aotsuka T. 2005. Replication origin of mitochondrial DNA in insects [J].Genetics, 171(4): 1695-1705.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter mothOchrogaster lunifer(Lepidoptera, Notodontidae) [J].BMC Evol Biol, 9:331.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial genesequences and a compilation of conserved polymerase chainreaction primers [J].Ann Entomol Soc Am, 87: 651-701.

    Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA [J].Ann Rev Ecol Evol Syst, 37: 545-579.

    Simons RB, Weller SJ. 2001. Utility and evolution of cytochrome b in insects [J].Mol Phylogenet Evol, 20: 196-210.

    Simonsen TJ, Wahlberg N, Brower AVZ, Jong R. 2006. Morphology, molecules and fritilllaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae)[J].Insect Syst Evol, 37: 405-418.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: Program for design of degenerate primers from a protein sequence [J].Biol Techniques, 24:318-319.

    Taanman JW. 1999. The mitochondrial genome: structure, transcription and replication [J].Biochem Biophys Acta, 1410: 103-123

    Takashi Y, Yohichi W, Kimitsuna W. 1991. A novel clover leaf structure found in mammalian mitochondrial tRNASer[J].Nucl Acid Res, 19: 6101-6105.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools [J].Nucl Acids Res, 24: 4876-4882.

    Watanabe Y, Watanabe K. 1994. Higher order structure of bovine mitochondrial tRNASerUGAchemical modification and computer modeling [J].Nucleic Acids Res, 22: 5378-5384.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution [J].Int Rev Cytol, 141:173-216.

    Wu Q. 2008.Argyreus hyperbius[J].Chn Nat, 1: 74-77.(in Chinese)

    Xia J, Hu J, Zhu GP, Zhu CD, Hao JS. 2011. Sequencing and analysis of the complete mitochondrial genome ofCalinaga davidisOberthür (Lepidoptera: Nymphalidae) [J].Acta Entomol Sin, 54(5): 555-565.

    Yamauchi MM, Miya MU, Nishida M. 2004. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans [J].Insect Mol Biol, 13: 435-442.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarinaand its close relative, the domesticated silkmoth,Bombyx mori[J].Mol Biol Evol, 19: 1385-1389.

    斐豹蛺蝶線粒體基因組全序列的測定和分析

    王曉燦1, 孫曉燕2, 孫倩倩1, 張大秀1, 胡 靜1, 楊 群2,*, 郝家勝1,2,*

    (1.安徽師范大學(xué) 生命科學(xué)學(xué)院分子進(jìn)化與生物多樣性研究室,安徽 蕪湖241000;
    2.中國科學(xué)院南京地質(zhì)古生物研究所 現(xiàn)代古生物學(xué)與地層學(xué)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京210008)

    該研究對(duì)斐豹蛺蝶(Argyreus hyperbius)(鱗翅目:蛺蝶科)線粒體基因組全序列進(jìn)行了測定和初步分析。結(jié)果表明:斐豹蛺蝶線粒體基因全序列全長為15 156bp, 包含13個(gè)蛋白質(zhì)編碼基因、22個(gè)tRNA和2個(gè)rRNA基因以及1個(gè)非編碼的A+T富集區(qū), 基因排列順序與其它鱗翅目種類一致; 線粒體全序列核苷酸組成和密碼子使用顯示出明顯的A+T偏好(80.8%)和輕微的AT 偏移(AT skew, ?0.019)?;蚪M中共存在11個(gè)2~52 bp不等的基因間隔區(qū), 總長96 bp; 以及14個(gè)1~8 bp不等的基因重疊區(qū), 總長34 bp。除COI以CGA作為起始密碼子外, 13個(gè)蛋白質(zhì)編碼基因中的其余12個(gè)基因是以ATN作為起始密碼子。除COI和COII基因是以單獨(dú)的一個(gè)T為終止密碼子, 其余11個(gè)蛋白質(zhì)編碼基因都是以TAA結(jié)尾的。除了缺少DHU臂的tRNASer(AGN), 其余的tRNA基因都顯示典型的三葉草結(jié)構(gòu)。tRNA(AGN)和ND1之間的基因間隔區(qū)包含一個(gè)ATACTAA結(jié)構(gòu)域, 這個(gè)結(jié)構(gòu)域在鱗翅目中是保守的。A+T富集區(qū)沒有較大的多拷貝重復(fù)序列, 但是包含一些微小重復(fù)結(jié)構(gòu):ATAGA結(jié)構(gòu)域下游的20 bp poly-T結(jié)構(gòu), ATTTA結(jié)構(gòu)域后的(AT)9重復(fù), 以及位于tRNAMet上游的5 bp poly-A結(jié)構(gòu)等。這項(xiàng)研究所揭示的斐豹蛺蝶的線粒體基因組特征, 不僅為認(rèn)識(shí)蛺蝶科的遺傳多樣性貢獻(xiàn)數(shù)據(jù), 而且對(duì)于該物種的保護(hù)生物學(xué)、群體遺傳學(xué)、譜系地理及演化研究等具有重要意義。

    2011-04-11;接受日期:2011-07-01

    安徽省高校省級(jí)自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ 2010A 142);中國科學(xué)院知識(shí)創(chuàng)新工程重要方向項(xiàng)目( KZCX22YW2JC104);現(xiàn)代古生物學(xué)和地層學(xué)國家重點(diǎn)實(shí)驗(yàn)室開放基金(104143)

    斐豹蛺蝶; 蛺蝶科; 鱗翅目; 線粒體基因組

    Q969.42; Q969.439.2

    A

    0254-5853-(2011)05-0465-11

    10.3724/SP.J.1141.2011.05465

    date: 2011-04-11; Accepted date: 2011-07-01

    s: This work was supported by the Provincial Key Project of the Natural Science Foundation from Anhui Province, China (KJ2010A142), the Chinese Academy of Sciences (KZCX22YW2JC104), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (104143)

    *Corresponding authors (通信作者), E-mail: qunyang@nigpas.ac.cn; jshaonigpas@sina.com

    猜你喜歡
    富集區(qū)鱗翅目蛺蝶
    低階煤煤層氣富集區(qū)預(yù)測方法研究與應(yīng)用
    貓蛺蝶和黑脈蛺蝶
    幼兒100(2020年25期)2020-10-22 05:25:20
    礦床富集區(qū)的控礦規(guī)律與找礦勘查實(shí)踐
    金堇蛺蝶
    寶清東升自然保護(hù)區(qū)鱗翅目昆蟲資源及蝶類多樣性分析
    括蒼山自然保護(hù)區(qū)鱗翅目昆蟲數(shù)據(jù)庫的構(gòu)建
    鱗翅目可食用昆蟲研究進(jìn)展
    鱗翅目昆蟲觸角感器研究進(jìn)展
    孔雀蛺蝶
    能源富集區(qū)資源紅利與民生問題——以晉、陜、蒙為例
    大香蕉久久网| 欧美乱码精品一区二区三区| 大香蕉久久成人网| 九草在线视频观看| tube8黄色片| 一区二区三区乱码不卡18| 国产精品欧美亚洲77777| 欧美日韩成人在线一区二区| 啦啦啦 在线观看视频| 人人妻,人人澡人人爽秒播 | 亚洲少妇的诱惑av| 天堂俺去俺来也www色官网| 国产免费视频播放在线视频| 亚洲欧洲国产日韩| 一级毛片黄色毛片免费观看视频| 久久天堂一区二区三区四区| 悠悠久久av| 超碰成人久久| av国产精品久久久久影院| 日本av免费视频播放| av.在线天堂| av有码第一页| 精品一品国产午夜福利视频| 亚洲国产欧美日韩在线播放| 国产精品久久久久成人av| 99九九在线精品视频| 免费观看av网站的网址| 久久精品aⅴ一区二区三区四区| 国产乱人偷精品视频| 热re99久久精品国产66热6| 女性被躁到高潮视频| 精品少妇内射三级| 国产精品 欧美亚洲| 18禁裸乳无遮挡动漫免费视频| 操出白浆在线播放| 18在线观看网站| 国产成人精品无人区| 一级毛片黄色毛片免费观看视频| 国产精品二区激情视频| 在线观看免费视频网站a站| tube8黄色片| 在线观看一区二区三区激情| 国产野战对白在线观看| 老熟女久久久| 晚上一个人看的免费电影| 亚洲精品第二区| 欧美人与性动交α欧美软件| 亚洲欧美一区二区三区久久| 丰满迷人的少妇在线观看| 一边亲一边摸免费视频| 国产成人欧美在线观看 | 伊人久久大香线蕉亚洲五| 色婷婷久久久亚洲欧美| 免费观看性生交大片5| 天美传媒精品一区二区| 国产精品免费大片| 日本vs欧美在线观看视频| 日韩不卡一区二区三区视频在线| 在线观看免费日韩欧美大片| 国产精品 国内视频| 亚洲精品视频女| a级毛片在线看网站| 中文天堂在线官网| 国产成人精品久久久久久| 夫妻性生交免费视频一级片| 国产欧美亚洲国产| 日韩欧美一区视频在线观看| 精品视频人人做人人爽| 熟妇人妻不卡中文字幕| 欧美亚洲日本最大视频资源| 超碰97精品在线观看| 久久久精品区二区三区| 亚洲欧美日韩另类电影网站| 国产成人啪精品午夜网站| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 亚洲欧美中文字幕日韩二区| xxx大片免费视频| 免费在线观看黄色视频的| 成人黄色视频免费在线看| 两性夫妻黄色片| 国产精品无大码| 日韩一本色道免费dvd| 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 在线看a的网站| av网站免费在线观看视频| 欧美在线一区亚洲| 免费观看人在逋| 国产av码专区亚洲av| 天堂中文最新版在线下载| 国产免费福利视频在线观看| 久久人妻熟女aⅴ| 精品免费久久久久久久清纯 | 咕卡用的链子| 国语对白做爰xxxⅹ性视频网站| 好男人视频免费观看在线| 欧美乱码精品一区二区三区| 超碰成人久久| 一二三四在线观看免费中文在| 韩国av在线不卡| 建设人人有责人人尽责人人享有的| 亚洲精品第二区| 欧美 日韩 精品 国产| 午夜精品国产一区二区电影| 女人被躁到高潮嗷嗷叫费观| 丰满饥渴人妻一区二区三| 999久久久国产精品视频| www.自偷自拍.com| 国产日韩欧美在线精品| 精品亚洲成国产av| 亚洲图色成人| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久久视频综合| 国产成人91sexporn| 一级毛片 在线播放| 亚洲成国产人片在线观看| 国产精品人妻久久久影院| 亚洲av福利一区| 欧美中文综合在线视频| av天堂久久9| 我的亚洲天堂| 欧美另类一区| 国产精品女同一区二区软件| 最近中文字幕高清免费大全6| 毛片一级片免费看久久久久| netflix在线观看网站| 亚洲欧美清纯卡通| 久久久久网色| 韩国av在线不卡| 18禁动态无遮挡网站| 如何舔出高潮| 三上悠亚av全集在线观看| 97在线人人人人妻| 女人高潮潮喷娇喘18禁视频| 美女午夜性视频免费| 人妻 亚洲 视频| 人妻一区二区av| 五月开心婷婷网| 成人免费观看视频高清| 国产精品av久久久久免费| 免费观看av网站的网址| 精品久久久久久电影网| 亚洲在久久综合| 精品人妻熟女毛片av久久网站| 亚洲第一青青草原| 九草在线视频观看| 中文字幕人妻丝袜制服| 永久免费av网站大全| 亚洲一区二区三区欧美精品| 在线观看免费日韩欧美大片| 亚洲精品久久久久久婷婷小说| 男人操女人黄网站| 日韩伦理黄色片| 一本色道久久久久久精品综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费大片| 青春草亚洲视频在线观看| 午夜免费鲁丝| 久久精品国产综合久久久| 女性被躁到高潮视频| 久久久久国产精品人妻一区二区| 婷婷成人精品国产| 久久久久久久大尺度免费视频| 亚洲av成人不卡在线观看播放网 | 99久久精品国产亚洲精品| 爱豆传媒免费全集在线观看| 午夜激情久久久久久久| 黄片播放在线免费| 大片免费播放器 马上看| 免费在线观看视频国产中文字幕亚洲 | 多毛熟女@视频| 在线观看三级黄色| 久久ye,这里只有精品| 男男h啪啪无遮挡| 不卡av一区二区三区| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三区在线| 青春草视频在线免费观看| 国产成人一区二区在线| 精品人妻在线不人妻| 90打野战视频偷拍视频| 男女免费视频国产| 亚洲熟女精品中文字幕| 亚洲伊人久久精品综合| 亚洲综合色网址| 免费观看性生交大片5| 欧美人与性动交α欧美软件| 欧美成人午夜精品| av线在线观看网站| 日韩欧美一区视频在线观看| 19禁男女啪啪无遮挡网站| 男女之事视频高清在线观看 | 人妻一区二区av| 免费女性裸体啪啪无遮挡网站| 亚洲精品,欧美精品| 日日撸夜夜添| √禁漫天堂资源中文www| 国产免费视频播放在线视频| 男人爽女人下面视频在线观看| 久久人人97超碰香蕉20202| 精品人妻在线不人妻| 欧美日本中文国产一区发布| 久久久亚洲精品成人影院| 午夜老司机福利片| 欧美日韩亚洲国产一区二区在线观看 | 搡老乐熟女国产| 人人妻人人添人人爽欧美一区卜| 高清欧美精品videossex| 欧美日韩亚洲高清精品| av在线app专区| 亚洲成人国产一区在线观看 | 国产精品av久久久久免费| 十八禁人妻一区二区| 精品一区二区三区四区五区乱码 | 婷婷色综合大香蕉| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 亚洲精品成人av观看孕妇| 免费黄频网站在线观看国产| 在线精品无人区一区二区三| 国产女主播在线喷水免费视频网站| 午夜老司机福利片| 亚洲国产精品一区三区| 国产精品久久久久久精品电影小说| 久久久久久人妻| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 在线观看免费日韩欧美大片| 久久久精品94久久精品| 女性被躁到高潮视频| 如何舔出高潮| 日韩欧美一区视频在线观看| 最近中文字幕2019免费版| 精品国产乱码久久久久久小说| 国产亚洲最大av| 咕卡用的链子| 999久久久国产精品视频| 国产精品国产av在线观看| 亚洲第一区二区三区不卡| 欧美日韩福利视频一区二区| 人人澡人人妻人| 秋霞在线观看毛片| 无遮挡黄片免费观看| 九草在线视频观看| 亚洲精品久久久久久婷婷小说| xxx大片免费视频| av卡一久久| 狠狠精品人妻久久久久久综合| 久久av网站| 久久精品亚洲av国产电影网| 免费av中文字幕在线| 一边摸一边抽搐一进一出视频| 久久人人97超碰香蕉20202| 老汉色av国产亚洲站长工具| 老鸭窝网址在线观看| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频| 亚洲精品国产区一区二| 国产av一区二区精品久久| 天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 男女国产视频网站| 精品久久久精品久久久| 晚上一个人看的免费电影| 亚洲第一青青草原| 这个男人来自地球电影免费观看 | 韩国av在线不卡| 午夜免费观看性视频| 国产男女超爽视频在线观看| 免费观看a级毛片全部| 中文字幕最新亚洲高清| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 国产男女超爽视频在线观看| 如日韩欧美国产精品一区二区三区| 丰满乱子伦码专区| 我要看黄色一级片免费的| 高清在线视频一区二区三区| 性高湖久久久久久久久免费观看| 香蕉国产在线看| 免费av中文字幕在线| 高清欧美精品videossex| 91成人精品电影| 你懂的网址亚洲精品在线观看| av福利片在线| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 91精品三级在线观看| 两性夫妻黄色片| 欧美日韩视频高清一区二区三区二| 久久久精品区二区三区| 欧美人与善性xxx| 大香蕉久久成人网| 国产精品女同一区二区软件| 性色av一级| 亚洲第一青青草原| 亚洲精品,欧美精品| 高清av免费在线| 国产精品一区二区精品视频观看| 美女中出高潮动态图| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| 午夜福利在线免费观看网站| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 性色av一级| 国产午夜精品一二区理论片| 一级片免费观看大全| 欧美日韩亚洲国产一区二区在线观看 | 高清不卡的av网站| 韩国av在线不卡| 人妻 亚洲 视频| 青草久久国产| 国精品久久久久久国模美| 免费黄网站久久成人精品| 大香蕉久久网| 国产成人免费观看mmmm| 国产精品久久久久成人av| 国产免费又黄又爽又色| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 亚洲四区av| 欧美97在线视频| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 久久青草综合色| 色婷婷久久久亚洲欧美| 欧美97在线视频| 永久免费av网站大全| av又黄又爽大尺度在线免费看| a 毛片基地| 午夜免费观看性视频| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| 亚洲欧美激情在线| 下体分泌物呈黄色| 精品亚洲成国产av| 黄色一级大片看看| 一区在线观看完整版| 搡老乐熟女国产| 日韩中文字幕欧美一区二区 | 99久久99久久久精品蜜桃| 久久精品久久久久久久性| 国产一区二区三区综合在线观看| 十八禁人妻一区二区| 爱豆传媒免费全集在线观看| 免费日韩欧美在线观看| 国产野战对白在线观看| 一级爰片在线观看| 亚洲成色77777| 免费在线观看黄色视频的| 99九九在线精品视频| 18禁观看日本| 欧美人与善性xxx| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 亚洲欧美日韩另类电影网站| 两个人免费观看高清视频| 黄频高清免费视频| 亚洲伊人久久精品综合| 午夜日韩欧美国产| 亚洲伊人色综图| 国产成人精品在线电影| av片东京热男人的天堂| 国产免费视频播放在线视频| 老熟女久久久| 看十八女毛片水多多多| 日韩不卡一区二区三区视频在线| 男男h啪啪无遮挡| 久久久久久人人人人人| 亚洲精品美女久久av网站| 国产成人欧美在线观看 | 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区四区第35| 亚洲激情五月婷婷啪啪| 激情五月婷婷亚洲| 国产 精品1| 老汉色av国产亚洲站长工具| bbb黄色大片| 99久国产av精品国产电影| 一个人免费看片子| 亚洲av日韩在线播放| 久久久久人妻精品一区果冻| 亚洲欧美精品综合一区二区三区| avwww免费| 视频在线观看一区二区三区| 国产视频首页在线观看| 一二三四在线观看免费中文在| 国产成人精品福利久久| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 少妇 在线观看| 欧美人与善性xxx| 亚洲美女黄色视频免费看| 熟女少妇亚洲综合色aaa.| 卡戴珊不雅视频在线播放| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 成人三级做爰电影| 亚洲精品日本国产第一区| 亚洲成人免费av在线播放| 中文天堂在线官网| 男女边吃奶边做爰视频| 久久久久精品性色| 亚洲成av片中文字幕在线观看| 男人操女人黄网站| 人人妻人人添人人爽欧美一区卜| av在线app专区| 国产精品久久久久久人妻精品电影 | 亚洲图色成人| 国产探花极品一区二区| 日本一区二区免费在线视频| 午夜福利视频精品| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频 | 日韩大码丰满熟妇| 日韩av免费高清视频| 9热在线视频观看99| 在线精品无人区一区二区三| 少妇人妻久久综合中文| 美国免费a级毛片| 三上悠亚av全集在线观看| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 久久久精品94久久精品| 久久人人爽人人片av| 久久青草综合色| 免费在线观看黄色视频的| 尾随美女入室| 国产日韩欧美亚洲二区| 老司机亚洲免费影院| 免费av中文字幕在线| av在线播放精品| 曰老女人黄片| 伦理电影大哥的女人| 色综合欧美亚洲国产小说| 老司机靠b影院| 久久精品亚洲av国产电影网| 免费av中文字幕在线| 国产乱来视频区| 欧美最新免费一区二区三区| 日韩中文字幕视频在线看片| 亚洲四区av| 久久久欧美国产精品| 美女主播在线视频| 国语对白做爰xxxⅹ性视频网站| 久久天堂一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 妹子高潮喷水视频| 一区福利在线观看| 亚洲av中文av极速乱| 免费在线观看视频国产中文字幕亚洲 | 丝袜喷水一区| 亚洲国产中文字幕在线视频| 成人国产av品久久久| 午夜av观看不卡| 青青草视频在线视频观看| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 观看美女的网站| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 色播在线永久视频| 另类亚洲欧美激情| 波多野结衣一区麻豆| 亚洲成人手机| 99re6热这里在线精品视频| 亚洲av男天堂| 超碰97精品在线观看| 国产精品.久久久| 一本色道久久久久久精品综合| 亚洲国产欧美日韩在线播放| 最近中文字幕2019免费版| 亚洲,一卡二卡三卡| 18禁国产床啪视频网站| 成人国产av品久久久| 美女国产高潮福利片在线看| 黄色视频不卡| svipshipincom国产片| 无遮挡黄片免费观看| 少妇被粗大猛烈的视频| 妹子高潮喷水视频| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 亚洲av电影在线观看一区二区三区| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 亚洲精品成人av观看孕妇| 国产福利在线免费观看视频| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 少妇被粗大猛烈的视频| 国产日韩欧美视频二区| 亚洲第一区二区三区不卡| 国产免费一区二区三区四区乱码| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 亚洲国产看品久久| 国产成人91sexporn| 国产爽快片一区二区三区| 国产精品成人在线| 亚洲精品第二区| 男女之事视频高清在线观看 | 69精品国产乱码久久久| 日韩中文字幕欧美一区二区 | 一级片免费观看大全| 超碰成人久久| 黑丝袜美女国产一区| 亚洲av福利一区| 日日啪夜夜爽| 最黄视频免费看| 国产精品熟女久久久久浪| 在线精品无人区一区二区三| 一级毛片电影观看| 十八禁高潮呻吟视频| 黄片无遮挡物在线观看| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 女性被躁到高潮视频| 精品国产一区二区三区久久久樱花| 久久久久久久久免费视频了| 久久久精品免费免费高清| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 久久女婷五月综合色啪小说| 欧美久久黑人一区二区| 国产av一区二区精品久久| 极品人妻少妇av视频| 18禁动态无遮挡网站| 最新的欧美精品一区二区| 国产精品99久久99久久久不卡 | 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 成年女人毛片免费观看观看9 | 亚洲精品一二三| 男女国产视频网站| 久热这里只有精品99| 亚洲国产av影院在线观看| 中文字幕制服av| 亚洲人成电影观看| 秋霞在线观看毛片| 精品免费久久久久久久清纯 | 人妻 亚洲 视频| 国产成人啪精品午夜网站| 免费黄网站久久成人精品| 国产伦人伦偷精品视频| 我要看黄色一级片免费的| 亚洲精品美女久久久久99蜜臀 | 国产 一区精品| 欧美成人午夜精品| 欧美在线一区亚洲| 国产精品久久久久久精品电影小说| 一级毛片 在线播放| 久久热在线av| 赤兔流量卡办理| 亚洲欧洲日产国产| 黄色 视频免费看| 国产精品一国产av| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到| 欧美亚洲日本最大视频资源| 欧美在线一区亚洲| 欧美人与性动交α欧美软件| 免费观看人在逋| 9191精品国产免费久久| 波野结衣二区三区在线| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 久久久久人妻精品一区果冻| 久久av网站| 男女国产视频网站| 亚洲成人国产一区在线观看 | 丝袜人妻中文字幕| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 免费观看性生交大片5| 亚洲少妇的诱惑av| 亚洲人成电影观看| 国产精品99久久99久久久不卡 | 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 国产一区亚洲一区在线观看| 亚洲国产看品久久| 精品午夜福利在线看| 久久婷婷青草| 大片电影免费在线观看免费| 另类亚洲欧美激情| 男女国产视频网站| 亚洲久久久国产精品| 亚洲国产精品一区三区| 精品少妇黑人巨大在线播放| 免费av中文字幕在线| 亚洲男人天堂网一区| 丰满乱子伦码专区| 高清视频免费观看一区二区|