• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats

    2011-12-25 06:41:14ZHOUJunSHIXiaMingPENGQingSongHUAGuoPengHUATianMiao
    Zoological Research 2011年5期
    關(guān)鍵詞:安徽師范大學(xué)靈長(zhǎng)類(lèi)皮層

    ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao

    (School of Life Science, Anhui Normal University, Wuhu 241000, China)

    Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats

    ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao*

    (School of Life Science, Anhui Normal University, Wuhu 241000, China)

    Psychophysical experiments on human and animal subjects have proven that aged individuals show significantly reduced visual contrast sensitivity compared with young adults. To uncover the possible neural mechanisms, we used extracellular single-unit recording techniques to examine the response of V1(primary visual cortex) neurons as a function of visual stimulus contrast in both old and young adult cats (Felis catus). The mean contrast sensitivity of V1neurons to visual stimuli in old cats decreased significantly relative to young adult cats, consistent with findings reported in old primates. These results indicate that aging can affect contrast sensitivity of visual cortical cells in both primate and non-primate mammalian animals, and might contribute to the reduction of perceptual visual contrast sensitivity in aged individuals. Further, V1cells of old cats exhibited increased responsiveness, decreased signal-to-noise ratio, and enlarged receptive field (RF) size compared with that of young adult cats, which indicated that decreased contrast sensitivity of V1neurons accompanied a reduction of intracortical inhibition during senescence.

    Contrast sensitivity; V1neurons; Old cats; Young adult cats

    Contrast sensitivity refers to the ability to detect subtle luminance contrast in visual signals and is widely accepted as an important index for visual quality assessment (Riusala et al, 2003; Ginsburg, 2006; Piermarocchi et al, 2006; Hua et al, 2010a). Psychophysical studies on human subjects have demonstrated that visual contrast sensitivity decreases significantly with age (Higgins et al, 1988; Santos et al, 2006), and this aged change has been observed at all stimulus spatial frequencies (Nomura et al, 2003). Age-related decline in visual contrast sensitivity cannot be suspended in subjects with corrected visual acuity of 1.0 or better (Nomura et al, 2003). Further, this senescent change cannot be completely attributed to the deterioration in optical factors as young healthy observers with simulated age-related pupil size reduction and ocular absorption and light scatter increase still show higher contrast sensitivity than older counterparts (Whitaker & Elliott, 1992). Also, this kind of decrease cannot be eliminated through increasing stimulus luminance (Higgins et al, 1988). Therefore, contrast sensitivity reduction in aged individuals cannot be accounted for by changes in optical factors, but seems more relevant to alterations occurring in the central nervous system.

    Previous investigations on single-cell responses in the visual system of aged primates has shown that receptive field properties, including contrast sensitivity of neurons at the subcortical level, are relatively unaffected by aging (Spear, 1993; Spear et al, 1994; Schmolesky et al, 2000). Some authors suggest that agerelated contrast sensitivity decline may reflect a visual cortex mechanism (Crassini et al, 1988; Pardhan et al, 1996; Bennett et al, 1999), where neurons display prominent contrast gain control (Ohzawa et al, 1982, 1985; Bonds, 1991; Heeger, 1992; Hua et al, 2010b). A recent study has shown that visual cortical cells of old macaque monkeys exhibit worse contrast sensitivity to visual stimuli than that of younger individuals. However, whether this aged change can be generalized to nonprimate mammalian species is unknown. The aim of our research was to determine if visual cortical cells of cats display a similar age-related reduction in contrast sensitivity. Using extracellular single-unit recording techniques, we systematically recorded the response of V1neurons to optimal visual stimuli with varied luminance contrast (0?1) and compared the mean contrast sensitivity of V1neurons in old and young adult cats to provide new evidence for the cortical mechanism underlying the reduction of visual contrast sensitivity during senescence.

    1 Materials and Methods

    1.1 Subjects

    Study subjects consisted of four young adult cats (2?3 a) and four old cats (12?14 a). Subjects were examined ophthalmoscopically before the experiment to confirm that no optical or retinal problems impaired their visual function. All experimental procedures were strictly in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

    1.2 Single-unit recording

    All cats were prepared for extracellular single-unit recording as described in previous researches (Hua et al, 2006; Hua et al, 2009; Hua et al, 2010b). Briefly, cats were anesthetized with ketamine HCl (20 mg/kg) and xylazine (2 mg/kg). After intubation of intravenous and tracheal cannulae, cats were placed in a stereotaxic apparatus with ear bars, eye bars and a bite bar. Pupils were maximally dilated with atropine (1%) and appropriate contact lenses were used to protect the corneas. Neosynephrine (5%) was administered to retract the nictitating membranes. Glucose (5%)-saline (0.9%) solution containing a mixture of urethane (20 mg/hr/kg body weight) and gallamine triethiodide (10 mg/hr/kg body weight) was infused intravenously to keep the animal anesthetized and paralyzed. Expired pCO2 was maintained at approximately 3.8%. Heart rate (180?220 pulses/min) and ECG were monitored throughout the experiment to assess anesthesia level. The skull and dura over V1(area 17) were removed with a fine operation under light microscope. Single-unit recording was performed using a glass microelectrode (with an impedance of 3?6 MΩ) which was driven by a hydraulic micromanipulator (NARISHIGE, Japan). The small hole over V1was filled with a 4% agar solution in saline and sealed with wax. After the preparation was complete, the optic discs of the two eyes were reflected onto a movable transparent tangent screen positioned 57 cm from the eyes and overlapped with the CRT monitor used for stimulus presentation. The area centralis of each eye was located prior to physiological recording based on the position of the optic discs reflected onto the tangent screen.

    1.3 Visual stimuli

    Drifting sinusoidal gratings shown on a CRT monitor (resolution 1 024×768, refresh rate 85 Hz) were used as visual stimuli. The program to generate the stimuli was written in MATLAB, using extensions provided by the high-level Psychophysics Toolbox (Brainard, 1997) and low-level VideoToolbox (Pelli, 1997). Once a single unit was isolated, the cell’s receptive field center was carefully located by consecutively presenting a series of computer-generated light spots on the CRT. By comparing the neuron’s response to a series of stimulus, we determined the preferred orientation and motion direction, preferred spatial and temporal frequency, and optimal stimulus size for each cell. The cell’s response to optimal stimulus with varied luminance contrast levels (0?1, starting from 0 with an increment of 0.1) were then systematically recorded. Each stimulus was presented monocularly to the dominant eye and repeated 4?6 times with a 3 min interval between trials for cellular functional recovery. The duration for each stimulus (5 cycles of grating) was less than 5 sec, which varied depending on the cell’s optimal stimulus temporal frequency. Before each stimulus was presented, spontaneous activity (baseline response) was acquired during a 1sec period while a mean luminance was shown on the screen. The mean luminance of each stimulus was 19 cd/m2, and the environmental ambient luminance on the cornea was 0.1 lux.

    1.4 Data acquisition and analysis

    After the signal was amplified with a microelectrode amplifier (NIHON KOHDEN, Japan) and differential amplifier (Dagan 2400A, USA), action potentials were fed into a window discriminator with an audio monitor. The original voltage traces (Fig. 1A, C) were digitized using an acquisition board (National Instruments, USA) controlled by IGOR software (WaveMetrics, USA), and saved for later analysis. The evoked response of a cell to a drifting sinusoidal grating was defined as the mean firing rate (after subtracting spontaneous activity) corresponding to the time of stimulus modulation, which was used to draw the orientation, spatial frequency, temporal frequency, stimulus size and contrast-response tuning curve (Fig. 1B, D). To assess contrast sensitivity of each cell to visual stimuli, we fitted the contrastresponse function of each cell with the Naka-Rushton equation (Albrecht, 1995) (Fig. 1B, D):

    WhereR(C) represents the neuron’s response to a visual stimulus with contrast value of C,Rmaxis the neuron’s maximal visually-evoked response to visual stimuli,Mis the neuron’s spontaneous activity or baseline response, C50corresponds to the stimulus contrast that evokes half of the neuron’s maximal response, andNrepresents the slope of the neuron’s response-contrast tuning curve. Threshold contrast (Tc) of each neuron is defined as the contrast that evokes a response 1.414 (the hypotenuse of a right triangle whose other sides are 1 and 1) times its baseline response (M). Contrast sensitivity of each neuron was assessed by the inverse of C50, called C50-contrast sensitivity (C50CS), and the inverse of Tc, called Tc-contrast sensitivity (TcCS). Cells with less than 95% goodness of fit were not included in our data analysis.

    Fig. 1 Response of sample cells to its optimal visual stimulus for young adult (A, B) and old cats (C, D)

    All values were expressed as mean±SD. Difference between different individuals and age groups were assessed using one-way or two-way analysis of variance (ANOVA) and Chi-square test.

    2 Results

    A total of 138 neurons from the four young adult cats and 128 neurons from the four old cats were studied (Tab.1). Neurons recorded from each group of cats were at the same range of depth from the pial surface of the brain, representing a random sample of neurons in all cortical layers. All neurons had receptive field within 8° visual degree from the central area of the dominant eye. No significant difference was found in the eccentricity distribution of neurons between the young adult and old cats (χ2(7)=9.624,P=0.211).

    2.1 Contrast sensitivity of V1 neurons

    Our results showed that most old cat neurons (84.37%) had a C50-contrast sensitivity value less than 3, whereas the majority of young adult cat neurons (68.12%) had a C50-contrast sensitivity larger than 3 (Fig. 2A). Two-way ANOVA indicated that the mean C50-contrast sensitivity of neurons in each old cat was significantly smaller than in any individual young adult cat (F(1,258)=75.181,P<0.0001) (Tab. 1). This age effect was independent of cat (F(3,258)=1.247,P>0.2). The average C50-contrast sensitivity of neurons in the old cat group was also significantly decreased compared with that in the young cat group (F(1,264)=82.377,P<0.0001).

    Fig. 2 Percentage of cells with different C50-contrast sensitivity (A) and Tc-contrast sensitivity (B) in old and young adult cats

    We also compared Tc-contrast sensitivity of neurons between old and young adult cats. Most old cat neurons (75.78%) had a Tc-contrast sensitivity value lower than 7, whereas most young cat neurons (74.64%) had a Tc-contrast sensitivity value higher than 7 (Fig. 2B). Statistical analysis showed that mean Tc-contrast sensitivity of neurons in each old cat was significantly declined compared with that in any individual young adult cat (F(1,258)=58.391,P<0.0001) (Tab.1). The age effect was independent of subjects (F(3,258)=1.474,P>0.2). Similarly, the average Tc-contrast sensitivity of neurons in the old cat group was significantly lower than in the young cat group (F(1,264)=64.906,P<0.0001).

    We concluded, therefore, that the contrast sensitivity of V1neurons in old cats was significantly decreased compared with that in young adult cats.

    2.2 Response property changes of V1 neurons

    Previous studies have shown that aging may lead to decreased intracortical inhibition, which could account for the changes in response properties of visual cortical cells (Schmolesky et al, 2000; Leventhal et al, 2003; Wang et al, 2005; Hua et al, 2006; Wang et al, 2006; Hua et al, 2008; Hua et al, 2009). To confirm if decreased contrast sensitivity of V1cells to visual stimuli was accompanied with a reduction in intracortical inhibition, we examined the responsiveness and the receptive field size of V1neurons in both age groups.

    Statistical analysis showed that maximal visuallyevoked response (Rmax) and spontaneous activity (M) of V1neurons in old cats increased significantly compared with that in young adult cats (Rmax:F(1,264)= 26.185,P<0.0001; M:F(1,264)= 165.608,P<0.0001) (Fig. 3A), but the mean amplitude of M increase (226.7%) was notably higher than that of Rmax(38.4%). This led to a significantly decreased signal-to-noise ratio (SNR) of V1neurons in old cats relative to young adult cats (Age effect:F(1,258)= 81.297,P<0.0001; Interaction of age and subjects:F(3,258)= 2.071,P>0.1) (Fig. 3B).

    2.3 Age-related changes of receptive field size

    The decreased contrast sensitivity of V1neurons in old cats may be a consequence of presenting improper stimulus size for neurons in old and young adult cats. To clarify this possibility, we evaluated the receptive field size of each neuron by measuring the optimal grating stimulus radius (in degree) from the size-tuning curve (Fig. 4A, B) and the optimal spatial frequency (OSF) from spatial frequency tuning curve.

    Fig. 3 Percentile of cells with different spontaneous activity (lines) and maximal response (markers) (A) and signal-to-noise ratio (B) of V1 neurons in old and young adult cats

    Fig. 4 Response-stimulus size tuning curve of sample cells from old and young adult cats

    Most young adult cat cells (63.7%) had an optimal stimulus radius less than 3, whereas the majority of old cat cells (71.1) had an optimal stimulus radius larger than 3 (Fig. 4C, D). The ANOVA results showed that the mean optimal stimulus radius of cells in old cats (3.7±1.3) was significantly higher than in young adult ones (2.8±1.3) (F(1,264)= 27.99,P<0.0001).

    Similarly, more than half young adult cat cells (55%) had an optimal spatial frequency higher than 0.4 c/deg. However, most old cat cells (71.1) had an optimal spatial frequency lower than 0.4 c/deg (Fig. 5). Statistical analysis indicated that the mean optimal spatial frequency of cells in old cats (0.26±0.18 c/deg) was significantly decreased compared with that in young adult cats (0.42±0.27 c/deg) (F(1,264)= 33.188,P<0.0001).

    Fig. 5 Percentage of cells with different range of optimal spatial frequencies in old and young adult cats

    Therefore, cells in old cats showed a significantly larger receptive field center than cells in young adult cats. This result supports the notion that aging leads to reduced intracortical inhibition.

    3 Discussion

    Psychophysical studies indicate that visual contrast sensitivity significantly declines during senescence (Higgins et al, 1988; Santos et al, 2006). This aged change is independent of optical factors, and likely relates to alterations in the central nervous system (Higgins et al, 1988; Whitaker & Elliott, 1992; Nomura et al, 2003). We suggested that a decrease of neuronal contrast sensitivity in the visual cortex contributed, at least in part, to visual contrast sensitivity decline in aged individuals because of the following experimental evidences: 1) Investigations have shown that neuronal response properties in the subcortical nucleus (LGN), including contrast sensitivity, are relatively unaffected by aging (Spear et al, 1994; Schmolesky et al, 2000); 2) Neurons in the visual cortex exhibit a distinct contrast gain control in response to varied stimulus contrast (Ohzawa et al, 1982, 1985; Bonds, 1991; Heeger, 1992; Hua et al, 2010b); 3). Our results indicated that the contrast sensitivity of V1neurons in old cats was significantly lower than in young adult cats, which concurred with findings reported in the V1and MT area of macaque monkeys (Yang et al, 2008).

    Functional degradation of visual cortical cells in old animals, including increased responsiveness, reduced signal-to-noise ratio, decreased response selectivity for visual stimuli, lagged response latency and increased adaptation to visual stimulation, have been reported in several mammalian species (Schmolesky et al, 2000; Mendelson & Wells, 2002; Wang et al, 2005; Hua et al, 2006; Wang et al, 2006; Zhang et al, 2008; Hua et al, 2009). It is widely suggested that compromised intracortical inhibition during aging could result in functional declines of visual cortical neurons in senescent individuals because: 1) The increased responsiveness and decreased stimulus selectivity of visual cortical neurons in old individuals can be modified by improving intracortical inhibition effects (Leventhal et al, 2003); and 2) Cortex in old animals shows a significantly decreased proportion of GABAergic neurons and GAD immunoreactive neurons compared with young adults (Ling et al, 2005; Hua et al, 2008).

    Mechanisms that mediate contrast sensitivity decrease in visual cortical cells to visual stimuli remains unclear. In this study, we observed that the decreased contrast sensitivity of V1neurons in old cats was accompanied with increased spontaneous activity, increased visually-evoked response, and a significantly enlarged receptive field size relative to young adult cats, which suggested compromised intracortical inhibition during aging. Whether a reduction in intracortical inhibition with age also underlies the decreased contrast sensitivity of V1neurons in old individuals needs further clarification.

    In summary, our results provide new evidence that aging significantly affected contrast sensitivity of visual cortical cells. This functional degradation was accompanied with a reduced intracortical inhibition during senescence.

    Albrecht DG. 1995. Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions [J].Vis Neurosci,12(6): 1191-1210.

    Bennett PJ, Sekuler AB, Ozin L. 1999. Effects of aging on calculation efficiency and equivalent noise [J].J Opt Soc Am A Opt Image Sci Vis,16(3): 654-668.

    Bonds AB. 1991. Temporal dynamics of contrast gain in single cells of the cat striate cortex [J].Vis Neurosci,6(3): 239-255.

    Brainard DH. 1997. The Psychophysics Toolbox [J].Spat Vis,10(4): 433-436.

    Crassini B, Brown B, Bowman K. 1988. Age-related changes in contrast sensitivity in central and peripheral retina [J].Perception,17(3): 315-332.

    Ginsburg AP. 2006. Contrast sensitivity: determining the visual quality and function of cataract, intraocular lenses and refractive surgery [J].Curr Opin Ophthalmol,17(1): 19-26.

    Heeger DJ. 1992. Normalization of cell responses in cat striate cortex [J].Vis Neurosci,9(2): 181-197.

    Higgins KE, Jaffe MJ, Caruso RC, deMonasterio FM. 1988. Spatial contrast sensitivity: effects of age, test-retest, and psychophysical method [J].J Opt Soc Am A,5(12): 2173-2180.

    Hua T, Li X, He L, Zhou Y, Wang Y, Leventhal AG. 2006. Functional degradation of visual cortical cells in old cats [J].Neurobiol Aging,27(1): 155-162.

    Hua T, Kao C, Sun Q, Li X, Zhou Y. 2008. Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex [J].Brain Res Bull,75(1): 119-125.

    Hua T, Li G, Tang C, Wang Z, Chang S. 2009. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats [J].Neurosci Lett,451(1): 25-28.

    Hua T, Wang Z, Xu J, Diao J. 2010a. Contrast detection learning improves visual contrast sensitivity of cat [J].Zool Res,31(2): 155-162.

    Hua T, Bao P, Huang CB, Wang Z, Xu J, Zhou Y, Lu ZL. 2010b. Perceptual learning improves contrast sensitivity of V1 neurons in cats [J].Curr Biol,20(10): 887-894.

    Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y. 2003. GABA and its agonists improved visual cortical function in senescent monkeys [J].Science,300(5620): 812-815.

    Ling LL, Hughes LF, Caspary DM. 2005. Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex [J].Neuroscience,132(4): 1103-1113.

    Mendelson JR & Wells EF. 2002. Age-related changes in the visual cortex [J].Vision Res,42(6): 695-703.

    Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. 2003. Agerelated change in contrast sensitivity among Japanese adults [J].Jpn J Ophthalm,47(3): 299-303.

    Ohzawa I, Sclar G, Freeman RD. 1982. Contrast gain control in the cat visual cortex [J].Nature,298(5871): 266-268.

    Ohzawa I, Sclar G, Freeman RD. 1985. Contrast gain control in the cat's visual system [J].J Neurophys,54(3): 651-667.

    Pardhan S, Gilchrist J, Elliott DB, Beh GK. 1996. A comparison of sampling efficiency and internal noise level in young and old subjects [J].Vision Res,36(11): 1641-1648.

    Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies [J].Spat Vis,10(4): 437-442.

    Piermarocchi S, Sartore M, Bandello F, Lanzetta P, Brancato R, Garattini L, Lumbroso B, Rispoli M, Pece A, Isola V, Pulazzini A, Menchini U, Virgili G, Tedeschi M, Varano M.2006. Quality of vision: A consensus building initiative for a new ophthalmologic concept [J].Eur J Ophthalm,16(6): 851-860.

    Riusala A, Sarna S, Immonen I. 2003. Visual function index .VF-14. in exudative age-related macular degeneration of long duration [J].Am J Ophthalmol,135(2): 206-212.

    Santos NA, Oliveira AB, Nogueira RM, Simas ML. 2006. Mesopic radial frequency contrast sensitivity function for young and older adults [J].Braz J Med Biol Res,39(6): 791-794.

    Schmolesky MT, Wang Y, Pu M, Leventhal AG. 2000. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys [J].Nat Neurosci,3(4): 384-390.

    Spear PD .1993. Neural bases of visual deficits during aging [J].Vision Res,33(18): 2589-2609.

    Spear PD, Moore RJ, Kim CB, Xue JT, Tumosa N. 1994. Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys [J].J Neurophys,72(1): 402-420.

    Wang H, Xie X, Li X, Chen B, Zhou Y. 2006. Functional degradation of visual cortical cells in aged rats [J].Brain Res,1122(1): 93-98.

    Wang Y, Zhou Y, Ma Y, Leventhal AG. 2005. Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys [J].Cereb Cortex,15(4): 403-408.

    Whitaker D, Elliott DB. 1992. Simulating age-related optical changes in the human eye [J].Doc Ophthalm,82(4): 307-316.

    Yang Y, Liang Z, Li G, Wang Y, Zhou Y, Leventhal AG. 2008. Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys [J].Neuroscience,156(3): 748-757.

    Zhang J,Wang X, Wang Y, Fu Y, Liang Z, Ma Y, Leventhal AG. 2008. Spatial and temporal sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys [J].Eur J Neurosci,28(1): 201-207.

    老年貓視皮層細(xì)胞對(duì)刺激反應(yīng)的對(duì)比敏感度下降伴隨皮層內(nèi)抑制作用減弱

    周 俊, 施夏明, 彭青松, 化國(guó)鵬, 華田苗*

    (安徽師范大學(xué) 生命科學(xué)學(xué)院,安徽 蕪湖241000)

    對(duì)人類(lèi)和動(dòng)物的心理學(xué)研究證實(shí), 老年個(gè)體的視覺(jué)對(duì)比敏感度相對(duì)青年個(gè)體顯著下降。為揭示其可能的神經(jīng)機(jī)制, 采用在體細(xì)胞外單細(xì)胞記錄技術(shù)研究青、老年貓(Felis catus)初級(jí)視皮層 (primary visual cortex,V1)細(xì)胞對(duì)不同視覺(jué)刺激對(duì)比度的調(diào)諧反應(yīng)。結(jié)果顯示, 老年貓V1細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的平均對(duì)比敏感度比青年貓顯著下降, 這與靈長(zhǎng)類(lèi)報(bào)道的研究結(jié)果相一致, 表明衰老影響視皮層細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的對(duì)比敏感度是靈長(zhǎng)類(lèi)和非靈長(zhǎng)類(lèi)哺乳動(dòng)物中普遍存在的現(xiàn)象, 并可能是介導(dǎo)老年性視覺(jué)對(duì)比敏感度下降的神經(jīng)基礎(chǔ)。另外, 與青年貓相比,老年貓初級(jí)視皮層細(xì)胞對(duì)視覺(jué)刺激的反應(yīng)性顯著增強(qiáng), 信噪比下降, 感受野顯著增大, 表明衰老導(dǎo)致的初級(jí)視皮層細(xì)胞對(duì)視覺(jué)刺激反應(yīng)的對(duì)比敏感度下降伴隨著皮層內(nèi)抑制性作用減弱。

    對(duì)比敏感度; 初級(jí)視皮層細(xì)胞; 老年貓; 青年貓

    Q42; R338.8; Q954.671

    A

    0254-5853-(2011)05-0533-07

    2011-02-23;接受日期:2011-07-13

    10.3724/SP.J.1141.2011.05533

    date: 2011-02-23; Accepted date: 2011-07-13

    s: Supported by National Natural Science Foundation of China (31171082), Natural Science Foundation of Anhui Province (070413138) and the Key Research Foundation of Anhui Province Education Department (KJ2009A167)

    *Corresponding author (通信作者), E-mail: tmhua@mail.ahnu.edu.cn, tianmiaohua@gmail.com

    猜你喜歡
    安徽師范大學(xué)靈長(zhǎng)類(lèi)皮層
    靈長(zhǎng)類(lèi)生物醫(yī)學(xué)前沿探索中的倫理思考
    急性皮層腦梗死的MRI表現(xiàn)及其對(duì)川芎嗪注射液用藥指征的指導(dǎo)作用研究
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    基于復(fù)雜網(wǎng)絡(luò)的磁刺激內(nèi)關(guān)穴腦皮層功能連接分析
    Hemingway’s Marriage in Cat in the Rain
    基底節(jié)腦梗死和皮層腦梗死血管性認(rèn)知功能的對(duì)比
    中國(guó)靈長(zhǎng)類(lèi)動(dòng)物一覽表
    為什么人們都說(shuō)猴子聰明?
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    模擬初級(jí)視皮層注意機(jī)制的運(yùn)動(dòng)對(duì)象檢測(cè)模型
    精品一区二区三区视频在线| 国产精品三级大全| 亚洲av男天堂| 国产精品女同一区二区软件| 少妇熟女欧美另类| 亚洲丝袜综合中文字幕| 制服丝袜香蕉在线| 各种免费的搞黄视频| 人人妻人人添人人爽欧美一区卜 | 日韩一区二区三区影片| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 久久精品久久久久久噜噜老黄| 黑人猛操日本美女一级片| 最后的刺客免费高清国语| 国产v大片淫在线免费观看| 联通29元200g的流量卡| 91午夜精品亚洲一区二区三区| 亚洲综合色惰| 亚洲综合精品二区| 免费黄频网站在线观看国产| 欧美区成人在线视频| 黄片无遮挡物在线观看| 日本wwww免费看| 亚洲自偷自拍三级| 婷婷色综合www| 国产精品嫩草影院av在线观看| 熟妇人妻不卡中文字幕| 久久久久久久久久人人人人人人| 草草在线视频免费看| 丰满迷人的少妇在线观看| 97精品久久久久久久久久精品| 欧美一级a爱片免费观看看| 国产高清不卡午夜福利| 各种免费的搞黄视频| 精品久久久精品久久久| 日本欧美视频一区| 国产永久视频网站| 中国国产av一级| 狂野欧美激情性bbbbbb| 熟女av电影| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂 | 国产午夜精品久久久久久一区二区三区| 国产亚洲欧美精品永久| 亚洲人与动物交配视频| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 日韩不卡一区二区三区视频在线| 美女内射精品一级片tv| 免费观看无遮挡的男女| 亚洲av不卡在线观看| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 51国产日韩欧美| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 99热6这里只有精品| av在线app专区| 99精国产麻豆久久婷婷| 久久人人爽人人爽人人片va| 亚洲精品第二区| 另类亚洲欧美激情| 少妇人妻一区二区三区视频| 一二三四中文在线观看免费高清| 如何舔出高潮| 精品国产一区二区三区久久久樱花 | 亚洲av欧美aⅴ国产| 国产精品免费大片| 日本黄色片子视频| 高清视频免费观看一区二区| 亚洲欧美日韩无卡精品| 天堂8中文在线网| 香蕉精品网在线| 欧美激情极品国产一区二区三区 | 老熟女久久久| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片| 一区二区三区免费毛片| 又爽又黄a免费视频| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 午夜福利视频精品| 夜夜爽夜夜爽视频| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产色婷婷99| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 国产精品久久久久久精品古装| 午夜视频国产福利| 日本av免费视频播放| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 欧美日韩一区二区视频在线观看视频在线| 麻豆国产97在线/欧美| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 久久人人爽av亚洲精品天堂 | 色吧在线观看| 精品一区二区三区视频在线| 十八禁网站网址无遮挡 | 天堂8中文在线网| 纯流量卡能插随身wifi吗| 网址你懂的国产日韩在线| 亚洲欧美成人综合另类久久久| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线| 国国产精品蜜臀av免费| 成年av动漫网址| 亚洲成人av在线免费| 国产成人91sexporn| 国产精品嫩草影院av在线观看| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 日本av免费视频播放| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 国产永久视频网站| 午夜福利视频精品| 小蜜桃在线观看免费完整版高清| 街头女战士在线观看网站| av国产精品久久久久影院| 成年av动漫网址| 久久人妻熟女aⅴ| 久久久精品94久久精品| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 中文字幕制服av| 最近中文字幕2019免费版| 欧美精品国产亚洲| 美女高潮的动态| 在线精品无人区一区二区三 | av在线app专区| 1000部很黄的大片| 天堂8中文在线网| 99久久人妻综合| 制服丝袜香蕉在线| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 精品国产一区二区三区久久久樱花 | 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 欧美97在线视频| av网站免费在线观看视频| 欧美日韩视频高清一区二区三区二| 日本黄色片子视频| 久久国产精品大桥未久av | 在线观看国产h片| 亚洲av不卡在线观看| 黑丝袜美女国产一区| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 中文字幕av成人在线电影| 国产高清国产精品国产三级 | 各种免费的搞黄视频| 久久人人爽人人片av| 亚洲色图av天堂| 国产一区亚洲一区在线观看| 中文字幕制服av| 亚洲av日韩在线播放| 国产高清国产精品国产三级 | 午夜激情久久久久久久| 亚洲av不卡在线观看| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验| 少妇人妻 视频| av女优亚洲男人天堂| 夜夜爽夜夜爽视频| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 人人妻人人爽人人添夜夜欢视频 | 国产成人精品婷婷| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 国产视频首页在线观看| 最近最新中文字幕大全电影3| 22中文网久久字幕| 王馨瑶露胸无遮挡在线观看| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 搡女人真爽免费视频火全软件| 日本欧美国产在线视频| 日本黄色日本黄色录像| 欧美国产精品一级二级三级 | 亚洲欧美日韩东京热| 亚洲伊人久久精品综合| 美女高潮的动态| 欧美日韩综合久久久久久| 97在线视频观看| 女的被弄到高潮叫床怎么办| 午夜福利高清视频| 能在线免费看毛片的网站| 国产在线男女| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 全区人妻精品视频| 一级毛片久久久久久久久女| 日韩电影二区| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 日本黄大片高清| 国产精品爽爽va在线观看网站| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 人妻一区二区av| 我的女老师完整版在线观看| 久久精品国产亚洲网站| 国产熟女欧美一区二区| 欧美zozozo另类| 夜夜爽夜夜爽视频| 一级毛片 在线播放| 婷婷色av中文字幕| 亚洲av国产av综合av卡| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| xxx大片免费视频| 欧美日韩亚洲高清精品| av播播在线观看一区| 99久久精品国产国产毛片| 十八禁网站网址无遮挡 | 亚洲精品国产av成人精品| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 精华霜和精华液先用哪个| 老司机影院成人| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | 高清毛片免费看| 人人妻人人看人人澡| 在线亚洲精品国产二区图片欧美 | 最近中文字幕高清免费大全6| 国产 精品1| 亚洲性久久影院| 亚洲成人中文字幕在线播放| 国精品久久久久久国模美| 亚洲精品乱码久久久v下载方式| 免费大片黄手机在线观看| 日本wwww免费看| av不卡在线播放| 久热久热在线精品观看| h视频一区二区三区| 日日啪夜夜撸| 超碰av人人做人人爽久久| 纯流量卡能插随身wifi吗| 国产成人一区二区在线| 国产精品一区二区在线观看99| 久久精品国产亚洲av涩爱| 日本av免费视频播放| 久久青草综合色| 中文字幕制服av| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频| 老司机影院成人| 国产探花极品一区二区| 国产 一区精品| 少妇猛男粗大的猛烈进出视频| av线在线观看网站| 日本免费在线观看一区| 一本色道久久久久久精品综合| av不卡在线播放| 国产又色又爽无遮挡免| 美女主播在线视频| 国产免费一区二区三区四区乱码| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 日本av手机在线免费观看| 亚洲精品乱码久久久v下载方式| 性高湖久久久久久久久免费观看| 偷拍熟女少妇极品色| 一个人免费看片子| 视频区图区小说| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 亚洲va在线va天堂va国产| 国产成人精品福利久久| 久久青草综合色| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 欧美极品一区二区三区四区| av播播在线观看一区| 国产 精品1| 免费观看av网站的网址| 欧美成人一区二区免费高清观看| 精品少妇黑人巨大在线播放| 激情 狠狠 欧美| 日韩视频在线欧美| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 久久久久久久久大av| 国产亚洲一区二区精品| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 高清黄色对白视频在线免费看 | 亚洲av不卡在线观看| 亚洲精品自拍成人| 亚洲人与动物交配视频| 日韩欧美 国产精品| 欧美日韩国产mv在线观看视频 | 高清欧美精品videossex| .国产精品久久| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 国产精品免费大片| 亚洲精品中文字幕在线视频 | 22中文网久久字幕| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 免费观看的影片在线观看| 精品酒店卫生间| 黑人猛操日本美女一级片| 亚洲第一av免费看| 一本—道久久a久久精品蜜桃钙片| 欧美极品一区二区三区四区| 欧美日韩视频精品一区| 色视频www国产| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 男的添女的下面高潮视频| 五月天丁香电影| 高清午夜精品一区二区三区| 亚洲四区av| 久久人妻熟女aⅴ| 亚洲综合精品二区| 永久网站在线| 女性被躁到高潮视频| 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 日韩亚洲欧美综合| 亚洲电影在线观看av| 亚洲综合精品二区| 国产成人精品久久久久久| 大香蕉97超碰在线| 在线看a的网站| 亚洲精品国产av成人精品| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| 人妻制服诱惑在线中文字幕| 六月丁香七月| 日本免费在线观看一区| 在线 av 中文字幕| 中文字幕av成人在线电影| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 午夜老司机福利剧场| 久久久久国产网址| 午夜福利视频精品| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 日本黄大片高清| 能在线免费看毛片的网站| 欧美区成人在线视频| 亚洲高清免费不卡视频| 人体艺术视频欧美日本| 老司机影院成人| 永久免费av网站大全| 亚洲国产色片| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 亚洲精品成人av观看孕妇| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看 | kizo精华| av国产精品久久久久影院| 女人久久www免费人成看片| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 国产人妻一区二区三区在| 91午夜精品亚洲一区二区三区| 黄色视频在线播放观看不卡| 日产精品乱码卡一卡2卡三| 热re99久久精品国产66热6| 一区在线观看完整版| 成年av动漫网址| 亚洲综合色惰| 男女无遮挡免费网站观看| 国产精品三级大全| 国产在线男女| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av | 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 看非洲黑人一级黄片| 欧美成人午夜免费资源| 亚洲自偷自拍三级| 人人妻人人看人人澡| av一本久久久久| 蜜桃在线观看..| 黄色怎么调成土黄色| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 国产精品.久久久| 插阴视频在线观看视频| 日本-黄色视频高清免费观看| 午夜福利影视在线免费观看| 男的添女的下面高潮视频| 99热全是精品| 久久精品久久久久久噜噜老黄| 女的被弄到高潮叫床怎么办| av免费在线看不卡| 国产成人精品一,二区| 日韩av免费高清视频| 赤兔流量卡办理| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频 | 岛国毛片在线播放| 能在线免费看毛片的网站| 天堂中文最新版在线下载| 日韩亚洲欧美综合| 亚洲av日韩在线播放| 国产淫片久久久久久久久| 中文天堂在线官网| 国产无遮挡羞羞视频在线观看| 精华霜和精华液先用哪个| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免| 久久久久久久精品精品| 久久久久久久久久人人人人人人| 日本欧美国产在线视频| 免费人妻精品一区二区三区视频| 日本黄色片子视频| 精品人妻视频免费看| 内地一区二区视频在线| 亚洲国产精品专区欧美| 联通29元200g的流量卡| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产| 亚洲av免费高清在线观看| 欧美精品人与动牲交sv欧美| 久热久热在线精品观看| 亚洲精品乱久久久久久| 在线播放无遮挡| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 久久久久网色| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| 欧美bdsm另类| tube8黄色片| 狂野欧美激情性xxxx在线观看| 99国产精品免费福利视频| 97热精品久久久久久| 人妻夜夜爽99麻豆av| 亚洲精品成人av观看孕妇| 看非洲黑人一级黄片| 国产精品麻豆人妻色哟哟久久| 国产亚洲午夜精品一区二区久久| 欧美人与善性xxx| 日韩欧美精品免费久久| 国产黄色免费在线视频| av线在线观看网站| 欧美另类一区| www.av在线官网国产| 最近手机中文字幕大全| 一区二区三区精品91| 亚洲美女搞黄在线观看| 国产精品三级大全| 国产探花极品一区二区| 丰满少妇做爰视频| freevideosex欧美| 女的被弄到高潮叫床怎么办| 一区二区av电影网| 国产乱人偷精品视频| 亚洲av男天堂| 欧美一级a爱片免费观看看| 日韩中文字幕视频在线看片 | 有码 亚洲区| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂 | 欧美性感艳星| 在线播放无遮挡| 色哟哟·www| h视频一区二区三区| 欧美国产精品一级二级三级 | 午夜视频国产福利| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 国产亚洲5aaaaa淫片| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 激情 狠狠 欧美| 亚洲精华国产精华液的使用体验| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 成人免费观看视频高清| 色视频在线一区二区三区| 国产成人freesex在线| 日本欧美国产在线视频| 亚洲成人中文字幕在线播放| 国产精品麻豆人妻色哟哟久久| 舔av片在线| 三级经典国产精品| 国产黄色视频一区二区在线观看| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 99精国产麻豆久久婷婷| 日本黄色片子视频| 99热网站在线观看| 日韩在线高清观看一区二区三区| 99久久综合免费| 日韩av不卡免费在线播放| 久久精品国产亚洲av天美| av一本久久久久| 色网站视频免费| 99热全是精品| 18禁裸乳无遮挡动漫免费视频| 免费看不卡的av| 王馨瑶露胸无遮挡在线观看| 国产亚洲5aaaaa淫片| 丝袜喷水一区| av在线播放精品| 人妻夜夜爽99麻豆av| 91精品国产九色| 精品久久久久久久久av| 国产精品一区二区三区四区免费观看| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩无卡精品| 青春草视频在线免费观看| 在线观看免费高清a一片| 久久精品人妻少妇| 九九爱精品视频在线观看| 日韩强制内射视频| 精品国产露脸久久av麻豆| 天堂俺去俺来也www色官网| 国产精品人妻久久久影院| 九草在线视频观看| 少妇人妻精品综合一区二区| av免费在线看不卡| 国产在线视频一区二区| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区四那| 一区二区三区四区激情视频| 男的添女的下面高潮视频| 精品亚洲乱码少妇综合久久| 一级二级三级毛片免费看| 大话2 男鬼变身卡| 内地一区二区视频在线| 丰满乱子伦码专区| 国产高清不卡午夜福利| 免费看av在线观看网站| 日韩av免费高清视频| av福利片在线观看| 久久精品国产亚洲网站| 五月玫瑰六月丁香| 久久鲁丝午夜福利片| 国产 精品1| 99久久中文字幕三级久久日本| 欧美日本视频| 亚洲四区av| 少妇人妻 视频| 亚洲无线观看免费| 国内精品宾馆在线| 日韩精品有码人妻一区| 熟女av电影| av女优亚洲男人天堂| 成人国产麻豆网| 国产毛片在线视频| 国产精品一区www在线观看| 亚洲伊人久久精品综合| 十八禁网站网址无遮挡 | 日韩视频在线欧美| 国产免费一区二区三区四区乱码| 亚洲真实伦在线观看| 国产一区有黄有色的免费视频| 国产黄片视频在线免费观看|