摘要: 為探明陜北地區(qū)山地蘋果優(yōu)質(zhì)高效生產(chǎn)的涌泉根灌灌溉模式,選擇7年生山地蘋果(寒富)為試材,以全生育期充分灌水為對照組CK,其灌水上、下限分別為100%Qf和85%Qf(Qf為田間持水率).在萌芽展葉期(Ⅰ期)和果實膨大期(Ⅲ期)分別設(shè)置4個灌水水平(輕度調(diào)虧灌水DIL、中度調(diào)虧灌水DIM1、偏重度調(diào)虧灌水DIM2和重度調(diào)虧灌水DIS,其灌水上、下限分別為對照組的90%,75%,60%和45%),采用完全隨機區(qū)組設(shè)計,分析了陜北山地蘋果光合、產(chǎn)量、品質(zhì)和水分利用效率對調(diào)虧灌溉(regulated deficit irrigation, RDI)的響應(yīng)規(guī)律.結(jié)果表明:蘋果樹Ⅲ期的葉片光合特性比Ⅰ期的強,且在同一物候期,與CK處理相比,DIL處理的光合能力差異不具有統(tǒng)計學意義(Pgt;0.05),其余處理有所減弱;與CK相比,Ⅰ-DIL和Ⅲ-DIL處理的產(chǎn)量、灌溉水利用效率和耗水利用效率差異不具有統(tǒng)計學意義(Pgt;0.05),但其余處理均有所降低;其中Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2);DIL與CK處理的綜合品質(zhì)較優(yōu)且差異不具有統(tǒng)計學意義(Pgt;0.05).因此,在山地蘋果萌芽展葉期輕度調(diào)虧灌水(Ⅰ-DIL處理)和果實膨大期輕度調(diào)虧灌水(Ⅲ-DIL處理),可提高蘋果的產(chǎn)量和品質(zhì).
關(guān)鍵詞: 山地蘋果;涌泉根灌;調(diào)虧灌溉;光合特性;產(chǎn)量;品質(zhì)
中圖分類號: S661.1; S275.9" 文獻標志碼: A" 文章編號: 1674-8530(2024)08-0835-08
DOI:10.3969/j.issn.1674-8530.23.0216
收稿日期: 2023-10-26; 修回日期: 2023-11-16; 網(wǎng)絡(luò)出版時間: 2024-01-16
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240116.1045.002
基金項目: 國家重點研發(fā)計劃項目(2016YFC0400204);國家自然科學基金資助項目(52079105)
第一作者簡介: 汪精云(1984—),男,甘肅景泰人,高級工程師(773994705@qq.com),主要從事水資源高效利用研究.
通信作者簡介: 費良軍(1963—),男,陜西藍田人,教授(feiliangjun1963@163.com),主要從事節(jié)水灌溉理論和農(nóng)業(yè)水資源利用研究.
汪精云,費良軍,李中杰,等. 輕度調(diào)虧涌泉根灌提高山地蘋果產(chǎn)量、品質(zhì)及水分利用效率[J]. 排灌機械工程學報,2024,42(8):835-842.
WANG Jingyun, FEI Liangjun, LI Zhongjie,et al. Light regulated deficit surge-root irrigation improvement of yield, quality and water use efficiency of mountain apple[J]. Journal of drainage and irrigation machinery engineering(JDIME)," 2024, 42(8): 835-842. (in Chinese)
Light regulated deficit surge-root irrigation improvement of yield,
quality and water use efficiency of mountain apple
WANG Jingyun1, FEI Liangjun2*, LI Zhongjie1,2, HAO Kun2,3, LIU Teng4
(1. Gansu Provincial Water Conservancy and Hydropower Survey Design and Research Institute Co., Ltd., Lanzhou, Gansu 730000, China; 2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi′an University of Technology, Xi′an, Shaanxi 710048, China; 3. College of Hydraulic amp; Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; 4. Rural Revitalization Planning and Development Guidance Centre of Yulin, Yulin, Shaanxi 719000, China)
Abstract: Aim to explore a high-efficient production surge-root irrigation system for mountain apples in northern Shaanxi, a 7-year-old mountain apple (Hanfu) was chosen as the test material. Full irrigation was selected as the control group (CK) in the full growth stage in which 100%Qf and 85%Qf were defined as upper and lower irrigation limit value. Four RDI (regulated deficit irrigation) levels namely light deficit irrigation (DIL), moderate 1 deficit irrigation (DIM1), moderate 2 deficit irrigation (DIM2) and severe deficit irrigation (DIS) were designed in the sprout leaves stage (stage I) and fruit expansion stage (stage Ⅲ), respectively. The irrigation limits of them are 90%, 75%,60% and 45% of control group, respectively. A randomized block design was used to analyze the responses of apple photosynthesis, yield, quality, and water use efficiency of regulated deficit irrigation in mountainous areas of northern Shaanxi.The results show that the photosynthetic characteristics of apple leaves in stage Ⅲ are stronger than those in stage I. In the same phenological period, there is no significant difference in photosynthetic capacity between DIL and CK (Pgt;0.05), and the other treatments are weakened. Compared with CK, the yield, irrigation water use efficiency (IWUE) and consumption water use efficiency (CWUE) of Ⅰ-DIL and Ⅲ-DIL treatments do not see significant increase (Pgt;0.05), while the other treatments encounter a decrease. The yield of Ⅲ-DIL treatment is the highest (31 358 kg/hm2), followed by Ⅰ-DIL treatment (31 239 kg/hm2). The comprehensive quality of DIL and CK is better and has no significant difference (Pgt;0.05). Therefore, the apple yield and quality encounter significant improvement owing to the activity of the light RDI in the sprout leaves stage (Ⅰ-DIL treatment) and light RDI in the fruit expansion stage (Ⅲ-DIL treatment).
Key words: mountain apple;surge-root irrigation;deficit irrigation;photosynthetic characteristics;yield;quality
2022年陜西省蘋果年產(chǎn)量為1.30×1010 kg,畝均產(chǎn)量為1 696 kg,畝均經(jīng)濟收益為5 189.41元,年增長速率分別為4.9%,3.2%和25.6%[1].目前,陜北地區(qū)正逐步發(fā)展成為中國栽培規(guī)模最大的山地蘋果產(chǎn)區(qū),但該區(qū)水資源短缺嚴重且降雨時空分布極不均勻,季節(jié)性干旱尤為明顯,導致山地蘋果規(guī)?;a(chǎn)業(yè)化發(fā)展受限,因此,如何利用有限水資源提升山地果園的生產(chǎn)力是當下亟須解決的問題.
為科學高效利用水資源,相關(guān)學者提出了如滴灌、噴灌、涌泉根灌等近年來逐步發(fā)展起來并有一定應(yīng)用前景的灌溉技術(shù)[2-4],并將這些技術(shù)結(jié)合調(diào)虧灌溉做了大量研究[5-6].其中,涌泉根灌作為一種新型地下滲灌技術(shù),通過微管把灌溉水直接運送到作物根區(qū),進行地下局部灌溉,減小蒸發(fā)損失、抑制雜草生長及灌溉水在地表的積聚[7],實現(xiàn)了節(jié)水及提高作物產(chǎn)量和水分利用效率的目標,特別適宜于精量灌溉[8-9].相關(guān)研究顯示,涌泉根灌下輕、中度的水分脅迫可以平衡果樹的營養(yǎng)生長和生殖生長,抑制過度生長且不會影響產(chǎn)量[10].DAI等[11]研究表明,涌泉根灌在棗樹生育期進行適度水分調(diào)虧可提高棗的產(chǎn)量和水分利用效率.強敏敏等[12]研究表明,調(diào)虧灌溉顯著影響棗樹的最終產(chǎn)量,與充分灌溉相比,輕度調(diào)虧的棗樹最終產(chǎn)量提高了22.1%.何岸镕等[13]研究發(fā)現(xiàn),葡萄的橫縱徑增長速率在受到輕度水分脅迫時顯著提高,果實內(nèi)的脯氨酸含量在輕度脅迫下增量明顯.另有研究表明,過度的水分調(diào)虧會抑制作物的生長,降低作物的光合特性、根系活力和水分利用效率,從而導致減產(chǎn)[14].趙先飛等[15]研究發(fā)現(xiàn),減少灌水量會降低蘋果新梢生長長度,并顯著影響蘋果產(chǎn)量和灌溉水利用效率.鐘韻等[16]研究發(fā)現(xiàn),在特定物候期調(diào)節(jié)果樹的灌溉水量,在一定程度上可以促進果樹生理代謝,并改善果實品質(zhì).因此,確定適宜的調(diào)虧灌溉控制范圍并實施精量灌溉有利于改善果實產(chǎn)量和品質(zhì).
然而,目前鮮有關(guān)于不同物候期下涌泉根灌對山地蘋果精準節(jié)水灌溉效果的對比研究.為此,文中在涌泉根灌方式下選擇陜北山地蘋果萌芽展葉期(Ⅰ期)和果實膨大期(Ⅲ期)進行適度調(diào)虧灌溉,以充分灌水為對照,設(shè)置4個不同灌水水平,分析陜北山地蘋果光合、產(chǎn)量、品質(zhì)和水分利用效率的響應(yīng)規(guī)律,以明確涌泉根灌下陜北山地蘋果在不同物候期的灌溉制度,為陜北山地蘋果的灌溉節(jié)水管理提供理論參考.
1" 材料與方法
1.1" 試驗區(qū)概況
試驗于2020年4—10月在陜西省榆林市子洲縣清水溝現(xiàn)代生態(tài)農(nóng)業(yè)示范園區(qū)進行,該示范區(qū)經(jīng)緯度為37°27′N,110°2′E,海拔為1 020 m,屬典型的黃土溝壑區(qū)腹地.暖溫帶和溫帶半干旱大陸性季風氣候,多年平均降水量為427.5 mm;多年平均氣溫為9.2 ℃;年日照時數(shù)為2 632.9 h;日照百分率為59%;太陽總輻射量為6 873 MJ/m2,光能資源豐富;無霜期為170 d.試驗區(qū)0~100 cm土壤質(zhì)地為砂壤土,土壤容重為1.41 g/cm3;田間持水率為21.4%;pH為8.3,偏堿性;有效N,P,K質(zhì)量比分別為22.60,11.10和62.30 mg/kg;有機質(zhì)質(zhì)量分數(shù)為0.81%.
1.2" 供試作物
選擇供試作物品種為“寒富”蘋果樹,樹齡7 a,試驗樹均為南北向種植,其中株高為290~315 cm,莖粗為9.5~10.6 cm,樹間行間距按2 m×3 m控制.根據(jù)試驗?zāi)旯麡渖L情況,蘋果實際物候期可劃分為萌芽展葉期(Ⅰ期,4月4日—4月24日)、開花坐果期(Ⅱ期,4月25日—5月18日)、果實膨大期(Ⅲ期,5月19日—9月21日)和果實成熟期(Ⅳ期,9月22日—10月10日).
1.3" 試驗設(shè)計及方法
試驗以充分灌水為對照組CK,其灌水上、下限分別為100%Qf和85%Qf(Qf為田間持水率).分別在Ⅰ期和Ⅲ期設(shè)置輕度調(diào)虧灌水DIL、中度調(diào)虧灌水DIM1、偏重度調(diào)虧灌水DIM2、重度調(diào)虧灌水DIS,灌水上、下限分別為對照組的90%,75%,60%和45%,其余物候期均為充分灌水;采用涌泉根灌,灌水器設(shè)在距樹基部水平距離0.40 m,埋深0.35 m處,樹兩側(cè)對稱布置,出水量3 L/h,工作壓力0.1 MPa,灌水量由水表計量控制,具體試驗方案見表1,表中r為設(shè)計灌水比例.
灌水條件為試驗小區(qū)土壤質(zhì)量含水率達到或接近試驗設(shè)置下限時進行灌水.灌水定額計算公式為
m=0.1γzpS(θmax-θmin)/η,(1)
式中:m為灌水定額,L;γ為土壤的容重,為1.41 g/cm3;z為土壤計劃濕潤層深度,為0.9 m;p為濕潤比,取0.25[5,10];S為單株蘋果樹計算面積,為6 m2;θmax,θmin分別為土壤質(zhì)量含水率上、下限;η為灌溉水利用系數(shù),取0.95[17].
各處理固定施N(施肥量400 kg/hm2)、P2O5(施肥量240 kg/hm2)和K2O(施肥量460 kg/hm2),氮肥、磷肥和鉀肥分別選用尿素(N的質(zhì)量分數(shù)為46%)、過磷酸鈣(P2O5的質(zhì)量分數(shù)為12%)和硫酸鉀(K2O的質(zhì)量分數(shù)為52%).將磷肥(質(zhì)量分數(shù)為100%)、氮肥(質(zhì)量分數(shù)為50%)和鉀肥(質(zhì)量分數(shù)為33%)作為基肥在蘋果樹萌芽前(3月26日)施入,在Ⅰ期(4月7日)、Ⅱ期(5月16日)各施加氮肥(質(zhì)量分數(shù)為15%),在Ⅲ期(9月10日)施加氮肥(質(zhì)量分數(shù)為20%)、鉀肥(質(zhì)量分數(shù)為67%),施肥方式為距試驗樹主干40 cm處以穴施加入.采用完全隨機區(qū)組設(shè)計,共設(shè)置9個處理,各處理均有3次重復.各試驗小區(qū)均長10 m、寬3 m,面積30 m2,試驗區(qū)總面積810 m2,小區(qū)間采用1.5 m隔水板進行防滲隔離.果園除水肥管理外,病蟲害防治、整枝修剪等其他栽培管理措施與園區(qū)管理完全相同.
1.4" 測定項目及方法
分別于萌芽展葉期(Ⅰ期)、果實膨大期(Ⅲ期)調(diào)虧灌水后第4 d(2020年4月16日和9月5日,天氣晴朗)選擇長勢良好的同一片功能葉,用便攜式光合儀器(LI-6400)測定葉片光合指標,如葉片凈光合速率(Pn)、胞間CO2濃度(Ci)和蒸騰速率(Tr)等,9:00—17:00每隔2 h在自然光條件下測定1次.每處理3個重復,每個重復測定3次,取均值進行分析.葉片瞬時水分利用效率(LWUE)為凈光合速率與蒸騰速率的比值.
土壤含水率采用便攜式土壤水分測量儀(Diviner 2000,Sentek Pty Ltd)觀測.每個重復在距樹基部水平距離0.40 m的圓環(huán)處安裝3根測管,測管的安裝深度為2.0 m.每次灌溉前觀測1次剖面土壤質(zhì)量含水率.
2020年10月7日—10日,分批采收成熟的蘋果,測定其質(zhì)量(折算公頃產(chǎn)量).每株樹隨機選取15個蘋果,測定果實的品質(zhì).品質(zhì)指標中維生素C采用2,6-二氯酚靛酚鈉滴定法測定[18];可溶性糖采用3,5-二硝基水楊酸法測定;可滴定酸采用NaOH滴定法測定;硬度采用FHR-5型果實硬度計測定;著色指數(shù)采用SP60色差儀測定;糖酸比為可溶性糖與可滴定酸的比值[19].
耗水量采用水量平衡法計算,即
ETi=Ii+Pr-Rf-D+U+W0-Wf,(2)
式中:ETi為時段內(nèi)果樹耗水量,mm;Ii為時段內(nèi)灌水量,mm;Pr為有效降雨量,mm;Rf為地表徑流量,mm;D為深層滲漏量,mm;U為時段內(nèi)地下水補給量,mm;W0和Wf分別為時段初和時段末的土壤儲水量,mm.
在生產(chǎn)實踐中,有效降雨量Pr可通過降雨量P與降水有效利用系數(shù)σ的乘積簡化計算[11],即
Pr=σP,(3)
式中:當Plt;5 mm時,σ=0;當5≤Plt;50 mm時,σ=1.00;當P≥50 mm時,σ=0.75.
因為涌泉根灌灌水器出水流量較小,且灌水定額較低,故由灌水引起的地表徑流和深層滲漏可忽略不計,即Rf =0,D=0;試驗區(qū)地下水位在地表25 m以下,故不考慮地下水補給量,即U=0.因此,式(2)可以簡化為
ETi=Ii+σP+W0-Wf.(4)
灌溉水利用效率(irrigation water use efficiency,IWUE,kg/m3)為產(chǎn)量與總灌水量的比值,即
IWUE=0.1Y/I,(5)
式中:Y為產(chǎn)量,kg/hm2;I為總灌水量,mm.
耗水利用效率(consumption water use efficiency,CWUE,kg/m3)為產(chǎn)量與總耗水量的比值,即
CWUE=0.1Y/∑ETi.(6)
1.5" 數(shù)據(jù)處理
采用Microsoft Excel 2010軟件進行數(shù)據(jù)處理計算和繪圖,用IBM SPSS Statistics 21統(tǒng)計分析軟件進行方差分析(ANOVA);采用Duncan法(α=0.05)進行組間兩兩比較.
2" 結(jié)果與分析
2.1" 調(diào)虧灌溉對陜北山地蘋果葉片光合特性的影響
表2為調(diào)虧灌溉對陜北山地蘋果光合特性的影響.由表可看出,調(diào)虧灌溉對蘋果樹葉片凈光合速率(Pn)、蒸騰速率(Tr)和胞間CO2濃度(Ci)影響具有統(tǒng)計學意義(Plt;0.05),對葉片瞬時水分利用效率(LWUE)影響不具有統(tǒng)計學意義(Pgt;0.05).輕度調(diào)虧灌水與充分灌水的光合特性差異不具有統(tǒng)計學意義(Pgt;0.05).
在Ⅰ期,Pn,Tr和LWUE隨灌水量的增加而增大,Ci隨灌水量的增加而減?。慌cCK處理相比,Ⅰ-DIL,Ⅰ-DIM1,Ⅰ-DIM2和Ⅰ-DIS處理的Pn下降幅度為1.19%~11.87%,Tr下降幅度為0.82%~7.40%,LWUE下降幅度為1.45%~4.35%,Ci增加幅度為1.26%~5.01%.在Ⅲ期,除Ⅲ-DIL處理的Pn比CK處理略大,Ⅲ-DIM1,Ⅲ-DIL處理的LWUE比CK處理略大以外,其余處理的Pn,Tr,Ci和LWUE的變化與Ⅰ期相似;與CK處理相比,Ⅲ-DIL,Ⅲ-DIM1,Ⅲ-DIM2和Ⅲ-DIS處理的Pn下降幅度為2.75%~7.60%,Tr下降幅度為0.96%~6.71%,LWUE下降幅度為0.39%~0.78%,Ci增加幅度為1.57%~6.59%.
2.2" 調(diào)虧灌溉對陜北山地蘋果產(chǎn)量的影響
圖1為調(diào)虧灌溉對陜北山地蘋果產(chǎn)量的影響.由圖可知,調(diào)虧灌溉對陜北山地蘋果產(chǎn)量的影響具有統(tǒng)計學意義(Plt;0.05).在Ⅰ期和Ⅲ期,蘋果產(chǎn)量均隨灌水量的增加而增大.產(chǎn)量介于22 281~31 358 kg/hm2,其中Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2),Ⅲ-DIs處理的產(chǎn)量最低(22 281 kg/hm2).與CK處理相比,Ⅰ-DIL,Ⅰ-DIM1,Ⅰ-DIM2和Ⅲ-DIL處理的產(chǎn)量差異不具有統(tǒng)計學意義(Pgt;0.05),Ⅰ-DIS,Ⅲ-DIM1,Ⅲ-DIM2和Ⅲ-DIS處理的產(chǎn)量分別減少15.38%,11.99%,22.57%和27.08%.
2.3" 調(diào)虧灌溉對陜北山地蘋果水分利用效率的影響
圖2為調(diào)虧灌溉對陜北山地蘋果水分利用效率WUE的影響.
由圖2可知,調(diào)虧灌溉對蘋果灌溉水利用效率IWUE和耗水利用效率CWUE的影響具有統(tǒng)計學意義(Plt;0.05).不同調(diào)虧處理的IWUE與對照CK相比差異均不具有統(tǒng)計學意義(Pgt;0.05).其中,Ⅲ-DIL處理的IWUE最高為23.64 kg/m3,其次是Ⅰ-DIL處理的22.73 kg/m3,這2個處理與IWUE最低的Ⅰ-DIS處理(19.48 kg/m3)相比差異具有統(tǒng)計學意義(Plt;0.05),與Ⅲ-DIL處理相比,其余處理IWUE降低3.85%~17.60%.與CK處理相比,Ⅰ-DIS,Ⅲ-DIM2和Ⅲ-DIS處理的CWUE與CK處理相比差異具有統(tǒng)計學意義(Plt;0.05),其余處理與CK相比差異不具有統(tǒng)計學意義(Pgt;0.05),其中Ⅲ-DIL處理的CWUE最高為6.46 kg/m3,其次是Ⅰ-DIL處理(6.37 kg/m3),而Ⅲ-DIS處理的CWUE最低(4.85 kg/m3),與Ⅲ-DIL處理相比,其余處理CWUE降低1.39%~24.92%.
2.4" 調(diào)虧灌溉對陜北山地蘋果品質(zhì)的影響
表3為調(diào)虧灌溉對陜北山地蘋果品質(zhì)的影響.表中Ws為可溶性糖質(zhì)量分數(shù);Wvc為維生素C質(zhì)量比;Wa為可滴定酸質(zhì)量分數(shù);Rsa為糖酸比;H為硬度;Ic為著色指數(shù);ms為單果質(zhì)量.
由表可知,不同物候期內(nèi)進行調(diào)虧灌溉對蘋果品質(zhì)的影響效果具有統(tǒng)計學意義(Plt;0.05).Ⅰ期和Ⅲ期各處理下,DIL處理的可溶性糖質(zhì)量分數(shù)、維生素C質(zhì)量比、糖酸比和著色指數(shù)均最高,其余處理的指標值隨灌水量的減少呈下降趨勢;DIL處理的可滴定酸質(zhì)量分數(shù)和硬度值最小,其余處理的指標值隨灌水量的減少呈上升趨勢.
全處理中,與CK相比,Ⅰ-DIL處理的蘋果品質(zhì)差異不具有統(tǒng)計學意義(Plt;0.05),Ⅲ-DIL處理的可溶性糖質(zhì)量分數(shù)和維生素C質(zhì)量比顯著增加,著色指數(shù)顯著減小,與Ⅲ-DIL相比,其余處理可溶性糖質(zhì)量分數(shù)和維生素C質(zhì)量比下降幅度分別為 1.31%~11.41%,0.34%~3.70%;Ⅰ-DIL處理的糖酸比和單果質(zhì)量最大,與之相比,其余處理糖酸比和單果質(zhì)量下降幅度分別為1.68%~28.10%,1.04%~28.38%;CK處理的著色指數(shù)最大,Ⅰ-DIL處理次之,與Ⅰ-DIL處理相比,其余處理著色指數(shù)下降幅度為1.42%~23.17%;Ⅰ-DIL處理的可滴定酸質(zhì)量分數(shù)最低,硬度指標僅高于CK處理,與Ⅰ-DIL處理相比,其余處理可滴定酸質(zhì)量分數(shù)和硬度上升幅度分別為2.04%~26.53%,0.38%~9.11%.綜上所述,Ⅰ-DIL處理和Ⅲ-DIL處理的山地蘋果綜合品質(zhì)較優(yōu).
3" 討" 論
農(nóng)業(yè)生產(chǎn)中,合理的灌溉能夠協(xié)調(diào)作物營養(yǎng)物質(zhì)的分配,促進光合產(chǎn)物的合成,提高作物產(chǎn)量[20].本研究表明,蘋果樹Ⅲ期的葉片光合特性明顯比Ⅰ期的強,原因可能是蘋果樹萌芽展葉期葉片相對果實膨大期來說比較幼嫩,捕光能力還不夠強,致使光合能力相對較弱[21].而同一生育期間,輕度調(diào)虧灌水與充分灌水的灌水量相差不大,且基本能滿足蘋果樹光合作用所需耗水,因此DIL處理的光合能力與CK處理相比差異不具有統(tǒng)計學意義(Plt;0.05).Ⅲ期的LWUE明顯比Ⅰ期的大,原因是Ⅲ期的Pn和Tr與Ⅰ期相比,Pn的增量比Tr增量大所致.與CK處理相比,DIS處理的光合能力顯著減弱,這可能是由于蘋果樹遭受重度水分調(diào)虧后,葉片出現(xiàn)葉綠體膨脹、排列紊亂,光合器官的部分超微結(jié)構(gòu)遭到破壞[22],而樹體為了保持水分,自主調(diào)節(jié)氣孔閉合來減弱水分的損失和水勢的下降[23];另外,樹體缺水達到一定程度后會降低體內(nèi)可溶性蛋白含量以及弱化光合酶類的合成,降低葉片光合能力[24].
作物在不同生育期進行調(diào)虧灌溉對產(chǎn)量和水分利用效率的影響不同[25].文中研究表明,輕度水分調(diào)虧可提高陜北山地蘋果的產(chǎn)量,而重度水分調(diào)虧顯著降低陜北山地蘋果的產(chǎn)量.這可能是因為發(fā)生輕度水分脅迫時,果實對水分的吸收效果更強,從而抑制枝條生長,促進果實產(chǎn)量增加;而重度水分脅迫發(fā)生時,蘋果樹生殖生長和營養(yǎng)生長均會受到抑制,且光合產(chǎn)物會更多地向生殖器官轉(zhuǎn)移,導致產(chǎn)量降低[26].文中研究還表明,與CK處理相比,其余處理的IWUE差異不具有統(tǒng)計學意義(Pgt;0.05),但Ⅲ-DIL和Ⅰ-DIL處理的IWUE比CK處理的大,同時Ⅲ-DIL和Ⅰ-DIL處理的CWUE也比CK處理的大,且顯著大于Ⅰ-DIS和Ⅲ-DIS處理.該結(jié)果表明輕度水分調(diào)虧可提高陜北山地蘋果的水分利用效率,過度水分脅迫會降低蘋果的水分利用效率.
水分是改善果實品質(zhì)的媒體和介質(zhì),在作物不同生育期進行適當?shù)乃置{迫,可調(diào)控植株代謝,促進光合產(chǎn)物的累積,改善果實品質(zhì)[27].文中研究表明Ⅲ-DIL處理的維生素C質(zhì)量比高于CK處理的,這可能由于充分灌水對維生素C累積產(chǎn)生了“稀釋效應(yīng)”[28].果實硬度隨水分調(diào)虧程度的加劇而增大,這是由于干旱脅迫改變了果實軟化的生理機制,限制了果肉細胞的擴大和分裂,增大了果肉細胞排列密度.蘋果的單果質(zhì)量隨水分調(diào)虧程度的加劇而減小,且Ⅲ期比Ⅰ期的變化更加明顯,這是由于Ⅲ期是蘋果樹生長和果實生長最旺盛的時期,日耗水強度較大,供水不足降低了植株體內(nèi)生理代謝以及無機物和有機物的吸收、運輸和轉(zhuǎn)化,阻礙了果肉細胞的膨大[29].文中發(fā)現(xiàn)可溶性糖質(zhì)量分數(shù)隨灌水量的增大而增大,可滴定酸質(zhì)量分數(shù)則相反,可能是因為不同供水條件改變了植株源-庫關(guān)系的變化,使得果實中儲藏的蛋白質(zhì)、淀粉、脂肪等水解程度不同[30].
4" 結(jié)" 論
1) 輕度調(diào)虧灌水與充分灌水的光合特性差異不具有統(tǒng)計學意義(Pgt;0.05).在Ⅰ期和Ⅲ期虧水處理后,凈光合速率和蒸騰速率隨水分調(diào)虧程度的加劇而降低,胞間CO2濃度隨水分調(diào)虧程度的加劇而增大.
2) 與CK相比,Ⅲ-DIL和Ⅰ-DIL處理的蘋果產(chǎn)量、灌溉水利用效率和耗水利用效率均有所增加,但增加均不具有統(tǒng)計學意義(Pgt;0.05),其余處理有所減小.其中,Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2).
3) 調(diào)虧灌溉對蘋果品質(zhì)的影響具有統(tǒng)計學意義(Plt;0.05).與CK處理相比,Ⅰ-DIL處理的蘋果品質(zhì)差異不具有統(tǒng)計學意義(Plt;0.05),Ⅲ-DIL處理的維生素C和可溶性糖質(zhì)量分數(shù)顯著增加,著色指數(shù)顯著減小.
4) 建議陜北山地蘋果在萌芽展葉期和果實膨大期均進行輕度調(diào)虧灌水,該研究結(jié)果可為陜北山地蘋果的灌溉管理提供理論依據(jù).
參考文獻(References)
[1]" 國家統(tǒng)計局. 2022年中國統(tǒng)計年鑒[M]. 北京: 中國統(tǒng)計出版社, 2022.
[2]" WANG L L, WU W Y, XIAO J, et al. Effects of diffe-rent drip irrigation modes on water use efficiency of pear trees in Northern China[J]. Agricultural water management, 2021, 245:106660.
[3]" 張洋, 馬英杰. 干旱綠洲區(qū)微噴灌棗園蒸散量時空尺度轉(zhuǎn)換研究[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2022, 40(2): 102-110.
ZHANG Yang, MA Yingjie. Temporal and spatial scale transformation of evapotranspiration of jujube orchard under micro sprinkler irrigation in arid oasis[J]. Agricultural research in the arid areas, 2022, 40(2): 102-110. (in Chinese)
[4]" FU Y L, CAO Y B, WANG H F, et al. The effects of different fertilizer rates on water and nitrogen transport characteristics in the wetted body of bubbled-root irrigation[J]. Arabian journal of geosciences, 2021, 14:1876.
[5]" 胡宏遠,王靜,李紅英,等.調(diào)虧灌溉對賀蘭山東麓赤霞珠葡萄主干莖流規(guī)律及品質(zhì)的影響[J].江蘇農(nóng)業(yè)學報,2023,39(3):798-806.
HU Hongyuan,WANG Jing,LI Hongying,et al. Effects of regulated deficit irrigation on stem flow and quality of Cabernet Sauvignon grape in eastern foot of Helan Mountain[J].Jiangsu journal of agricultural sciences,2023,39(3):798-806.(in Chinese)
[6]" LIAO Y, CAO H X, XUE W K, et al. Effects of the combination of mulching and defcit irrigation on the soil water and heat, growth and productivity of apples[J]. Agricultural water management, 2021, 243:106482.
[7]" 李哲, 費良軍, 尹永樂, 等.涌泉根灌下陜北山地蘋果作物系數(shù)確定與蒸散量估算[J]. 水資源與水工程學報, 2022, 33(2): 209-215.
LI Zhe,F(xiàn)EI Liangjun, YIN Yongle, et al. Crop coeffi-cient and evapotranspiration estimation of apple in nor-thern Shaanxi under surge-root irrigation[J]. Journal of water resources and water engineering, 2022, 33(2): 209-215. (in Chinese)
[8]" HAO K, FEI L J, LIU L H, et al. Comprehensive eva-luation on yield, quality and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the loess plateau based on the improved TOPSIS method[J]. Frontiers in plant science, 2022, 13: 853546.
[9]" LI Z J, FEI L J, HAO K, et al. Effects of arrangement of surge-root irrigation emitters on growth, yield and water use efficiency of apple trees[J]. Journal of drainage and irrigation machinery engineering, 2020, 38(7): 713-719.
[10]" ZHONG Y, FEI L J, LI Y B, et al. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the loess plateau of China[J]. Agricultural water management, 2019, 222: 221-230.
[11]" DAI Z G, FEI L J, HUANG D L, et al. Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region[J]. Agricultural water management, 2019, 213: 146-154.
[12]" 強敏敏, 費良軍, 劉揚. 調(diào)虧灌溉促進涌泉根灌棗樹生長提高產(chǎn)量[J]. 農(nóng)業(yè)工程學報, 2015, 31(19): 91-96.
QIANG Minmin, FEI Liangjun, LIU Yang. Regulated deficit irrigation promoting growth and increasing fruit yield of jujube trees[J]. Transactions of the CSAE, 2015, 31(19): 91-96. (in Chinese)
[13]" 何岸镕, 安進強, 張芮, 等. 不同生育期水分調(diào)虧對設(shè)施延后栽培葡萄葉片保護系統(tǒng)及產(chǎn)量品質(zhì)的影響[J]. 水土保持學報, 2016, 30(3): 196-201.
HE Anrong, AN Jinqiang, ZHANG Rui, et al. Effects of water deficit on leaf protecting system and quality yield of delayed grape cultivation during different growth stage [J]. Journal of soil and water conservation, 2016, 30(3): 196-201. (in Chinese)
[14]" LIU X G, QI Y T, LI F S, et al. Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China[J]. Agricultural water management, 2018, 204(4): 292-300.
[15]" 趙先飛,張馨予,于國康,等.短枝富士蘋果不同負載和灌水量對新梢生長、產(chǎn)量和灌水利用效率的影響[J].果樹學報,2023,40(9):1860-1870.
ZHAO Xianfei, ZHANG Xinyu, YU Guokang, et al. Effect of different fruit loads and irrigation amounts on new shoot growth, yield and irrigation water use efficiency in spur-type Fuji apples[J]. Journal of fruit science, 2023, 40(9):1860-1870.(in Chinese)
[16]" 鐘韻, 朱士江, 費良軍, 等. 幼果期調(diào)虧對不同覆膜柑橘產(chǎn)量品質(zhì)及水分利用效率的影響[J]. 農(nóng)業(yè)工程學報, 2023, 39(1): 81-91.
ZHONG Yun, ZHU Shijiang, FEI Liangjun, et al. Effects of regulating deficit at young fruit stage on yield, quality, and water use efficiency of citrus with different plastic film materials[J]. Transactions of the CSAE, 2023, 39(1): 81-91. (in Chinese)
[17]" 李中杰, 費良軍, 郝琨, 等. 涌泉根灌下水氮耦合對陜北山地蘋果光合特性、產(chǎn)量和水氮利用的影響[J]. 應(yīng)用生態(tài)學報, 2021, 32(3): 967-975.
LI Zhongjie, FEI Liangjun, HAO Kun, et al. Effects of water-nitrogen coupling on photosynthetic characteri-stics, yield, waterand nitrogen use efficiency for apple trees under surge-root irrigation in northern Shaanxi mountain area of China[J]. Chinese journal of applied ecology, 2021, 32(3): 967-975. (in Chinese)
[18]" SUN G Z, HU T T, LIU X G, et al. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions[J]. Agricultural water management, 2022, 260: 107296.
[19]" LIU X G, PENG Y L, YANG Q L, et al. Determining optimal deficit irrigation and fertilization to increase mango yield, quality and WUE in a dry hot environment based on TOPSIS[J]. Agricultural water management, 2021, 245: 106650.
[20]" 彭有亮, 劉小剛, 張巖, 等. 微潤灌溉施肥對干熱區(qū)芒果光合特性、產(chǎn)量和水肥利用的影響[J]. 水土保持學報, 2020, 34(1): 350-357.
PENG Youliang, LIU Xiaogang, ZHANG Yan, et al. Effects of moistube fertigation on photosynthesis, yield, and use of water and fertilizer of mango (Mangifera indica L.) in dry and hot region[J]. Journal of soil and water conservation, 2020, 34(1): 350-357. (in Chinese)
[21]" 張效星, 樊毅, 賈悅, 等. 水分虧缺對滴灌柑橘光合和產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學報, 2018, 34(3): 143-150.
ZHANG Xiaoxing, FAN Yi, JIA Yue, et al. Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation[J]. Transactions of the CSAE, 2018, 34(3): 143-150. (in Chinese)
[22]" XIA J B, ZHANG S Y, GUO J, et al. Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China′s Yellow River Delta[J]. Ecological engineering, 2015, 76(1): 36-46.
[23]" 劉小剛, 孫光照, 彭有亮, 等. 水肥耦合對芒果光合特性和產(chǎn)量及水肥利用的影響[J]. 農(nóng)業(yè)工程學報, 2019, 35(16): 125-133.
LIU Xiaogang, SUN Guangzhao, PENG Youliang, et al. Effect of water-fertilizer coupling on photosynthetic characteristics, fruit yield, water and fertilizer use of mango[J].Transactions of the CSAE, 2019, 35(16): 125-133. (in Chinese)
[24]" 徐瑞晶, 胡璇, 劉廣路, 等. 海南島熱帶低地雨林攀援竹葉片光合特性季節(jié)動態(tài)[J]. 西北植物學報, 2020, 40(2): 345-352.
XU Ruijing, HU Xuan, LIU Guanglu, et al. Seasonal dynamics of photosynthetic characteristics in climbing bamboo leaves of tropical lowland rain forest in Hainan Island[J]. Acta botanica boreali-occidentalia sinica, 2020, 40(2): 345-352. (in Chinese)
[25]" 吳宣毅, 佟玲, 康德奎, 等. 調(diào)虧灌溉對西北地區(qū)不同種植密度玉米耗水和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報, 2022, 38(S1): 59-67.
WU Xuanyi, TONG Ling, KANG Dekui, et al. Effects of regulated deficit irrigation on water consumption and yield of maize under different planting densities in northwest China[J]. Transactions of the CSAE, 2022, 38(S1): 59-67. (in Chinese)
[26]" 劉星, 曹紅霞, 廖陽, 等. 滴灌模式對蘋果光合特性、產(chǎn)量及灌溉水利用的影響[J]. 中國農(nóng)業(yè)科學, 2021, 54(15): 3264-3278.
LIU Xing, CAO Hongxia, LIAO Yang, et al. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple[J]. Scientia agricultura sinica, 2021, 54(15): 3264-3278. (in Chinese)
[27]" WANG H D, LI J, CHENG M H, et al. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber[J]. Scientia horticulturae, 2019, 243(3): 357-366.
[28]" 張健利,王振華,宗睿,等.水氣互作對滴灌加工番茄生長及品質(zhì)的影響[J].江蘇農(nóng)業(yè)學報,2022,38(2):453-461.
ZHANG Jianli,WANG Zhenhua,ZONG Rui, et al. Effects of water and air interaction on growth and quality of drip-irrigated processing tomato[J].Jiangsu journal of agricultural sciences,2022,38(2):453-461.(in Chinese)
[29]" GALINDOA A, COLLADO-GONZLEZB J, GRIN I, et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems [J]. Agricultural water management, 2018, 202: 311-324.
[30]" 彭有亮, 費良軍, 劉小剛, 等. 減量施肥耦合調(diào)虧灌溉對干熱區(qū)芒果產(chǎn)量和品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學報, 2022, 28(3): 521-531.
PENG Youliang, FEI Liangjun, LIU Xiaogang, et al. Effect of reduced fertilization and regulated deficit irrigation coupling on yield and quality of mango in a dry-hot region[J]. Journal of plant nutrition and fertilizers, 2022, 28(3): 521-531. (in Chinese)
(責任編輯" 黃鑫鑫)