摘 要:【目的】基于簡化基因組,挖掘油茶單核苷酸多態(tài)性(SNP)位點(diǎn),篩選可用于油茶種質(zhì)鑒定的簡化SNP組合位點(diǎn),構(gòu)建SNP指紋圖譜,建立一種快速準(zhǔn)確鑒定廣西油茶主栽良種苗木的SNP分子標(biāo)記方法。【方法】以12個(gè)油茶無性系種質(zhì)的兩個(gè)重復(fù)共24份油茶標(biāo)準(zhǔn)樣本為材料,采用ddRADseq流程進(jìn)行文庫構(gòu)建,使用BWA將過濾后的測(cè)序數(shù)據(jù)比對(duì)到已發(fā)布的南榮油茶Camellia oleifera var. “Nanyongensis”參考基因組上,利用GATK進(jìn)行SNP位點(diǎn)篩選,ANNOVAR軟件進(jìn)行SNP位點(diǎn)注釋,STRUCTURE軟件進(jìn)行群體結(jié)果分析,使用PLINK進(jìn)行主成分分析;利用R語言,使用條件隨機(jī)篩選法(CRS),篩選能夠區(qū)分出油茶種質(zhì)的最簡SNP組合,繪制指紋圖譜?!窘Y(jié)果】測(cè)序數(shù)據(jù)質(zhì)量良好,可用于SNP分子標(biāo)記位點(diǎn)的開發(fā)篩選。與參考基因組比對(duì)后,共獲得622 064個(gè)為SNP標(biāo)記位點(diǎn),其中無基因型缺失的SNP位點(diǎn)40 147個(gè),多態(tài)性信息含量(PIC)大于0.35的SNP位點(diǎn)2 094個(gè),前后60 bp堿基保守?zé)o變異的SNP位點(diǎn)共184個(gè)。最終篩選出可以將12個(gè)油茶無性系種質(zhì)區(qū)分開的15個(gè)核心SNP標(biāo)記位點(diǎn)組合,并以此繪制出SNP指紋圖譜?!窘Y(jié)論】基于簡化基因組,建立了廣西主要栽培油茶種質(zhì)的SNP標(biāo)記開發(fā)和指紋圖譜繪制的方法,為苗期油茶種質(zhì)的快速準(zhǔn)確鑒定提供了理論依據(jù)和技術(shù)指導(dǎo),助力規(guī)范油茶苗木市場,促進(jìn)油茶產(chǎn)業(yè)健康發(fā)展。
關(guān)鍵詞:油茶;簡化基因組測(cè)序;單核苷酸多態(tài)性位點(diǎn);指紋圖譜
中圖分類號(hào):S794.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)04-0128-10
基金項(xiàng)目:廣西科技基地和人才專項(xiàng)(桂科AD20325005);廣西重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(桂科AB18294042);廣西特色經(jīng)濟(jì)林培育與利用重點(diǎn)實(shí)驗(yàn)室開放課題(JB-20-01-03)。
Development of SNP markers and construction of DNA fingerprint in teaoil Camellia germplasms based on simplified genome sequencing
LIAO Hongze1, SUN Manman1, HUANG Xiaojuan1, HAO Bingqing2, SUN Jiaxing1, JIANG Zepeng2, WANG Dongxue2, LIU Kai2
(1. School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, Guangxi, China; 2. Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China)
Abstract:【Objective】To establish a rapid and accurate method for identification of the major-cultivated tea-oil seedlings in Guangxi, we screened the single nucleotide polymorphism (SNP) sites, developed the SNP markers and drew the fingerprint map based on simplified genome sequencing.【Method】Two replicates of 12 tea-oil Camellia germplasms were used as samples. The library was constructed using double digest restriction site-associated sequencing (ddRADseq) and the filtered data was mapped to the released reference genome data of Camellia oleifera var. “Nanyongensis” using BWA. GATK was used for SNP site screening, ANNOVAR software was used for SNP site annotation, STRUCTURE software was used for population analysis, and PLINK was used for principal component analysis. Using R language, conditional random screening (CRS) was used to select the simplest SNP combinations that could distinguish tea-oil Camellia germplasms.【Result】The sequencing data was of good quality and could be used for the development and screening of SNP molecular marker sites. After sequence alignment with the reference genome, a total of 622 064 SNP sites were obtained, among which 40 147 SNP sites were without genotype deletion. Furthermore, there were 2 094 SNP sites with polymorphism information content (PIC) value greater than 0.35, 184 of which were with no base variations from 60 bp upstream to 60 bp downstream of the SNP sites. Finally, 15 core SNP sites that could distinguish 12 tea-oil Camellia germplasms were screened out, and the fingerprint map was figured out.【Conclusion】The method about SNP marker development and fingerprint illustration for Guangxi main tea-oil Camellia germplasms was established based on simplify genome sequencing, providing theoretical and technical assistance for distinguishing the germplasms fast and accurately, ultimately normalizing the tea-oil Camellia seedling market and promoting the sound development of tea-oil Camellia industry.
Keywords: tea-oil Camellia; simplified genome sequencing; single nucleotide polymorphism locus; fingerprint map
油茶在廣義上是指山茶科Theacea山茶屬Camellia L.植物中種子含油量高、具有較高栽培經(jīng)濟(jì)價(jià)值的多年生木本油料作物[1],在我國已有2 300多年的栽培歷史,與油棕Elaeis guineensis、油橄欖Olea europaea和椰子Cocos nucifera并稱為世界四大木本油料樹種[2],目前普通油茶Camellia oliefera是我國油茶生產(chǎn)栽培的優(yōu)勢(shì)物種[3]。山茶油在化學(xué)成分和醫(yī)療保健功能方面是獨(dú)一無二的,且富含不飽和脂肪酸(80%以上)[4],被譽(yù)為“東方橄欖油”[5]。山茶油還含有茶多酚,角鯊烯和其他生物活性物質(zhì),長期食用山茶油有利于治療心腦血管疾病,降低血膽固醇水平[6]。由于油茶良種苗木早期受發(fā)育階段影響,缺乏有力的形態(tài)特征支撐(無果、無花、無固定樹型),且早期葉片遺傳多樣性比較豐富,導(dǎo)致主栽油茶良種苗木早期識(shí)別相對(duì)困難,為了規(guī)范油茶苗木市場,促進(jìn)油茶產(chǎn)業(yè)健康發(fā)展,研究如何快速準(zhǔn)確識(shí)別苗木的真?zhèn)蝺?yōu)劣,迫在眉睫。
單核苷酸多態(tài)性(Single nucleotide polymorphism,SNP)是指在基因組水平上由于單個(gè)核苷酸變異引起的DNA序列多態(tài)性。SNP是基因組DNA序列最基本的變異形式,在生物體內(nèi)廣泛存在,具有數(shù)量多、分布廣、遺傳穩(wěn)定性高,在遺傳圖譜構(gòu)建、種質(zhì)資源的DNA指紋分析和生物多樣性檢測(cè)等農(nóng)作物育種領(lǐng)域發(fā)揮著重要作用[7],目前已經(jīng)應(yīng)用于甘藍(lán)Brassica oleracea var. capitata[8]、茄子Solanom melongena[9]、藜麥Chenopodium quinoa[10]、油橄欖[11]、地黃Rehmannia glutinosa[12]等物種中。
為了規(guī)范油茶苗木市場,促進(jìn)油茶產(chǎn)業(yè)健康發(fā)展,本研究將基于簡化基因組技術(shù),鑒定篩選12份油茶種質(zhì)的SNP位點(diǎn),通過分析SNP位點(diǎn)信息,篩選出可用于油茶種質(zhì)鑒定的簡化SNP組合位點(diǎn),編碼分子標(biāo)記類型,構(gòu)建SNP指紋圖譜,建立一種快速準(zhǔn)確用于這12份油茶主栽良種苗木的SNP分子標(biāo)記鑒定方法。
1 材料與方法
1.1 材 料
供試材料來自于廣西林科院,來源于12個(gè)油茶無性系,每個(gè)無性系選取2份標(biāo)準(zhǔn)樣本(即A和B指代同一個(gè)無性系的2個(gè)重復(fù)),合計(jì)24份油茶標(biāo)準(zhǔn)樣本(表1)。
1.2 DNA的提取及測(cè)序
取新鮮葉片,使用液氮快速冷凍。采取試劑盒提取基因組DNA,使用ddRADseq[13-14]流程進(jìn)行文庫構(gòu)建,使用Illumina HiSeq平臺(tái)進(jìn)行Pairedend 150 bp測(cè)序。
1.3 變異位點(diǎn)獲取及注釋
使用CUTADAPT軟件[15]和TRIMMOMATIC軟件[16]進(jìn)行數(shù)據(jù)過濾,利用BWA軟件[17]將測(cè)序數(shù)據(jù)與已發(fā)布的南榮油茶C. oleifera var.“Nanyongensis”參考基因組[14]進(jìn)行比對(duì),使用GATK軟件[18]進(jìn)行變異檢測(cè),獲得變異位點(diǎn)及其基因型,使用PLINK軟件[19]對(duì)獲得的變異位點(diǎn)進(jìn)行篩選:1)各樣本測(cè)序深度不小于1;2)所有樣本基因型缺失比例不超過50%;3)次等位基因頻率(MAF)不低于5%;4)雜合率(Ho)不超過60%;5)期望雜合率(He)不超過75%。使用ANNOVAR軟件[20]對(duì)SNP變異位點(diǎn)進(jìn)行變異注釋。
1.4 SNP位點(diǎn)篩選及多態(tài)性分析
使用PLINK篩選出無基因型缺失的SNP位點(diǎn),并使用PLINK計(jì)算次等位基因頻率(MAF),雜合率(Ho),期望雜合率(He),使用公式PIC=1-(maf2+(1-maf)2)-(2 maf2(1-maf)2),計(jì)算SNP標(biāo)記多態(tài)性信息含量(PIC)。
1.5 基于SNP位點(diǎn)群體結(jié)構(gòu)分析
使用篩選出的無基因型缺失的SNP位點(diǎn),利用STRUCTURE軟件[21]確定最佳亞群數(shù),Burnin周期為15 000,MCMC重復(fù)150 000次,使用PLINK進(jìn)行主成分分析(Principal component analysis,PCA),利用MEGA11軟件[22]中的鄰接法構(gòu)建系統(tǒng)發(fā)育樹。
1.6 指紋圖譜構(gòu)建
將12種油茶種質(zhì)的兩個(gè)重復(fù)分為2組,篩選出第一組的SNP標(biāo)記多態(tài)性信息含量(PIC)大于0.35,SNP位點(diǎn)前后60 bp堿基保守?zé)o變異位點(diǎn)的SNP位點(diǎn)作為構(gòu)建指紋圖譜的核心位點(diǎn)[8-9,23],挑選出重復(fù)種質(zhì)基因型一致的SNP位點(diǎn)。根據(jù)SNP位點(diǎn)的二態(tài)性特點(diǎn)[8-12],對(duì)篩選到的核心SNP標(biāo)記進(jìn)行二元數(shù)字編碼,共有3種等位基因型(0/0、0/1、1/1),以“0/0”代表野生型,以“0/1”代表雜合突變型,以“1/1”代表純合突變型,并將這3種基因型分別編碼為1、2、3代表等位基因多態(tài)性,以此通過Excel 2016軟件繪制SNP指紋圖譜。
2 結(jié)果與分析
2.1 簡化基因組變異統(tǒng)計(jì)注釋
對(duì)24份油茶標(biāo)準(zhǔn)樣本(12個(gè)油茶無性系種質(zhì),每個(gè)無性系樣本2個(gè)重復(fù))進(jìn)行Illumina HiSeq平臺(tái)二代測(cè)序。對(duì)測(cè)序結(jié)果進(jìn)行質(zhì)控分析,如表2所示,Q20為93.55%~96.38%,Q30為88.70%~92.84%,覆蓋深度為5.71~15.98倍,結(jié)果表明,該測(cè)序數(shù)據(jù)可用于SNP分子標(biāo)記位點(diǎn)的開發(fā)篩選。
經(jīng)過測(cè)序結(jié)果與南榮油茶參考基因組比對(duì)篩選,共獲得654 915個(gè)變異位點(diǎn),其中622 064個(gè)為SNP位點(diǎn),32 851個(gè)為插入/缺失(InDel)位點(diǎn)(圖1)。SNP中有496 686個(gè)是轉(zhuǎn)換類型(A/G和C/T),125 378個(gè)是顛換類型(A/C、A/T、C/G和G/T),轉(zhuǎn)換顛換比(Ts/Tv)為3.96。在InDel變異位點(diǎn)中,有13 974個(gè)單堿基插入/缺失,2 564個(gè)大于10個(gè)堿基插入/缺失的位點(diǎn)。
檢測(cè)到的變異均勻的分布于參考基因組的15條染色體上(圖2),其中1號(hào)染色體包含的SNP數(shù)目最多,9號(hào)染色體包含SNP的密度最大(表3)。通過對(duì)SNP位點(diǎn)進(jìn)行結(jié)構(gòu)注釋,SNP變異位點(diǎn)集中分布于基因的間隔區(qū)域,發(fā)生非同義突變的SNP位點(diǎn)僅占1.32%(表4)。
2.2 SNP變異位點(diǎn)多樣性分析
使用PLINK篩選出無基因型缺失的SNP位點(diǎn)共40 147個(gè),根據(jù)統(tǒng)計(jì)計(jì)算,這些SNP變異位點(diǎn)次等位基因頻率(MAF)為0.062 5~0.500 0,平均值為0.129 0,雜合率(Ho)為0~0.583 3,平均值為0.080 8,期望雜合率(He)為0.117 2~0.500 0,平均值為0.209 7,SNP標(biāo)記多態(tài)性信息含量(PIC)為0.110 3~0.375 0,平均值為0.182 9,其中PIC值大于0.35的SNP位點(diǎn)有2 094個(gè)。
2.3 基于SNP位點(diǎn)的群體結(jié)構(gòu)分析
基于共40 147個(gè)無基因型缺失的SNP位點(diǎn)的群體結(jié)構(gòu)分析表明,當(dāng)K=2時(shí),等位變異頻率特征數(shù)ΔK值最大(圖3),24份油茶樣本可以分為G1、G2,共2個(gè)類群,將每份樣本分到在各類群中的Q值最大的類群中,其中YY10A/B為G1類群,YY01A/B、YY02A/B、YY03A/B、YY04A/ B、YY05A/B、YY06A/B、YY07A/B,YY08A/B、YY09A/B、YY11A/B、YY12A/B共22個(gè)樣本11份種質(zhì)為G2類群(圖4)。PCA主成分分析結(jié)果顯示,主成分1的解釋率為49.93%,主成分2的解釋率為10.38%,主成分1可將G1類群和G2類群成功分開(圖5)?;卩徑臃?gòu)建的系統(tǒng)發(fā)育樹(圖6)顯示,G1類群歸為一支,G2類群分為兩支。以上群體結(jié)構(gòu)分析的結(jié)果與供試材料的物種背景差異具有一致相關(guān)性,G1類群的YY10A/ B來自廣寧紅花油茶C. semiserrata,G2類群的11份種質(zhì)樣本均為普通油茶,這在一定程度上驗(yàn)證了本研究測(cè)序數(shù)據(jù)和SNP標(biāo)記開發(fā)的有效性。
2.4 指紋圖譜構(gòu)建
篩選出SNP標(biāo)記多態(tài)性信息含量(PIC)大于0.35,SNP位點(diǎn)前后60 bp堿基保守?zé)o變異的核心SNP位點(diǎn)共184個(gè),將12種油茶種質(zhì)的兩個(gè)重復(fù)分為兩組后,重復(fù)樣本之間基因型完全一致的SNP位點(diǎn)有15個(gè)。根據(jù)SNP標(biāo)記的二態(tài)性特點(diǎn),將分型數(shù)據(jù)轉(zhuǎn)化為二元編碼數(shù)據(jù),對(duì)篩選到的核心SNP標(biāo)記的3種基因型:野生型(0/0)、雜合突變型(0/1)、純合突變型(1/1),分別用數(shù)字編碼1、2、3代表等位基因多態(tài)性。因此,15個(gè)SNP標(biāo)記共有15種基因型,12份油茶無性系種質(zhì)的基因型均能以15個(gè)不同的數(shù)字編碼來表示。如圖7所示的SNP指紋圖譜,紅色代表“0/0”野生型或數(shù)字編碼“1”,黃色代表“0/1”雜合突變型或數(shù)字編碼“2”,綠色代表“1/1”純合突變型或數(shù)字編碼“3”。以油茶種質(zhì)YY11為例,其兩個(gè)重復(fù)樣本YY11A和YY11B的基因型可以轉(zhuǎn)化為15位數(shù)字編碼“132 131 321 111 123”,以此類推,其他種質(zhì)均有其特有的15位數(shù)字編碼的基因型,可以將12份油茶無性系種質(zhì)區(qū)分開來。
3 討論與結(jié)論
3.1 討 論
相較于隨機(jī)擴(kuò)增多態(tài)性DNA(Random amplified polymorphismic DNA,RAPD)、擴(kuò)增片段長度多態(tài)性(Amplified fragment length polymorphism,AFLP)、相關(guān)序列擴(kuò)增多態(tài)性(Sequence-related amplified polymorphism,SRAP)、簡單重復(fù)序列(Simple sequence repeats,SSR)、簡單序列重復(fù)區(qū)間(Intersimple sequence repeat,ISSR)等傳統(tǒng)分子標(biāo)記,SNP標(biāo)記具有數(shù)量多、分布廣泛、穩(wěn)定性高、重復(fù)性好、準(zhǔn)確度高等優(yōu)點(diǎn)[24]。目前SNP位點(diǎn)的篩選和SNP分子標(biāo)記的開發(fā)技術(shù)越來越成熟,已經(jīng)應(yīng)用于多個(gè)物種的鑒定中,具有良好的應(yīng)用前景[25]。劉粉粉等[26]利用雙酶切基因分型測(cè)序(Doubledigest genotyping by sequencing,ddGBS)技術(shù)有效地挖掘出46份黑楊派楊樹的SNP位點(diǎn),為楊樹種質(zhì)的指紋圖譜構(gòu)建等研究奠定基礎(chǔ);趙仁欣等[27]利用SNP標(biāo)記構(gòu)建了冬油菜品種的DNA指紋數(shù)據(jù)庫,進(jìn)而提供了鑒定油菜品種的新方法;朱國忠等[28]通過篩選適合對(duì)326份陸地棉種質(zhì)繪制指紋圖譜的SNP位點(diǎn),以便實(shí)現(xiàn)品種快速鑒定;樊曉靜等[29]基于103份茶樹種質(zhì),挖掘出1 786個(gè)SNP標(biāo)記位點(diǎn),從中篩選出24個(gè)SNP位點(diǎn)用于鑒定茶樹種質(zhì),使103份茶樹獲得唯一的分子身份證。
為了油茶種質(zhì)資源的鑒定和育種,歷年來已進(jìn)行多種分子標(biāo)記的開發(fā)研究,但受限于基因組學(xué)研究的滯后,研究者們主要采用的是傳統(tǒng)的分子標(biāo)記[30]。周莉君等[31]基于SRAP標(biāo)記對(duì)野生油茶的遺傳多樣進(jìn)行了研究;嚴(yán)和琴等[32]采用SRAP標(biāo)記對(duì)25份海南油茶進(jìn)行遺傳多樣性分析,并將這25份油茶分為3類。閆蕊等[33]利用RNAseq技術(shù)挖掘出48對(duì)有多態(tài)性的SSR分子標(biāo)記引物;宋家明等[34]利用轉(zhuǎn)錄組學(xué)技術(shù)從海南油茶中得到16對(duì)多態(tài)性好、擴(kuò)增效果好的SSR分子標(biāo)記引物;姜德志等[35]利用ISSR分子標(biāo)記對(duì)109份油茶種質(zhì)構(gòu)建進(jìn)化樹并劃分類群。溫強(qiáng)等[36]利用ISSR分子標(biāo)記,在25個(gè)油茶高產(chǎn)無性系中,篩選出9條多態(tài)性引物,建立了DNA指紋庫,為油茶新品種保護(hù)和育種提供了分子依據(jù);劉凱等[37]采用ISSR分子標(biāo)記技術(shù),對(duì)10個(gè)岑軟系列優(yōu)良無性系進(jìn)行分子鑒別,篩選出10條多態(tài)性引物,并建立了ISSR鑒定識(shí)別卡,可將10個(gè)優(yōu)良的油茶無性系分為2類。
雖然SNP標(biāo)記具有靈敏度高、準(zhǔn)確性高、重復(fù)性好等優(yōu)勢(shì),但SNP標(biāo)記的開發(fā)非常依賴高質(zhì)量的參考基因組。劉凱等[38-39]利用特異性位點(diǎn)擴(kuò)增片段測(cè)序(Specific-locus amplified fragment sequencing,SLAF-seq)技術(shù)分別對(duì)油茶種質(zhì)和金花茶種質(zhì)進(jìn)行了SNP標(biāo)記開發(fā)和分類鑒定,但其所使用的非山茶屬物種獼猴桃Actinidia chinensis的全基因組序列作為參考,序列覆蓋深度相對(duì)不夠充分,SNP位點(diǎn)篩選力度有限。近一年來,油茶物種的全基因組測(cè)序取得了顯著的進(jìn)展,中國林業(yè)科學(xué)研究院[14]率先完成了第一個(gè)油茶物種—二倍體南榮油茶的全基因組測(cè)序。江西省林業(yè)科學(xué)院和中南林業(yè)科技大學(xué)也相繼發(fā)布了二倍體浙江紅花油茶C. chekiangoleosa和二倍體狹葉油茶C. lanceoleosa的全基因組參考序列[40-41]。本研究正是以南榮油茶的基因組序列為參考,對(duì)12個(gè)油茶無性系種質(zhì)進(jìn)行SNP標(biāo)記的開發(fā)與指紋圖譜的構(gòu)建,最終篩選出15個(gè)SNP標(biāo)記位點(diǎn)組合,并繪制了各自的指紋圖譜,可以將這12種油茶種質(zhì)完全區(qū)分,對(duì)油茶種質(zhì)的鑒定和規(guī)范油茶苗木市場具有重要的指導(dǎo)意義。
同時(shí),值得注意的是,目前我國廣泛栽培的普通油茶和具有廣西特色的優(yōu)勢(shì)物種香花油茶C. osmantha等均為多倍體,相比二倍體油茶具有更大且結(jié)構(gòu)更復(fù)雜的基因組[30,42-43]。本研究雖然以近緣的二倍體南榮油茶基因組為參考,篩選到多個(gè)SNP位點(diǎn),但存在大量未覆蓋的基因信息,亟需本物種更優(yōu)質(zhì)的參考基因組。隨著基因組學(xué)技術(shù)的革新和測(cè)序成本的不斷降低,普通油茶和香花油茶等主要油茶栽培種的全基因組測(cè)序工作正在展開,將為后續(xù)SNP標(biāo)記開發(fā)和油茶分子育種提供更高質(zhì)量的信息支持。在獲得更高質(zhì)量的參考基因組后,本研究團(tuán)隊(duì)將在當(dāng)前的研究工作基礎(chǔ)上,通過重測(cè)序和基因組關(guān)聯(lián)分析等技術(shù),以廣西特色油茶種質(zhì)資源為材料,繪制更詳細(xì)精準(zhǔn)的指紋圖譜,解析油茶經(jīng)濟(jì)性狀相關(guān)的關(guān)鍵基因和調(diào)控機(jī)制,為廣西油茶育種提供理論指導(dǎo)和技術(shù)引領(lǐng),助力油茶產(chǎn)業(yè)可持續(xù)發(fā)展。
3.2 結(jié) 論
本研究基于簡化基因組,對(duì)12個(gè)油茶無性系種質(zhì)共24份標(biāo)準(zhǔn)樣本進(jìn)行測(cè)序,獲得的測(cè)序結(jié)果,Q20為93.55%~96.38%,Q30為88.70%~92.84%,數(shù)據(jù)質(zhì)量良好,可用于SNP分子標(biāo)記位點(diǎn)的開發(fā),經(jīng)過測(cè)序結(jié)果與參考基因組比對(duì)篩選,共獲得622 064個(gè)為SNP標(biāo)記位點(diǎn),篩選出無基因型缺失的SNP位點(diǎn)共40 147個(gè),這些SNP變異位點(diǎn)次等位基因頻率(MAF)平均值為0.129,雜合率(Ho)平均值為0.080 8,期望雜合率(He)平均值為0.209 69,SNP標(biāo)記多態(tài)性信息含量(PIC)平均值為0.182 9。SNP標(biāo)記多態(tài)性信息含量(PIC)大于0.35,SNP位點(diǎn)前后60 bp堿基保守?zé)o變異的 SNP位點(diǎn)共184個(gè),最終篩選出15個(gè)核心SNP標(biāo)記位點(diǎn)組合,序列保守性良好,多態(tài)性信息含量高,以此繪制出12個(gè)油茶無性系種質(zhì)的SNP指紋圖譜,可將這12個(gè)油茶種質(zhì)完全區(qū)分開。本研究對(duì)廣西主要油茶栽培種質(zhì)的SNP標(biāo)記開發(fā),將為油茶種質(zhì)的快速鑒定提供重要技術(shù)參考,對(duì)規(guī)范油茶苗木市場,促進(jìn)油茶產(chǎn)業(yè)健康發(fā)展具有重要指導(dǎo)意義。
參考文獻(xiàn):
[1] 劉進(jìn)平,周揚(yáng),胡海燕,等.熱帶油茶種質(zhì)資源綜述[J].熱帶林業(yè),2022,50(4):70-76. LIU J P, ZHOU Y, HU H Y, et al. Germplasm resources of Camellia sp. in tropical area of China[J]. Tropical Forestry, 2022,50(4):70-76.
[2] 孔慶博,向婷婷,鄺雪琨,等.我國西南和東部地區(qū)野生油茶及其近緣物種資源調(diào)查、收集與保護(hù)[J].植物科學(xué)學(xué)報(bào), 2022,40(5):646-656. KONG Q B, XIANG T T, KUANG X K, et al. Survey, collection, and conservation of wild Camellia oleifera Abel. and related species in southwest and east China[J]. Plant Science Journal, 2022,40(5):646-656.
[3] GONG W F, SONG Q L, JI K, et al. Full-length transcriptome from Camellia oleifera seed provides insight into the transcript variants involved in oil biosynthesis[J]. Journal of Agricultural and Food Chemistry,2020,68(49):14670-14683.
[4] LIN P, YIN H F, YAN C, et al. Association genetics identifies single nucleotide polymorphisms related to kernel oil content and quality in Camellia oleifera[J]. Journal of Agricultural and Food Chemistry,2019,67(9):2547-2562.
[5] LUAN F, ZENG J S, YANG Y, et al. Recent advances in Camellia oleifera Abel: a review of nutritional constituents, biofunctional properties, and potential industrial applications[J]. Journal of Functional Foods,2020,75(1):104242.
[6] 陳永忠.我國油茶科技進(jìn)展與未來核心技術(shù)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(7):1-22. CHEN Y Z. Scientific and technological progress and future core technologies of oil tea Camellia in China[J]. Journal of Central South University of Forestry Technology,2023,43(7):1-22.
[7] YANG S, GILL R A, ZAMAN Q U, et al. Insights on SNP types, detection methods and their utilization in Brassica species: recent progress and future perspectives[J]. Journal of Biotechnology,2020,324:11-20.
[8] 李志遠(yuǎn),于海龍,方智遠(yuǎn),等.甘藍(lán)SNP標(biāo)記開發(fā)及主要品種的DNA指紋圖譜構(gòu)建[J].中國農(nóng)業(yè)科學(xué),2018,51(14):2771-2788.LI Z Y, YU H L, FANG Z Y, et al. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties[J]. Scientia Agricultura Sinica,2018,51(14):2771-2788.
[9] 魏慶鎮(zhèn),王五宏,胡天華,等.浙茄類型茄子品種DNA指紋圖譜構(gòu)建[J].浙江農(nóng)業(yè)學(xué)報(bào),2019,31(11):1863-1870. WEI Q Z, WANG W H, HU T H, et al. Construction of DNA fingerprinting of Zhejiang eggplant varieties[J]. Acta Agriculturae Zhejiangensis,2019,31(11):1863-1870.
[10] 劉彬,趙雨露,楊鑫雷,等.251份藜麥種質(zhì)資源遺傳多樣性及分子身份證構(gòu)建[J].植物遺傳資源學(xué)報(bào),2022,23(3):706-721. LIU B, ZHAO Y L, YANG X L, et al. Genetic diversity of 251 germplasm accessions and construction of molecular ID in Quinoa (Chenopodium quinoa Willd.)[J]. Journal of Plant Genetic Resources,2022,23(3):706-721.
[11] 朱申龍,牛二利,王偉,等.油橄欖(Olea europaea L.)核心SNP位點(diǎn)篩選與評(píng)價(jià)[J].分子植物育種,2020,18(5):1548-1557. ZHU S L, NIU E L, WANG W, et al. Identification and evaluation of SNP core loci for olive germplasm (Olea europaea L.)[J]. Molecular Plant Breeding,2020,18(5):1548-1557.
[12] 郭萌萌,周延清,段紅英,等.基于地黃轉(zhuǎn)錄組數(shù)據(jù)的SNP標(biāo)記開發(fā)與地黃指紋圖譜構(gòu)建[J].生物技術(shù)通報(bào),2019,35(11): 224-230. GUO M M, ZHOU Y Q, DUAN H Y, et al. Development of SNP marker based on the Rehmannia glutinosa transcriptome database and construction of DNA fingerprint in Rehmannia[J]. Biotechnology Bulletin,2019,35(11):224-230.
[13] PETERSON B K, WEBER J N, KAY E H, et al. Double digest RADseq: an inexpensive method for de novo snp discovery and genotyping in model and non-model species[J]. PLoS ONE, 2012,7(5):e37135.
[14] LIN P, WANG K L, WANG Y P, et al. The genome of oilCamellia and population genomics analysis provide insights into seed oil domestication[J]. Genome Biology,2022,23(1):14.
[15] MARTIN M. Cutadapt removes adapter sequences from highthroughput sequencing reads[J]. Embnet Journal,2011,17(1): 10-12.
[16] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014,30(15):2114-2120.
[17] LI H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J]. arXiv,2013,3:1-3.
[18] MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data[J]. Genome Research, 2010,20(9):1297-1303.
[19] PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics,2007,81(3): 559-575.
[20] WANG K, LI M Y, HAKONARSON H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Research,2010,38(16):e164.
[21] PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155(2):945-959.
[22] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.
[23] LIN Y, YU W T, ZHOU L, et al. Genetic diversity of oolong tea(Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers[J]. Tree Genetics Genomes,2020,16(1):3-14.
[24] 李建安,韓志強(qiáng).經(jīng)濟(jì)林遺傳改良與品種創(chuàng)制研究進(jìn)展[J].經(jīng)濟(jì)林研究,2023,41(1):1-13. LI J A, HAN Z Q. Advances in genetic improvement of important traits and variety innovation of non-wood forest[J]. Non-wood Forest Research,2023,41(1):1-13.
[25] 王富強(qiáng),樊秀彩,張穎,等.SNP分子標(biāo)記在作物品種鑒定中的應(yīng)用和展望[J].植物遺傳資源學(xué)報(bào),2020,21(5):1308-1320. WANG F Q, FAN X C, ZHANG Y, et al. Application and prospect of SNP molecular markers in crop variety identification[J]. Journal of Plant Genetic Resources,2020,21(5):1308-1320.
[26] 劉粉粉,姜小龍,翁文源,等.基于ddGBS的黑楊派楊樹SNP位點(diǎn)挖掘[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2022,42(7):178-185. LIU F F, JIANG X L, WEN W Y, et al. Development of SNP markers in section Aigeiros poplar based on ddGBS technology[J]. Journal of Central South University of Forestry Technology, 2022,42(7):178-185.
[27] 趙仁欣,李森業(yè),郭瑞星,等.利用SNP芯片構(gòu)建我國冬油菜參試品種DNA指紋圖譜[J].作物學(xué)報(bào),2018,44(7):956-965. ZHAO R X, LI S Y, GUO R X, et al. Construction of DNA fingerprinting for Brassica napus varieties based on SNP chip[J]. Acta Agronomica Sinica,2018,44(7):956-965.
[28] 朱國忠,張芳,付潔,等.適于陸地棉品種身份鑒定的SNP核心位點(diǎn)篩選與評(píng)價(jià)[J].作物學(xué)報(bào),2018,44(11):1631-1639. ZHU G Z, ZHANG F, FU J, et al. Genome-wide screening and evaluation of SNP core loci for identification of upland cotton varieties[J]. Acta Agronomica Sinica,2018,44(11):1631-1639.
[29] 樊曉靜,于文濤,蔡春平,等.利用SNP標(biāo)記構(gòu)建茶樹品種資源分子身份證[J].中國農(nóng)業(yè)科學(xué),2021,54(8):1751-1772. FAN X J, YU W T, CAI C P, et al. Construction of molecular ID for tea cultivars by using of single nucleotide polymorphism(SNP) markers[J]. Scientia Agricultura Sinica,2021,54(8): 1751-1772.
[30] 譚曉風(fēng).油茶分子育種研究進(jìn)展[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2023,43(1):1-24. TAN X F. Advances in the molecular breeding of Camellia oleifera[J]. Journal of Central South University of Forestry Technology,2023,43(1):1-24.
[31] 周莉君,考安都,劉靜,等.基于SRAP標(biāo)記的野生油茶種質(zhì)遺傳多樣性分析[J].分子植物育種,2017,15(10):4242-4247. ZHOU L J, KAO A D, LIU J, et al. Genetic diversity analysis of wild Camellia’s germplasm resources based on SRAP markers[J]. Molecular Plant Breeding,2017,15(10):4242-4247.
[32] 嚴(yán)和琴,鄭蔚,代佳妮,等.基于SRAP分子標(biāo)記的海南油茶品種遺傳多樣性分析[J].分子植物育種,2022,20(6):1901-1908. YAN H Q, ZHENG W, DAI J N, et al. Genetic diversity of Camellia oleifera varieties in Hainan based on SRAP markers[J]. Molecular Plant Breeding,2022,20(6):1901-1908.
[33] 閆蕊,阮成江,杜維,等. RNA-seq技術(shù)開發(fā)油茶目的基因SSR標(biāo)記[J].分子植物育種,2018,16(8):2540-2548. YAN R, RUAN C J, DU W, et al. Development of SSR markers for target-genes derived from Camellia oleifera by RNA-seq technology[J]. Molecular Plant Breeding,2018,16(8):2540-2548.
[34] 宋家明,李欣窈,張?jiān)娀?,?基于轉(zhuǎn)錄組數(shù)據(jù)的海南油茶SSR分子標(biāo)記的開發(fā)與評(píng)價(jià)[J].分子植物育種,2022,20(20): 6791-6801. SONG J M, LI X Y, ZHANG S H, et al. Development and evaluation of SSR markers based on transcriptome sequencing of Camellia in Hainan province[J]. Molecular Plant Breeding, 2022,20(20):6791-6801.
[35] 姜德志,方應(yīng)有,肖賢,等.基于ISSR標(biāo)記的油茶種質(zhì)資源遺傳基礎(chǔ)分析[J].湖北農(nóng)業(yè)科學(xué),2018,57(2):119-125. JIANG D Z, FANG Y Y, XIAO X, et al. Identifying Camellia oleifera germplasm accessions with inter simple sequence repeat markers[J]. Hubei Agricultural Sciences,2018,57(2):119-125.
[36] 溫強(qiáng),雷小林,葉金山,等.油茶高產(chǎn)無性系的ISSR分子鑒別[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2008,28(1):39-43. WEN Q, LEI X L, YE J S, et al. Identification of Camellia oleifera superior clones by ISSR molecular markers [J]. Journal of Central South University of Forestry Technology,2008,28(1): 39-43.
[37] 劉凱,張乃燕,王東雪,等.油茶岑軟系列優(yōu)良無性系的 ISSR分子鑒別及遺傳分析[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2016, 36(10):22-26. LIU K, ZHANG N Y, WANG D X, et al. Identification and genetic analysis of Camellia oleifera ‘Cenruan’ series superior clones by ISSR molecular marker[J]. Journal of Central South University of Forestry Technology,2016,36(10):22-26.
[38] 劉凱,王東雪,江澤鵬,等.基于SLAF-seq技術(shù)的油茶SNP位點(diǎn)開發(fā)及雜交后代早期鑒定[J].廣西林業(yè)科學(xué),2018, 47(1):13-17. LIU K, WANG D X, JIANG Z P, et al. Development of SNP markers of Camellia oleifera based on SLAF-seq and early identification of hybrids[J]. Guangxi Forestry Science,2018,47(1): 13-17.
[39] 劉凱,李開祥,韋曉娟,等.基于SLAF-seq技術(shù)的金花茶SNP標(biāo)記開發(fā)及遺傳分析[J].經(jīng)濟(jì)林研究,2019,37(3):79-83. LIU K, LI K X, WEI X J, et al. Development and genetic analysis on SNP sites from Camellia nitidssima based on SLAFseq technology[J]. Non-wood Forest Research,2019,37(3):79-83.
[40] SHEN T F, HUANG B, XU M, et al. The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis[J]. Horticulture Research, 2022,9:uhab083.
[41] GONG W F, XIAO S X, WANG L K, et al. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility[J]. The Plant Journal,2022,110(3):881-898.
[42] 吳方圓,蔡婭,郝丙青,等.流式細(xì)胞儀檢測(cè)香花油茶、越南油茶基因組大小方法的建立及應(yīng)用[J].熱帶作物學(xué)報(bào),2023, 44(8):1542-1550. WU F Y, CAI Y, HAO B Q, et al. Establishment of a flow cytometry method for genome size determination of Camellia osmantha and Camellia vietnamensis and its application[J]. Chinese Journal of Tropical Crops,2023,44(8):1542-1550.
[43] 張坤昌,廖柏勇,黃潤生,等.高州油茶雜交F1代群體構(gòu)建及遺傳評(píng)估Ⅱ[J].經(jīng)濟(jì)林研究,2023,41(3):91-105. ZHANG K C, LIAO B Y, HUANG R S, et al. Populations construction and genetic evaluation of hybrid F1 generation of Camellia gauchowensis ChangⅡ[J]. Non-wood Forest Research, 2023,41(3):91-105.
[本文編校:羅 列]