摘 "要 "采用靜息態(tài)磁共振數(shù)據(jù)結(jié)合機(jī)器學(xué)習(xí)方法在87名9~12歲兒童中探究挑食行為的神經(jīng)關(guān)聯(lián), 并檢驗(yàn)其在工具性喂養(yǎng)和挑食行為之間的中介作用。結(jié)果發(fā)現(xiàn)兒童挑食行為與右側(cè)尾狀核的局部一致性正相關(guān)。功能連接結(jié)果表明兒童挑食行為與右側(cè)尾狀核?左側(cè)殼核功能連接正相關(guān)。預(yù)測(cè)分析結(jié)果顯示上述神經(jīng)發(fā)現(xiàn)能夠較好的預(yù)測(cè)兒童挑食行為, 驗(yàn)證了神經(jīng)結(jié)果的穩(wěn)定性。這表明涉及感覺(jué)信息編碼和獎(jiǎng)賞加工的尾狀核和殼核可能在兒童挑食行為的個(gè)體差異中起著關(guān)鍵作用。中介模型進(jìn)一步顯示, 工具性喂養(yǎng)能夠通過(guò)右側(cè)尾狀核?左側(cè)殼核功能連接負(fù)向影響兒童挑食行為。研究提供了兒童挑食行為穩(wěn)健的神經(jīng)基礎(chǔ)證據(jù), 并且為從父母喂養(yǎng)方式入手干預(yù)改善兒童不良的挑食行為提供理論參考。
關(guān)鍵詞 "挑食行為, 工具性喂養(yǎng), 兒童, 靜息態(tài)磁共振
分類號(hào) "B845
1 "引言
挑食行為是兒童普遍存在的飲食問(wèn)題(Chilman et al., 2023; Wolstenholme et al., 2020), 調(diào)查發(fā)現(xiàn)在7~12歲中國(guó)兒童中, 59%的兒童存在不同程度的挑食行為(Xue et al., 2015)。挑食行為是指兒童由于拒絕大量食物而導(dǎo)致攝入的食物種類不足(Dovey et al., 2008; Taylor amp; Emmett, 2019), 表現(xiàn)為不愿意吃某類熟悉的食物或拒絕嘗試新的食物(Taylor et al., 2015)。挑食行為是喂養(yǎng)困難譜系中一種常見(jiàn)的飲食問(wèn)題(McCormick amp; Markowitz, 2013), 會(huì)導(dǎo)致兒童總體食物攝入量減少(Pereboom et al., 2023), 飲食缺乏多樣性還會(huì)導(dǎo)致?tīng)I(yíng)養(yǎng)成分缺失(Northstone amp; Emmett, 2013)。長(zhǎng)此以往, 挑食行為會(huì)發(fā)展出飲食失調(diào)等問(wèn)題(Machado et al., 2021), 增加肥胖發(fā)生和生長(zhǎng)不良的風(fēng)險(xiǎn)(Demir amp; Bektas, 2017; Kutbi, 2021)。因此, 兒童挑食行為的研究具有現(xiàn)實(shí)意義, 對(duì)改善兒童的不良飲食習(xí)慣促進(jìn)兒童健康成長(zhǎng)有重要的參考價(jià)值。
兒童挑食行為的影響因素模型指出社會(huì)環(huán)境因素和認(rèn)知因素是調(diào)節(jié)兒童挑食行為的關(guān)鍵因素(Lafraire et al., 2016)。在社會(huì)環(huán)境因素方面, 早期喂養(yǎng)方式被認(rèn)為是兒童挑食行為最重要的“塑造者” (Brown et al., 2022; Harris et al., 2016; Taylor amp; Emmett, 2019)。已有研究關(guān)注父母用食物作為非營(yíng)養(yǎng)補(bǔ)充目的的喂養(yǎng)行為, 比如將食物作為獎(jiǎng)勵(lì)來(lái)促進(jìn)或鞏固好的行為和表現(xiàn)(Lo et al., 2016; Morrison et al., 2013), 這種喂養(yǎng)方式被稱為工具性喂養(yǎng)(Instrumental Feeding; Mason, 2015; Nembhwani amp; Winnier, 2020)。研究表明工具性喂養(yǎng)是非反應(yīng)性喂養(yǎng)方式的一種, 它干擾了兒童正確識(shí)別饑餓信號(hào)和調(diào)節(jié)食欲的能力(Byrne et al., 2017; Harris et al., 2018), 通常與不良的飲食和行為后果相關(guān)(Daniels, 2019)。以往研究表明工具性喂養(yǎng)與兒童挑食行為的增加有關(guān), 即父母使用食物作為獎(jiǎng)勵(lì)的頻率越高, 兒童的挑食水平越高(Finnane et al., 2017; Maximino et al., 2021)。例如, 縱向研究發(fā)現(xiàn)父母在兒童4歲時(shí)采用工具性喂養(yǎng)能夠預(yù)測(cè)5年后挑食行為的增加(Jansen et al., 2020)。Mallan等人(2018)發(fā)現(xiàn)2歲挑食兒童的父母傾向于采用工具性喂養(yǎng)的方式鼓勵(lì)他們吃不太喜歡的食物, 但工具性喂養(yǎng)卻預(yù)測(cè)了一年后更多的挑食行為。由此可見(jiàn), 工具性喂養(yǎng)似乎是一種不利于兒童成長(zhǎng)的喂養(yǎng)方式, 會(huì)增加或?qū)е聝和奶羰承袨椤?/p>
除了家庭環(huán)境因素以外, 兒童的大腦發(fā)育也會(huì)對(duì)其一系列行為產(chǎn)生影響(Plassmann et al., 2022)。挑食行為是一種可遺傳的飲食行為特質(zhì)(Fildes et al., 2016; Smith et al., 2017), 非穩(wěn)態(tài)進(jìn)食行為通過(guò)復(fù)雜的神經(jīng)系統(tǒng)調(diào)控(Berthoud amp; Levin, 2012)。兒童時(shí)期是大腦神經(jīng)發(fā)育的關(guān)鍵階段(Fan et al., 2023; Modabbernia et al., 2021), 因此探索挑食行為的神經(jīng)關(guān)聯(lián)對(duì)于理解和預(yù)防兒童挑食行為至關(guān)重要。兒童挑食行為的影響因素模型首次強(qiáng)調(diào)認(rèn)知因素對(duì)挑食行為的影響, 包括對(duì)食物的感知機(jī)制、內(nèi)部表征和分類系統(tǒng)以及情緒加工(Lafraire et al., 2016)。目前僅一篇研究探索8~13歲兒童挑食行為和大腦靜息態(tài)功能連接之間的關(guān)系, 該研究選定伏隔核、下頂葉和額極分別作為獎(jiǎng)賞加工、反應(yīng)抑制和沖動(dòng)性相關(guān)腦區(qū), 結(jié)果發(fā)現(xiàn)沖動(dòng)性功能連接(額極?伏隔核功能連接)及其與反應(yīng)抑制功能連接(下頂葉?伏隔核功能連接)的差異與挑食行為負(fù)相關(guān), 這表明兒童挑食行為與獎(jiǎng)賞、控制和沖動(dòng)性相關(guān)腦區(qū)之間的功能連通性失衡有關(guān)(Chodkowski et al., 2016)。食物恐新是挑食行為的一個(gè)方面(Dovey et al., 2008), 研究發(fā)現(xiàn)當(dāng)觀看不熟悉的食物刺激時(shí), 高低食物恐新組在楔前葉、尾狀核和殼核處的激活存在差異(Wolfe et al., 2015)。尾狀核、殼核和伏隔核是獎(jiǎng)賞環(huán)路的關(guān)鍵節(jié)點(diǎn)(Li, Hu et al., 2023), 參與調(diào)控對(duì)食物的“喜歡”和“想要”, 決定了對(duì)食物的趨近或遠(yuǎn)離(Campos et al., 2022; Jiang et al., 2015; Morales amp; Berridge, 2020)。以往研究發(fā)現(xiàn)尾狀核、殼核和伏隔核負(fù)責(zé)編碼食物的主觀獎(jiǎng)賞價(jià)值, 參與形成對(duì)食物的主觀偏好(Hommer et al., 2013; Luo amp; Han, 2023; Terenzi et al., 2022; van den Bosch et al., 2014), 而且在厭惡動(dòng)機(jī)驅(qū)動(dòng)的行為中也發(fā)揮作用(Royet et al., 2016), 這與挑食行為的內(nèi)涵相似。此外, 尾狀核也參與感覺(jué)信息加工(Yuan et al., 2022), 有研究表明楔前葉和尾狀核是感覺(jué)加工敏感性的神經(jīng)基礎(chǔ)(Acevedo et al., 2018, 2021; Greven et al., 2019)。與之對(duì)應(yīng)地, 自閉癥兒童普遍存在挑食行為被認(rèn)為與其感官體驗(yàn)極其敏感相關(guān)(Klockars et al., 2021; Nimbley et al., 2022), 體現(xiàn)在對(duì)食物線索的味道和質(zhì)地反應(yīng)增強(qiáng)(Avery et al., 2018)。綜上, 兒童挑食行為可能主要與參與感覺(jué)加工敏感性以及獎(jiǎng)賞加工相關(guān)腦區(qū)的神經(jīng)活動(dòng)相關(guān)。
兒童時(shí)期的神經(jīng)可塑性使得腦發(fā)育容易受到養(yǎng)育模式等家庭環(huán)境因素的影響(Tooley et al., 2021), 例如喂養(yǎng)環(huán)境和策略充當(dāng)著外部刺激影響兒童的大腦認(rèn)知發(fā)育(Liu amp; Chang, 2023)。那么通過(guò)呈現(xiàn)獎(jiǎng)賞食物鼓勵(lì)兒童良好表現(xiàn)的工具性喂養(yǎng)可能影響兒童某認(rèn)知功能相關(guān)腦區(qū)的發(fā)育。根據(jù)獎(jiǎng)賞習(xí)慣化理論, 習(xí)慣化的過(guò)程是最初對(duì)某種刺激的敏感性增加, 在刺激反復(fù)出現(xiàn)后對(duì)其敏感性降低的過(guò)程, 并且會(huì)將興趣轉(zhuǎn)向新的刺激(Benson amp; Raynor, 2014; Epstein et al., 2008)。同樣有觀點(diǎn)認(rèn)為反復(fù)接觸食物可能會(huì)導(dǎo)致感官特定的飽足感(Rolls et al., 1986; Temple et al., 2008), 長(zhǎng)時(shí)間接觸少量不變的食物會(huì)產(chǎn)生感官疲勞而導(dǎo)致食物偏好降低(Houston-Price et al., 2009; Lafraire et al., 2016)。因此, 工具性喂養(yǎng)可能會(huì)影響兒童與感覺(jué)和獎(jiǎng)賞加工相關(guān)腦區(qū)的發(fā)育, 頻繁呈現(xiàn)食物獎(jiǎng)勵(lì)可能導(dǎo)致兒童感覺(jué)和獎(jiǎng)賞腦區(qū)反應(yīng)疲勞。
調(diào)查發(fā)現(xiàn)7~12歲兒童挑食行為的流行性高達(dá)59% (Xue et al., 2015), 學(xué)齡兒童仍然普遍存在挑食行為(Chao amp; Chang, 2017; Diamantis et al., 2023; Zhang et al., 2021)。已有研究探討工具性喂養(yǎng)和挑食行為的關(guān)系大多都是在年齡較低的兒童樣本中進(jìn)行, 并且認(rèn)為工具性喂養(yǎng)可能會(huì)增加對(duì)獎(jiǎng)勵(lì)食物的偏好, 同時(shí)對(duì)想要促進(jìn)的食物的偏好降低而加劇挑食行為(Byrne et al., 2017; Harris et al., 2018)。但是沒(méi)有研究驗(yàn)證過(guò)在父母采用食物作為獎(jiǎng)勵(lì)后兒童心理過(guò)程的變化是否與猜測(cè)一致。根據(jù)前文綜述, 挑食行為與兒童的感知覺(jué)加工等認(rèn)知發(fā)展有關(guān)(Lafraire et al., 2016), 因此隨著年齡增長(zhǎng), 兒童的大腦發(fā)育使得認(rèn)知能力不斷發(fā)展, 那么是否會(huì)因?yàn)檎J(rèn)知變化而導(dǎo)致對(duì)食物的看法以及對(duì)父母喂養(yǎng)策略的反饋發(fā)生改變?;诖耍?有必要在學(xué)齡兒童中驗(yàn)證工具性喂養(yǎng)與挑食行為的關(guān)系, 并且本研究認(rèn)為在學(xué)齡兒童中二者的關(guān)聯(lián)可能與以往研究的發(fā)現(xiàn)不同。同時(shí), 研究結(jié)合靜息態(tài)磁共振數(shù)據(jù), 試圖從神經(jīng)功能的角度解釋工具性喂養(yǎng)影響挑食行為潛在的心理加工過(guò)程。從研究方法來(lái)說(shuō), 目前唯一一篇探究挑食行為靜息態(tài)神經(jīng)基礎(chǔ)的研究(Chodkowski et al., 2016)采用的興趣區(qū)到興趣區(qū)的功能連接分析存在一定的局限性。由于目前尚無(wú)其他研究對(duì)兒童挑食行為的神經(jīng)基礎(chǔ)進(jìn)行探索, 選定的興趣區(qū)在前人研究中并未發(fā)現(xiàn)與挑食行為直接相關(guān), 因此這種先驗(yàn)性假設(shè)興趣區(qū)的分析方式其背后的研究依據(jù)并不充足。在兒童挑食行為研究領(lǐng)域尚無(wú)充足的神經(jīng)方面的實(shí)證證據(jù)的情況下, 全腦層面的探索式分析更為合適。
靜息態(tài)功能磁共振成像(Resting-state functional magnetic resonance imaging, RS-fMRI)是一種獨(dú)立于實(shí)驗(yàn)任務(wù), 反映大腦自發(fā)神經(jīng)活動(dòng)特征的影像學(xué)測(cè)量技術(shù), 可以檢測(cè)在放松狀態(tài)下大腦內(nèi)在的功能活動(dòng)模式(Raichle et al., 2001; Zou et al., 2009; Zuo et al., 2010)。靜息狀態(tài)下大腦活動(dòng)消耗總能量的95%, 而任務(wù)誘發(fā)的活動(dòng)只占用大腦0.5%~1.0%的總能量(Fox amp; Raichle, 2007), 因此RS-fMRI被認(rèn)為是識(shí)別飲食行為的神經(jīng)關(guān)聯(lián)很有前景的研究方法(Chen et al., 2021; Dong et al., 2014)。飲食行為由多個(gè)腦區(qū)共同參與調(diào)控, 因此探索大腦的功能連接模式是揭示挑食行為神經(jīng)關(guān)聯(lián)的關(guān)鍵手段。靜息態(tài)功能連接(Resting-state functional connectivity, RSFC)反映了靜息狀態(tài)下大腦不同區(qū)域間的信息交流(Fox et al., 2007)。為了實(shí)現(xiàn)探索性分析的目的, 本研究采用基于種子點(diǎn)的功能連接分析方式從體素水平上探索挑食行為的神經(jīng)關(guān)聯(lián)(Lee et al., 2013; Yang et al., 2020)。而在選取種子點(diǎn)時(shí)由于尚無(wú)充足的神經(jīng)證據(jù), 因此首先探究挑食行為相關(guān)聯(lián)的局部神經(jīng)活動(dòng)特征, 并以此與全腦其他體素進(jìn)行功能連接分析, 探究挑食行為是否涉及到不同腦區(qū)間的功能協(xié)同。局部一致性(Regional homogeneity, ReHo)是衡量相鄰體素間自發(fā)活動(dòng)同步性程度的指標(biāo), 反映了神經(jīng)活動(dòng)的區(qū)域功能信息整合(Paakki et al., 2010; Zang et al., 2004), 是揭示飲食行為神經(jīng)關(guān)聯(lián)可靠的靜息態(tài)指標(biāo)(Dong et al., 2015; Gao et al., 2018)。因此, 本研究以ReHo和RSFC作為反映大腦自發(fā)神經(jīng)活動(dòng)的指標(biāo), ReHo與RSFC結(jié)合使用被認(rèn)為是從單變量水平(區(qū)域內(nèi)功能同步)和多變量水平(區(qū)域間遠(yuǎn)程功能連通)兩個(gè)角度識(shí)別飲食行為內(nèi)在神經(jīng)連接的有效方式(Gao et al., 2018; Wang et al., 2023)。此外, 本研究采用一種機(jī)器學(xué)習(xí)方法測(cè)試腦與挑食行為關(guān)聯(lián)的穩(wěn)定性(Chen et al., 2022)。
綜上, 本研究將采用全腦探索性的相關(guān)分析結(jié)合機(jī)器學(xué)習(xí)方法探究?jī)和羰承袨榈撵o息態(tài)神經(jīng)關(guān)聯(lián), 提供兒童挑食行為的穩(wěn)健神經(jīng)生物學(xué)基礎(chǔ), 從神經(jīng)功能的角度驗(yàn)證并擴(kuò)展兒童挑食行為的影響因素模型。我們初步假設(shè)兒童挑食行為主要與感覺(jué)敏感性加工和獎(jiǎng)賞加工相關(guān)腦區(qū)的活動(dòng)和功能連接有關(guān), 如楔前葉、尾狀核和殼核等(假設(shè)1)。此外, 本研究不僅驗(yàn)證工具性喂養(yǎng)與兒童挑食行為的關(guān)系, 并打算進(jìn)一步從靜息態(tài)功能活動(dòng)的角度提供神經(jīng)證據(jù)解釋二者之間的作用機(jī)制, 即建立工具性喂養(yǎng)—靜息態(tài)神經(jīng)表現(xiàn)—挑食行為中介模型。工具性喂養(yǎng)可能與兒童感覺(jué)和獎(jiǎng)賞加工腦區(qū)的發(fā)育有關(guān), 因此本研究假設(shè)工具性喂養(yǎng)能夠通過(guò)感覺(jué)和獎(jiǎng)賞加工腦區(qū)的活動(dòng)及功能連接影響兒童挑食行為。根據(jù)獎(jiǎng)賞習(xí)慣化理論, 工具性喂養(yǎng)與感覺(jué)和獎(jiǎng)賞加工相關(guān)腦區(qū)(如楔前葉、尾狀核和殼核等)的活動(dòng)和功能連接減弱有關(guān), 導(dǎo)致對(duì)喜愛(ài)食物的偏好降低, 增加了吃多種食物的可能性, 挑食行為就會(huì)隨之減少(假設(shè)2)。
2 "方法
2.1 "被試
本實(shí)驗(yàn)招募來(lái)自西南地區(qū)兩所小學(xué)的129名兒童被試。所有被試必須滿足兩個(gè)條件才能納入正式分析:完成問(wèn)卷測(cè)量和靜息態(tài)核磁掃描(剔除27名被試)以及靜息態(tài)核磁數(shù)據(jù)無(wú)質(zhì)量和頭動(dòng)較大問(wèn)題(剔除15名被試)。經(jīng)過(guò)篩選后, 87名兒童(51%是女孩, 年齡 = 10.07 ± 0.96歲, 年齡范圍是9~12歲)納入正式分析。根據(jù)Xu等人(2023)的計(jì)算方式, 本研究使用G*power軟件來(lái)計(jì)算所需的樣本量。根據(jù)相關(guān)文獻(xiàn)(Finnane et al., 2017), 工具性喂養(yǎng)與兒童挑食行為的相關(guān)性為0.30, 工具性喂養(yǎng)的標(biāo)準(zhǔn)差為0.96, 挑食行為的標(biāo)準(zhǔn)差為0.91。輸入偏倚(α error probability) = 0.05, 統(tǒng)計(jì)檢驗(yàn)力(1 ? β) = 0.80, 最終得到所需樣本量至少為82人。所有被試視力或矯正視力正常, 無(wú)色盲, 且均未報(bào)告有精神疾病史或神經(jīng)病史。所有被試在實(shí)驗(yàn)前獲得家長(zhǎng)同意并簽署知情同意書(shū), 在實(shí)驗(yàn)后得到文具作為實(shí)驗(yàn)報(bào)酬。該研究經(jīng)過(guò)心理學(xué)部學(xué)術(shù)倫理委員會(huì)批準(zhǔn)。
2.2 "行為變量測(cè)量
2.2.1 "兒童挑食行為
采用兒童飲食行為問(wèn)卷(Children's Eating Behavior Questionnaire)中的挑食行為維度測(cè)量家長(zhǎng)感知到的兒童挑食行為(Wardle et al., 2001)。挑食行為維度包含6個(gè)題項(xiàng), 反映了對(duì)能夠接受的食物范圍的高度挑選傾向。這些題項(xiàng)評(píng)估了兒童表現(xiàn)出某種行為的頻率(例如, 我的孩子喜歡的食物種類非常多)。評(píng)分采用5點(diǎn)計(jì)分制, 1 = 從不, 5 = 總是, 正向計(jì)分和反向計(jì)分條目交替排列, 統(tǒng)計(jì)分析時(shí)反向題目作反向計(jì)分處理。計(jì)算題項(xiàng)總分作為兒童挑食行為得分, 得分越高代表兒童的挑食行為越嚴(yán)重。中國(guó)版兒童飲食行為問(wèn)卷已被證明具有良好的信效度(Guo et al., 2018; 曾思瑤, 2018)。本研究中挑食行為分維度的內(nèi)部一致性系數(shù)為0.76。
2.2.2 "工具性喂養(yǎng)
工具性喂養(yǎng)由兒童喂養(yǎng)問(wèn)卷(Child Feeding Questionnaire)中食物作為獎(jiǎng)勵(lì)(Food as rewards)分維度測(cè)量(Jansen et al., 2020; Zheng et al., 2016)。該維度包含兩個(gè)題項(xiàng), 分別是“我會(huì)給我的小孩他/她自己喜歡吃的食品來(lái)鼓勵(lì)他/她好好表現(xiàn)”和“如果孩子表現(xiàn)好, 我會(huì)獎(jiǎng)勵(lì)給他/她甜食(比如:糖果、冰淇淋、蛋糕、甜點(diǎn)等)”。該問(wèn)卷由父母進(jìn)行回答, 評(píng)分采用5點(diǎn)計(jì)分制(1 =不同意, 5 =同意), 無(wú)反向計(jì)分題。計(jì)算兩個(gè)題目的總分作為父母工具性喂養(yǎng)的程度, 得分越高表示工具性喂養(yǎng)程度越高。本研究使用的工具性喂養(yǎng)分維度的內(nèi)部一致性系數(shù)為0.78。
2.3 "靜息態(tài)功能磁共振數(shù)據(jù)的采集和預(yù)處理
2.3.1 "影像采集
所有影像數(shù)據(jù)均采用3T Trio西門子磁共振掃描儀進(jìn)行采集(Siemens Medical, Erlangen, Germany)。每個(gè)被試都進(jìn)行5分鐘結(jié)構(gòu)像掃描和8分鐘的靜息態(tài)磁共振的掃描。在正式掃描之前, 所有參與者都進(jìn)行了5分鐘的模擬掃描, 以適應(yīng)掃描環(huán)境。在正式掃描期間, 使用泡沫墊和耳塞來(lái)減少頭部運(yùn)動(dòng)和機(jī)器噪音。采用梯度回波平面成像序列(a gradient echo planar imaging sequence)獲得靜息態(tài)功能影像, 掃描參數(shù)為:重復(fù)時(shí)間(repetition time, TR) = 2000 ms; 回波時(shí)間(echo time, TE)= 30 ms; 層數(shù)(Slices)= 33; 層厚(slice thickness)= 3.5 mm; 成像矩陣(matrix size)= 64 × 64; 翻轉(zhuǎn)角(flip angle, FA)= 90°; 視場(chǎng)(field of view, FOV)= 224 mm × 224 mm; 體素大小(voxel size)= 3.5 mm × 3.5 mm × 3.5 mm。一共獲得180時(shí)間點(diǎn)的成像。T1加權(quán)結(jié)構(gòu)像使用快速梯度回波成像序列獲得(Magnetization Prepared Rapid Acquisition Gradient Echo Sequences), 使用以下掃描參數(shù):TR = 2530 ms; TE = 3.48 ms; FOV = 256 mm × 256 mm; FA = 7°; matrix size = 256 × 256; 層間距 = 1 mm; voxel size = 1 mm × 1 mm × 1 mm。高分辨率T1加權(quán)結(jié)構(gòu)圖像是為靜息態(tài)影像處理提供解剖學(xué)參考。
2.3.2 "影像數(shù)據(jù)預(yù)處理
使用基于SPM8的腦成像數(shù)據(jù)處理與分析工具箱(Data Processing and Analysis for Brain Imaging, 簡(jiǎn)稱DPABI)對(duì)數(shù)據(jù)進(jìn)行處理(Yan et al., 2016)。預(yù)處理包括以下步驟:(1)剔除每個(gè)被試前10個(gè)時(shí)間點(diǎn)的影像, 目的是為保證BOLD信號(hào)達(dá)到穩(wěn)定狀態(tài), 排除機(jī)器啟動(dòng)信號(hào)不均和被試對(duì)機(jī)器環(huán)境適應(yīng)過(guò)程對(duì)圖像的干擾。(2)剩下的170個(gè)時(shí)間點(diǎn)的影像進(jìn)行時(shí)間層校正(slice timing)以及頭動(dòng)校正(realignment)。(3)為排除個(gè)體大腦形狀、大小等方面的差異, 方便不同被試間的比較, 將影像數(shù)據(jù)進(jìn)行空間標(biāo)準(zhǔn)化(normalization), 統(tǒng)一到標(biāo)準(zhǔn)的蒙托利爾坐標(biāo)系空間模板(Montreal Neurological Institute), 體素分辨率為 3 mm × 3 mm × 3 mm。(4)采用6 mm半高寬(Full width at half maximum)的平滑核進(jìn)行高斯平滑(Smooth)處理(計(jì)算ReHo指標(biāo)時(shí)不進(jìn)行平滑處理)。(5)每個(gè)被試的fMRI圖像配準(zhǔn)到分割后的高分辨率T1加權(quán)解剖圖像。(6)為了控制潛在的協(xié)變量對(duì)研究結(jié)果帶來(lái)的影響, 采用Friston 24方法將6個(gè)頭動(dòng)參數(shù)(三個(gè)方向上的平移和轉(zhuǎn)動(dòng))、白質(zhì)、腦脊液以及全腦信號(hào)等參數(shù)進(jìn)行了回歸。(7)通過(guò)0.01~0.1 Hz 頻段進(jìn)行低頻濾波(Filer), 去除呼吸和心跳等高頻信號(hào)值影響。(8)最終, 對(duì)每個(gè)被試的圖像進(jìn)行擦洗(Scrubbing), 在擦洗過(guò)程中剔除頭動(dòng)(framewise displacement, FD) gt; 0.5 mm的時(shí)間點(diǎn)。(9)頭動(dòng)控制。將數(shù)據(jù)擦洗過(guò)程中剔除的時(shí)間點(diǎn)超過(guò)總時(shí)間點(diǎn)30%的被試排除(Varangis et al., 2019), 共有15名被試由于壞點(diǎn)過(guò)多被剔除。為了確保頭動(dòng)與興趣變量不存在顯著相關(guān), 計(jì)算平均頭動(dòng)指標(biāo)(mean FD)與兒童挑食行為的相關(guān)(Li, Bian et al., 2023; Shen et al., 2017), 最終發(fā)現(xiàn)二者不存在顯著相關(guān)(r = 0.18, p = 0.097)。最后在統(tǒng)計(jì)分析中, 將頭動(dòng)納入?yún)f(xié)變量以進(jìn)一步控制其對(duì)結(jié)果的影響(Horien et al., 2018; Waller et al., 2017)。
2.4 "數(shù)據(jù)分析
2.4.1 "ReHo-行為相關(guān)分析
首先使用DPARSF工具包(Data Processing Assistant for Resting-State fMRI)計(jì)算局部一致性系數(shù)(Regional homogeneity, ReHo)。通過(guò)計(jì)算給定體素與其26個(gè)相鄰體素的時(shí)間序列的肯德?tīng)柡椭C系數(shù)(KCC)生成單個(gè)ReHo圖(Zang et al., 2004)。給定體素的ReHo值越大, 表示相鄰體素之間RS-fMRI信號(hào)的局部同步程度越高。為了減少個(gè)體差異的影響, 通過(guò)將每個(gè)體素的KCC除以每個(gè)被試整個(gè)大腦的平均KCC來(lái)進(jìn)行ReHo圖的歸一化, 并通過(guò)Fisher的r-to-z變換將ReHo圖轉(zhuǎn)換為z分?jǐn)?shù)。最后對(duì)ReHo圖進(jìn)行空間平滑處理。為了確定與挑食行為相關(guān)的腦區(qū), 采用全腦相關(guān)分析計(jì)算大腦每個(gè)體素與挑食行為的相關(guān)。使用SPM 12軟件對(duì)兒童挑食行為與ReHo進(jìn)行多重線性回歸分析, 并以年齡、性別、BMI和頭動(dòng)(mean FD)為協(xié)變量。采用體素水平p lt; 0.005, 團(tuán)塊水平p lt; 0.05 的高斯隨機(jī)場(chǎng)(Gaussian Random-Field, GRF)多重比較矯正, 以獲得與兒童挑食行為顯著相關(guān)的ReHo腦區(qū)。
2.4.2 "RSFC-行為相關(guān)分析
為了探索ReHo-行為分析發(fā)現(xiàn)的腦區(qū)與其他腦區(qū)的功能連通性與兒童挑食行為的關(guān)聯(lián), 本研究進(jìn)行RSFC-行為相關(guān)分析。以ReHo分析中發(fā)現(xiàn)的顯著腦區(qū)為種子點(diǎn), 以6 mm為半徑定義感興趣區(qū), 并提取了感興趣區(qū)內(nèi)體素的時(shí)間序列。隨后使用DPABI軟件在個(gè)體水平上計(jì)算其與全腦其他體素的時(shí)間序列的相關(guān)性, 即皮爾遜相關(guān)系數(shù)r, 將r值進(jìn)行Fisher z轉(zhuǎn)化。最后, 在組分析水平計(jì)算每條功能連接與挑食行為的相關(guān), 同樣在SPM中采用多重線性回歸分析, 并以年齡、性別、BMI和頭動(dòng)為控制變量。多重比較校正采用GRF校正, 報(bào)告通過(guò)團(tuán)塊水平p lt; 0.05, 體素水平p lt; 0.005矯正的顯著功能連接。
2.4.3 "預(yù)測(cè)分析
本研究采用一種機(jī)器學(xué)習(xí)方法——基于線性回歸的交叉驗(yàn)證法——測(cè)試腦與挑食行為關(guān)聯(lián)的穩(wěn)定性(Chen et al., 2022; Kong et al., 2018; Wang et al., 2018)。傳統(tǒng)將神經(jīng)影像學(xué)指標(biāo)與認(rèn)知或行為評(píng)分關(guān)聯(lián)起來(lái)的分析方式受到樣本特點(diǎn)的限制, 無(wú)法確定觀察到的相關(guān)結(jié)果是否可以推廣到看不見(jiàn)的個(gè)體中, 而交叉驗(yàn)證法具備評(píng)估模型預(yù)測(cè)未知個(gè)體行為的能力(Cui et al., 2018; Yarkoni amp; Westfall, 2017)。該方法目前已得到廣泛的認(rèn)可并應(yīng)用于認(rèn)知神經(jīng)科學(xué)研究以提高其研究結(jié)果的穩(wěn)健性(Chen et al., 2022)。在回歸模型中, 因變量為挑食行為得分, 自變量是大腦指標(biāo)(與挑食行為顯著相關(guān)的腦區(qū)ReHo和功能連接值)。首先采用四折法將數(shù)據(jù)平均分開(kāi), 接下來(lái)用其中三折的數(shù)據(jù)建立線性回歸模型, 用第四折數(shù)據(jù)驗(yàn)證這個(gè)模型。重復(fù)這個(gè)過(guò)程四次得到一個(gè)最終的r(預(yù)測(cè), 觀測(cè))值, 代表模型預(yù)測(cè)數(shù)據(jù)與真實(shí)觀測(cè)數(shù)據(jù)的平均相關(guān)。為了得到模型的統(tǒng)計(jì)學(xué)顯著性, 采用非參數(shù)測(cè)試方法, 即1000次置換檢驗(yàn)來(lái)估計(jì)挑食行為與靜息態(tài)腦指標(biāo)之間沒(méi)有關(guān)聯(lián)的零假設(shè)。通過(guò)計(jì)算大于r(預(yù)測(cè), 觀測(cè))的r值個(gè)數(shù), 再除以數(shù)據(jù)集的個(gè)數(shù)(即1000)得到模型的統(tǒng)計(jì)顯著性(p值)。
2.4.4 "中介分析
采用SPSS中的PROCESS插件(Hayes amp; Scharkow, 2013)計(jì)算大腦自發(fā)神經(jīng)活動(dòng)在工具性喂養(yǎng)?挑食行為關(guān)系中的中介效應(yīng)。具體來(lái)說(shuō), 飲食行為受大腦神經(jīng)系統(tǒng)的指導(dǎo)與調(diào)控(Berthoud amp; Levin, 2012; Plassmann et al., 2022), 因此在建立中介模型時(shí)將靜息態(tài)神經(jīng)表現(xiàn)作為中介變量影響因變量——兒童挑食行為。而工具性喂養(yǎng)方式作為家庭環(huán)境方面的影響因素, 在兒童的成長(zhǎng)發(fā)育過(guò)程中, 可能會(huì)作為外部刺激影響著大腦的發(fā)育(Tooley et al., 2021), 因此在中介模型中將工具性喂養(yǎng)方式作為自變量, 可能會(huì)通過(guò)影響兒童的神經(jīng)發(fā)育進(jìn)而影響挑食行為。綜上, 工具性喂養(yǎng)為自變量, 挑食行為為因變量, 與挑食行為相關(guān)的腦區(qū)的ReHo值和功能連接值為中介變量。使用5000次迭代的bootstrapping方法評(píng)估中介效應(yīng)的顯著性, 如果95%置信區(qū)間(Confidence Interval, CI)不包含零, 則表示中介效應(yīng)顯著。進(jìn)行中介分析前, 為了對(duì)中介變量進(jìn)行篩選, 將大腦信號(hào)和自變量進(jìn)行偏相關(guān)分析, 以年齡, 性別和BMI為協(xié)變量。與自變量存在顯著相關(guān)的大腦指標(biāo)被選作中介變量進(jìn)行進(jìn)一步的中介分析。
3 "結(jié)果
3.1 "共同方法偏差檢驗(yàn)
本研究采用的問(wèn)卷數(shù)據(jù)來(lái)源于同一評(píng)分者, 因此可能存在共同方法偏差問(wèn)題(Zhou amp; Long, 2004)。首先, 在施測(cè)過(guò)程中進(jìn)行了必要的控制, 保護(hù)參與者的匿名性、對(duì)數(shù)據(jù)的科研用途加以解釋、正反向計(jì)分等。進(jìn)一步地, 采用單因素驗(yàn)證性因子分析對(duì)所有題項(xiàng)進(jìn)行共同方法偏差檢驗(yàn)(Liu et al., 2019; Podsakoff et al., 2012), 結(jié)果顯示模型擬合較差, χ2/df = 8.920、CFI = 0.796、TLI = 0.714、RMSEA = 0.162、SRMR = 0.097。雙因子模型的擬合指標(biāo)(χ2/df = 1.309、CFI = 0.974、TLI = 0.961、RMSEA = 0.06、SRMR = 0.055)顯著優(yōu)于單因素模型, 所以不存在嚴(yán)重共同方法偏差問(wèn)題。
3.2 "初步分析
所有變量的描述性統(tǒng)計(jì)和相關(guān)分析如表1所示。結(jié)果表明, 挑食行為沒(méi)有顯著的性別差異, t (85) = 1.96, p = 0.053, 95% CI = [?0.02 3.57]。挑食行為與年齡(r = 0.05, p = 0.671, 95% CI = [?0.17 0.25]), BMI (r = ?0.01, p = 0.923, 95% CI = [?0.22 0.20])和頭動(dòng)(r = 0.18, p = 0.097, 95% CI = [?0.03 0.38])均沒(méi)有顯著相關(guān)關(guān)系。
3.3 "挑食行為的神經(jīng)相關(guān)結(jié)果
ReHo-行為相關(guān)分析結(jié)果如圖1和表2所示。挑食行為與右側(cè)尾狀核的ReHo值正相關(guān)(r = 0.43, p lt; 0.001, 95% CI = [0.25 0.59])。在控制了性別、年齡、BMI和頭動(dòng)后, 預(yù)測(cè)分析的結(jié)果表明右側(cè)尾狀核(r(預(yù)測(cè), 觀測(cè)) = 0.37, p lt; 0.001)的ReHo值能夠顯著預(yù)測(cè)挑食行為。
RSFC-行為相關(guān)分析結(jié)果如圖2和表2所示, 結(jié)果顯示挑食行為與右側(cè)尾狀核?左側(cè)殼核之間的功能連接正相關(guān)(r = 0.43, p lt; 0.001, 95% CI = [0.24 0.59])。預(yù)測(cè)分析結(jié)果表明右側(cè)尾狀核?左側(cè)殼核功能連接(r(預(yù)測(cè), 觀測(cè)) = 0.35, p lt; 0.001)能顯著預(yù)測(cè)兒童挑食行為。
3.4 "中介模型
在控制性別、年齡、BMI和頭動(dòng)后, 結(jié)果發(fā)現(xiàn)工具性喂養(yǎng)與挑食行為存在顯著的負(fù)相關(guān)(r = ?0.24, p = 0.026, 95% CI = [?0.45 ?0.02])。接下來(lái)計(jì)算上述與挑食行為相關(guān)的神經(jīng)指標(biāo)與工具性喂養(yǎng)之間的相關(guān)性。結(jié)果顯示工具性喂養(yǎng)與右側(cè)尾狀核處的局部一致性負(fù)相關(guān)(r = ?0.22, p = 0.046, 95% CI = [?0.41 ?0.001]), 與右側(cè)尾狀核到左側(cè)殼核之間的功能連接顯著負(fù)相關(guān)(r = ?0.30, p = 0.006, 95% CI = [?0.49 ?0.08])。這些結(jié)果表明工具性喂養(yǎng)、挑食行為相關(guān)的大腦自發(fā)活動(dòng)/功能連接以及挑食行為三者關(guān)系密切。
中介結(jié)果如圖3所示。在區(qū)域活動(dòng)水平上, 結(jié)果顯示右側(cè)尾狀核處的局部一致性不能中介工具性喂養(yǎng)對(duì)兒童挑食行為的影響(間接效應(yīng)β = ?0.11, 標(biāo)準(zhǔn)誤 = 0.06)。工具性喂養(yǎng)對(duì)挑食行為的直接影響也不顯著(直接效應(yīng)β = ?0.13, 標(biāo)準(zhǔn)誤 = 0.09, p = 0.173)。在功能連接水平上, 工具性喂養(yǎng)?腦?挑食行為中介模型成立, 總效應(yīng)β = ?0.24, 標(biāo)準(zhǔn)誤 = 0.11, 95% CI = [?0.46 ?0.03], p = 0.026, 該模型對(duì)因變量變異的解釋程度R2 = 12.06%。結(jié)果顯示工具性喂養(yǎng)能夠通過(guò)右側(cè)尾狀核和左側(cè)殼核之間的功能連接影響兒童挑食行為(間接效應(yīng)β = ?0.16, 標(biāo)準(zhǔn)誤 = 0.05, 95% CI = [?0.26 ?0.06]), 同樣工具性喂養(yǎng)對(duì)挑食行為的直接影響不顯著(直接效應(yīng)β = ?0.08, 標(biāo)準(zhǔn)誤 = 0.10, p = 0.40)。
4 "討論
本研究采用靜息態(tài)局部一致性和功能連接兩個(gè)指標(biāo), 結(jié)合機(jī)器學(xué)習(xí)?交叉驗(yàn)證的方法探究?jī)和羰承袨榈撵o息態(tài)神經(jīng)基礎(chǔ), 并且檢驗(yàn)了相關(guān)神經(jīng)基礎(chǔ)在工具性喂養(yǎng)和兒童挑食行為之間關(guān)系的中介作用。首先, 研究發(fā)現(xiàn)兒童挑食行為與右側(cè)尾狀核的局部一致性顯著正相關(guān)。功能連接結(jié)果表明兒童挑食行為與右側(cè)尾狀核?左側(cè)殼核之間的功能連接正相關(guān)。接著, 基于機(jī)器學(xué)習(xí)的預(yù)測(cè)分析驗(yàn)證了右側(cè)尾狀核的局部一致性和右側(cè)尾狀核?左側(cè)殼核之間的功能連接與兒童挑食行為相關(guān)的穩(wěn)健性。最后中介分析結(jié)果表明工具性喂養(yǎng)能夠通過(guò)右側(cè)尾狀核?左側(cè)殼核功能連接負(fù)向預(yù)測(cè)兒童的挑食行為。
與假設(shè)1一致的是, 本研究發(fā)現(xiàn)兒童挑食行為與獎(jiǎng)賞相關(guān)腦區(qū)的自發(fā)神經(jīng)活動(dòng)相關(guān)。具體來(lái)說(shuō), 兒童挑食行為與獎(jiǎng)賞腦區(qū)(右側(cè)尾狀核)的自發(fā)活動(dòng)以及獎(jiǎng)賞腦區(qū)之間的功能連接(尾狀核?殼核)正相關(guān)。尾狀核和殼核是中腦邊緣獎(jiǎng)賞網(wǎng)絡(luò)的關(guān)鍵區(qū)域, 參與食物相關(guān)的獎(jiǎng)賞加工, 并與能量穩(wěn)態(tài)信號(hào)密切相互作用(Burger amp; Stice, 2013), 研究證實(shí)尾狀核和殼核與異常進(jìn)食過(guò)程有關(guān)(Zhang et al., 2019)。同時(shí), 對(duì)高熱量食物的渴求能夠激活尾狀核等獎(jiǎng)賞腦區(qū)(Haber amp; Knutson, 2010; Pelchat et al., 2004; Stoeckel et al., 2008)。殼核被認(rèn)為是獎(jiǎng)賞加工和獎(jiǎng)賞價(jià)值標(biāo)記的核心腦區(qū)(Cromwell et al., 2005; Hori et al., 2009), 有研究表明殼核處的激活與兒童的獎(jiǎng)賞敏感性有關(guān)(Mizuno et al., 2016)。因此, 研究發(fā)現(xiàn)暗示了獎(jiǎng)賞腦區(qū)較強(qiáng)的反應(yīng)能解釋挑食行為的形成。上述神經(jīng)發(fā)現(xiàn)印證了以往行為研究中發(fā)現(xiàn)的挑食兒童特定的飲食模式。前人研究發(fā)現(xiàn)挑食兒童會(huì)攝入更多高熱量的食物(Carruth et al., 2004; Galloway et al., 2005; Taylor et al., 2016; Tharner et al., 2014), 而很少吃低獎(jiǎng)賞價(jià)值但是高營(yíng)養(yǎng)的食物, 例如蔬菜和水果等(Cardona Cano et al., 2015; Haszard et al., 2015; Horodynski et al., 2010)。綜上, 獎(jiǎng)賞腦區(qū)的功能活躍及其內(nèi)部緊密的功能交互能夠解釋挑食行為的發(fā)生, 導(dǎo)致挑食兒童傾向于進(jìn)食高獎(jiǎng)賞價(jià)值的食物。
此外, 尾狀核除了被認(rèn)為是調(diào)節(jié)獎(jiǎng)賞?食欲行為的關(guān)鍵大腦結(jié)構(gòu)以外(Zhang et al., 2019), 也被發(fā)現(xiàn)涉及感覺(jué)敏感性加工(Demarquay amp; Mauguière, 2016)。尾狀核作為基底節(jié)的主要輸入單元, 參與對(duì)感覺(jué)信息的編碼加工進(jìn)而影響知覺(jué)決策(Ding amp; Gold, 2010)。具有高感覺(jué)敏感性和高挑食行為的妥瑞氏癥患者在感覺(jué)相關(guān)任務(wù)中尾狀核處的激活與正常被試顯著不同(Buse et al., 2016)。感覺(jué)敏感性是影響兒童挑食行為一個(gè)穩(wěn)定的影響因素(Zickgraf amp; Elkins, 2018; Zickgraf et al., 2022)。臨床研究表明挑食行為與在環(huán)境中對(duì)感覺(jué)信息的敏感程度有關(guān)(Bryant-Waugh et al., 2010; Chilman et al., 2021), 容易察覺(jué)到食物在視覺(jué)和氣味等方面變化的多感官體驗(yàn)使得感覺(jué)敏感的個(gè)體對(duì)食物更加排斥厭惡(Cermak et al., 2010; Cunliffe et al., 2022)。尾狀核與殼核間的功能連接也可能反映出的是感知覺(jué)腦區(qū)與獎(jiǎng)賞加工腦區(qū)的功能同步性, 二者共同參與調(diào)節(jié)兒童挑食行為。兒童對(duì)食物的判斷主要依賴于感知覺(jué)加工, 例如視覺(jué)和嗅覺(jué)等(Lafraire et al., 2016), 那么消極的感官?zèng)Q策就會(huì)導(dǎo)致兒童認(rèn)為該食物不好吃, 即影響對(duì)食物獎(jiǎng)賞價(jià)值的加工判斷, 最終做出拒絕食物的決策。因此, 功能連接的發(fā)現(xiàn)表明感覺(jué)信息加工和獎(jiǎng)賞加工對(duì)于挑食行為的重要性, 是與挑食行為緊密相關(guān)的兩種認(rèn)知加工過(guò)程, 能夠解釋兒童挑食行為的形成, 其相關(guān)腦區(qū)的功能發(fā)育也會(huì)調(diào)節(jié)挑食行為的發(fā)展。綜上, 尾狀核處的局部一致性以及尾狀核到殼核的功能連接與兒童挑食行為之間的關(guān)聯(lián)也可能是感覺(jué)敏感性與挑食行為間的關(guān)系在神經(jīng)生理水平上的體現(xiàn)。上述發(fā)現(xiàn)是對(duì)兒童挑食行為影響因素模型的驗(yàn)證, 從神經(jīng)活動(dòng)的角度證實(shí)了認(rèn)知功能對(duì)兒童挑食行為的影響。
與假設(shè)2一致的是, 本研究發(fā)現(xiàn)了工具性喂養(yǎng)與兒童挑食行為之間的負(fù)相關(guān)關(guān)系。類似地, 以往研究發(fā)現(xiàn)同時(shí)呈現(xiàn)兒童不喜歡的蔬菜和獎(jiǎng)勵(lì)會(huì)增加兒童對(duì)蔬菜的喜愛(ài), 降低兒童挑食的可能性(Cooke et al., 2010; Wardle et al., 2003)。此外, 大多研究曾報(bào)告過(guò)相反結(jié)果, 即工具性喂養(yǎng)與兒童挑食行為正相關(guān)(Jansen et al., 2020)。這可能是研究者選取被試的年齡范圍不同導(dǎo)致的。一篇關(guān)于兒童挑食行為的質(zhì)性研究中提到, 一位10歲男孩的母親認(rèn)為相比于其他方式, 用食物作為獎(jiǎng)勵(lì)是最成功的策略(Wolstenholme et al., 2019)。與引言中提到的觀點(diǎn)相一致, 不同年齡段的兒童神經(jīng)發(fā)育程度不同(Lou et al., 2019), 使得兒童對(duì)家長(zhǎng)喂養(yǎng)模式的反應(yīng)不同。感官偏好并不是天生的(Lafraire et al., 2016), 大腦神經(jīng)系統(tǒng)的發(fā)育隨著年齡的增長(zhǎng)愈發(fā)成熟使得兒童對(duì)食物的認(rèn)知更加豐富, 因此當(dāng)工具性喂養(yǎng)策略使得獎(jiǎng)賞系統(tǒng)表現(xiàn)出對(duì)喜愛(ài)食物的反應(yīng)疲勞時(shí), 兒童的興趣可能會(huì)轉(zhuǎn)向其他食物。此外, 隨著高級(jí)認(rèn)知加工腦區(qū)的發(fā)育成熟(Fan et al., 2023; Tooley et al., 2021), 兒童的理解判斷能力逐漸增強(qiáng), 更能夠理解父母采取工具性喂養(yǎng)策略的目的, 因此兒童很可能對(duì)喂養(yǎng)策略做出正向反饋, 積極配合改善自身的挑食行為。
重要的是, 本研究發(fā)現(xiàn)尾狀核與殼核的功能連接中介了工具性喂養(yǎng)對(duì)兒童挑食行為的作用。具體來(lái)說(shuō), 工具性喂養(yǎng)頻率越高, 尾狀核和殼核的功能連接強(qiáng)度更弱, 使得兒童的挑食行為減少。從獎(jiǎng)賞習(xí)慣化的角度解釋, 食物獎(jiǎng)勵(lì)鼓勵(lì)兒童做出好的行為可能意味著兒童多次接收食物獎(jiǎng)勵(lì)會(huì)形成獎(jiǎng)賞習(xí)慣化(Benson amp; Raynor, 2014)。有研究表明獎(jiǎng)賞習(xí)慣化可以阻止強(qiáng)迫性的獎(jiǎng)賞尋求行為, 并且轉(zhuǎn)向新的刺激(Leventhal et al., 2007)。尾狀核與殼核都屬于獎(jiǎng)賞加工的關(guān)鍵腦區(qū)(Haruno amp; Kawato, 2006; Pizzagalli et al., 2009), 參與獎(jiǎng)賞習(xí)慣化的過(guò)程(Robinson amp; Berridge, 2000), 并且也有研究表明尾狀核到殼核的功能連接與獎(jiǎng)賞尋求等加工過(guò)程存在相關(guān)(Arias-Carrión amp; P?ppel, 2007; Fuchs et al., 2006)。因此, 一個(gè)可能的解釋是父母給予兒童食物獎(jiǎng)勵(lì)越多, 兒童對(duì)獎(jiǎng)賞食物逐漸習(xí)慣化, 導(dǎo)致對(duì)此類食物的獎(jiǎng)賞尋求降低, 在大腦上表現(xiàn)為獎(jiǎng)賞區(qū)域之間的功能連通性降低, 飲食模式可能不會(huì)固定在對(duì)獎(jiǎng)賞食物的攝入上, 反而有機(jī)會(huì)去嘗試其他食物, 降低了挑食發(fā)生的幾率。另一方面從感知覺(jué)加工的角度來(lái)說(shuō), 頻繁呈現(xiàn)兒童偏好的食物作為獎(jiǎng)勵(lì)會(huì)導(dǎo)致感官飽足感, 使得兒童對(duì)獎(jiǎng)賞食物的偏好降低(Houston-Price et al., 2009; Lafraire et al., 2016), 進(jìn)而增加了選擇嘗試其他食物的可能性。而且這種感知覺(jué)加工“疲勞”也可能導(dǎo)致兒童的感官敏感性降低, 減少對(duì)以往拒絕的食物的消極感官判斷, 增加了接受它們的可能性。
本研究揭示了圍繞著尾狀核的神經(jīng)活動(dòng)和功能連通性與挑食行為的緊密關(guān)聯(lián), 因此我們推斷尾狀核能作為識(shí)別兒童挑食行為的一個(gè)生理指標(biāo)。獎(jiǎng)賞腦區(qū)內(nèi)部較強(qiáng)的連接從大腦自發(fā)活動(dòng)的角度提供了神經(jīng)證據(jù)支持行為層面上發(fā)現(xiàn)的兒童挑食行為對(duì)應(yīng)的飲食偏好, 即挑食兒童可能會(huì)對(duì)高獎(jiǎng)賞食物有更多的偏好和攝入。此外, 本研究創(chuàng)新性的提出感覺(jué)加工腦區(qū)和獎(jiǎng)賞腦區(qū)的功能協(xié)同可能是兒童挑食行為發(fā)生的潛在神經(jīng)原因。重要的是, 本研究首次發(fā)現(xiàn)了工具性喂養(yǎng)可以通過(guò)尾狀核到殼核的功能連接來(lái)影響兒童挑食行為, 解釋了工具性喂養(yǎng)能夠改善兒童挑食行為的作用原理。綜上, 本研究驗(yàn)證并拓展了兒童挑食行為的影響因素模型。一方面, 研究結(jié)果證實(shí)了兒童挑食行為的影響因素模型中提到的社會(huì)環(huán)境因素和認(rèn)知因素都會(huì)對(duì)挑食行為產(chǎn)生影響。另一方面, 我們進(jìn)一步地發(fā)現(xiàn)影響因素模型中的社會(huì)環(huán)境因素和認(rèn)知因素之間可能存在影響關(guān)系。由于兒童正處于大腦發(fā)育期, 因此社會(huì)環(huán)境因素可能會(huì)影響大腦的神經(jīng)發(fā)育而對(duì)認(rèn)知功能產(chǎn)生影響, 從而影響兒童挑食行為的形成與發(fā)展。此外, 研究結(jié)果在實(shí)踐上有一定的參考價(jià)值, 未來(lái)可以考慮將工具性喂養(yǎng)作為改善兒童不健康飲食結(jié)構(gòu)的干預(yù)手段。
本研究仍存在一些不足之處需要改進(jìn), 并借此提出未來(lái)研究中需要繼續(xù)深入探索和拓展的方向。首先, 本研究的樣本量偏小, 雖然采用機(jī)器學(xué)習(xí)方法加強(qiáng)了結(jié)果的穩(wěn)定性, 但未來(lái)研究應(yīng)該在更大的兒童樣本中檢驗(yàn)本研究結(jié)果的穩(wěn)定性。除了本研究中采用的機(jī)器學(xué)習(xí)方法, 未來(lái)采用其他樣本進(jìn)行外部驗(yàn)證也是必要的。其次, 本研究?jī)H僅是從靜息態(tài)功能連接的角度提供了神經(jīng)證據(jù), 未來(lái)研究應(yīng)該結(jié)合不同模態(tài)的神經(jīng)研究, 例如結(jié)構(gòu)態(tài)和任務(wù)態(tài)磁共振研究, 豐富兒童挑食行為神經(jīng)方面的研究, 并且與靜息態(tài)研究發(fā)現(xiàn)整合分析進(jìn)一步明確兒童挑食行為的神經(jīng)加工模式。第三, 本研究基于橫斷研究發(fā)現(xiàn)工具性喂養(yǎng)可能是改善兒童挑食行為的有效手段, 但如果想證明兩者關(guān)系的因果性, 未來(lái)研究應(yīng)需要采用縱向追蹤的方法確定二者之間的因果關(guān)系。
5 "結(jié)論
本研究采用靜息態(tài)局部一致性和功能連接指標(biāo)結(jié)合機(jī)器學(xué)習(xí)方法探討了兒童挑食行為的神經(jīng)基礎(chǔ)。結(jié)果發(fā)現(xiàn), 兒童挑食行為與右側(cè)尾狀核的局部一致性顯著正相關(guān), 與右側(cè)尾狀核到左側(cè)殼核的功能連接正相關(guān)。由此揭示了感覺(jué)信息加工和獎(jiǎng)賞加工相關(guān)腦區(qū)的神經(jīng)活躍以及腦區(qū)間功能協(xié)同能夠解釋兒童挑食行為的個(gè)體差異, 提供了兒童挑食行為穩(wěn)健的神經(jīng)生物學(xué)基礎(chǔ), 并為該領(lǐng)域補(bǔ)充新的神經(jīng)層面的實(shí)證證據(jù)。值得注意的是, 工具性喂養(yǎng)能夠通過(guò)降低尾狀核到殼核的功能連接減少兒童挑食行為。上述發(fā)現(xiàn)驗(yàn)證和拓展了兒童挑食行為的影響因素模型, 而且為通過(guò)父母的喂養(yǎng)方式干預(yù)改善兒童不良的挑食行為提供了理論支持。
參 "考 "文 "獻(xiàn)
Acevedo, B., Aron, E., Pospos, S., amp; Jessen, D. (2018). The functional highly sensitive brain: A review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1744), 20170161?20170161.
Acevedo, B. P., Santander, T., Marhenke, R., Aron, A., amp; Aron, E. (2021). Sensory processing sensitivity predicts individual differences in resting-state functional connectivity associated with depth of processing. Neuropsychobiology, 80(2), 185?200.
Arias-Carrión, ó., amp; P?ppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67(4), 481?488.
Avery, J. A., Ingeholm, J. E., Wohltjen, S., Collins, M., Riddell, C. D., Gotts, S. J., … Martin, A. (2018). Neural correlates of taste reactivity in autism spectrum disorder. Neuroimage: Clinical, 19, 38?46.
Benson, K., amp; Raynor, H. A. (2014). Occurrence of habituation during repeated food exposure via the olfactory and gustatory systems. Eating Behaviors, 15(2), 331?333.
Berthoud, H. R., amp; Levin, B. E. (2012). CNS regulation of energy balance. In G.A. Bray amp; C. Bouchard (Eds.), Handbook of obesity, epidemiology, etiology, and physiopathology (Vol. 1, pp. 161–172). CRC Press.
Brown, C. L., Ip, E. H., Skelton, J., Lucas, C., amp; Vitolins, M. Z. (2022). Parental concerns about picky eating and undereating, feeding practices, and child's weight. Obesity Research amp; Clinical Practice, 16(5), 373?378.
Bryant-Waugh, R., Markham, L., Kreipe, R. E., amp; Walsh, B. T. (2010). Feeding and eating disorders in childhood. International Journal of Eating Disorders, 43(2), 98?111.
Burger, K. S., amp; Stice, E. (2013). Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. The American Journal of Clinical Nutrition, 97(6), 1188?1194.
Buse, J., Beste, C., Herrmann, E., amp; Roessner, V. (2016). Neural correlates of altered sensorimotor gating in boys with Tourette syndrome: A combined EMG/fMRI study. The World Journal of Biological Psychiatry, 17(3), 187?197.
Byrne, R., Jansen, E., amp; Daniels, L. (2017). Perceived fussy eating in Australian children at 14 months of age and subsequent use of maternal feeding practices at 2 years. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 123.
Campos, A., Port, J. D., amp; Acosta, A. (2022). Integrative hedonic and homeostatic food intake regulation by the central nervous system: Insights from neuroimaging. Brain Sciences, 12(4), 431.
Cardona Cano, S., Tiemeier, H., Van Hoeken, D., Tharner, A., Jaddoe, V. W. V., Hofman, A., … Hoek, H. W. (2015). Trajectories of picky eating during childhood: A general population study. International Journal of Eating Disorders, 48(6), 570?579.
Carruth, B. R., Ziegler, P. J., Gordon, A., amp; Barr, S. I. (2004). Prevalence of picky eaters among infants and toddlers and their caregivers' decisions about offering a new food. Journal of the American Dietetic Association, 104(1), 57?64.
Cermak, S. A., Curtin, C., amp; Bandini, L. G. (2010). Food selectivity and sensory sensitivity in children with autism spectrum disorders. Journal of the American Dietetic Association, 110(2), 238?246.
Chao, H. C., amp; Chang, H. L. (2017). Picky eating behaviors linked to inappropriate caregiver-child interaction, caregiver intervention, and impaired general development in children. Pediatrics amp; Neonatology, 58(1), 22?28.
Chen, X., Gao, X., Qin, J., Wang, C., Xiao, M., Tian, Y., … Chen, H. (2021). Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. Neuroimage: Clinical, 30, 102671.
Chen, X., Xiao, M., Qin, J., Bian, Z., Qiu, J., Feng, T., …Chen, H. (2022). Association between high levels of body-esteem and increased degree of midcingulate cortex global connectivity: A resting-state fMRI study. Psychophysiology, 59(10), e14072.
Chilman, L., Kennedy-Behr, A., Frakking, T., Swanepoel, L., amp; Verdonck, M. (2021). Picky eating in children: A scoping review to examine its intrinsic and extrinsic features and how they relate to identification. International Journal of Environmental Research and Public Health, 18(17), 9067.
Chilman, L. B., Meredith, P. J., Kennedy-Behr, A., Campbell, G., Frakking, T., Swanepoel, L., amp; Verdonck, M. (2023). Picky eating in children: Current clinical trends, practices, and observations within the Australian health-care context. Australian Occupational Therapy Journal, 70(4), 471?486.
Chodkowski, B. A., Cowan, R. L., amp; Niswender, K. D. (2016). Imbalance in resting state functional connectivity is associated with eating behaviors and adiposity in children. Heliyon, 2(1), e00058.
Cooke, L. J., Chambers, L. C., A?ez, E. V., Croker, H. A., Boniface, D., Yeomans, M. R., amp; Wardle, J. (2010). Eating for pleasure or profit: The effect of incentives on children's enjoyment of vegetables. Psychological Science, 22(2), 190?196.
Cromwell, H. C., Hassani, O. K., amp; Schultz, W. (2005). Relative reward processing in primate striatum. Experimental Brain Research, 162(4), 520?525.
Cui, Z., Su, M., Li, L., Shu, H., amp; Gong, G. (2018). Individualized prediction of reading comprehension ability using gray matter volume. Cerebral Cortex, 28(5), 1656? 1672.
Cunliffe, L., Coulthard, H., amp; Williamson, I. R. (2022). The lived experience of parenting a child with sensory sensitivity and picky eating. Maternal amp; Child Nutrition, 18(3), e13330.
Daniels, L. A. (2019). Feeding practices and parenting: A pathway to child health and family happiness. Annals of Nutrition and Metabolism, 74(Suppl. 2), 29?42.
Demarquay, G., amp; Mauguière, F. (2016). Central nervous system underpinnings of sensory hypersensitivity in Migraine: Insights from neuroimaging and electrophysiological studies. Headache, 56(9), 1418?1438.
Demir, D., amp; Bektas, M. (2017). The effect of childrens' eating behaviors and parental feeding style on childhood obesity. Eating Behaviors, 26, 137?142.
Diamantis, D. V., Emmett, P. M., amp; Taylor, C. M. (2023). Effect of being a persistent picky eater on feeding difficulties in school-aged children. Appetite, 183, 106483.
Ding, L., amp; Gold, J. I. (2010). Caudate encodes multiple computations for perceptual decisions. The Journal of Neuroscience, 30(47), 15747?15759.
Dong, D., Jackson, T., Wang, Y., amp; Chen, H. (2015). Spontaneous regional brain activity links restrained eating to later weight gain among young women. Biological Psychology, 109, 176?183.
Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., amp; Chen, H. (2014). Altered regional homogeneity and efficient response inhibition in restrained eaters. Neuroscience, 266, 116?126.
Dovey, T. M., Staples, P. A., Gibson, E. L., amp; Halford, J. C. G. (2008). Food neophobia and ‘picky/fussy’ eating in children: A review. Appetite, 50(2-3), 181?193.
Epstein, L. H., Robinson, J. L., Temple, J. L., Roemmich, J. N., Marusewski, A., amp; Nadbrzuch, R. (2008). Sensitization and habituation of motivated behavior in overweight and non-overweight children. Learning and Motivation, 39(3), 243?255.
Fan, X. R., Wang, Y. S., Chang, D., Yang, N., Rong, M. J., Zhang, Z., … Zuo, X. N. (2023). A longitudinal resource for population neuroscience of school-age children and adolescents in China. Scientific Data, 10(1), 545.
Fildes, A., van Jaarsveld, C. H., Cooke, L., Wardle, J., amp; Llewellyn, C. H. (2016). Common genetic architecture underlying young children's food fussiness and liking for vegetables and fruit. The American Journal of Clinical Nutrition, 103(4), 1099?1104.
Finnane, J. M., Jansen, E., Mallan, K. M., amp; Daniels, L. A. (2017). Mealtime structure and responsive feeding practices are associated with less food fussiness and more food enjoyment in children. Journal of Nutrition Education and Behavior, 49(1), 11?18.e1.
Fox, M. D., amp; Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700?711.
Fuchs, R. A., Branham, R. K., amp; See, R. E. (2006). Different neural substrates mediate cocaine seeking after abstinence versus extinction training: A critical role for the dorsolateral caudate?putamen. The Journal of Neuroscience, 26(13), 3584?3588.
Galloway, A. T., Fiorito, L., Lee, Y., amp; Birch, L. L. (2005). Parental pressure, dietary patterns, and weight status among girls who are “picky eaters”. Journal of the American Dietetic Association, 105(4), 541?548.
Gao, X., Liang, Q., Wu, G., She, Y., Sui, N., amp; Chen, H. (2018). Decreased resting-state BOLD regional homogeneity and the intrinsic functional connectivity within dorsal striatum is associated with greater impulsivity in food-related decision-making and BMI change at 6-month follow up. Appetite, 127, 69?78.
Greven, C. U., Lionetti, F., Booth, C., Aron, E. N., Fox, E., Schendan, H. E., … Homberg, J. (2019). Sensory processing sensitivity in the context of environmental sensitivity: A critical review and development of research agenda. Neuroscience amp; Biobehavioral Reviews, 98, 287? 305.
Guo, S., Lu, H., amp; Zhang, J. (2018). The association between eating behavior and body mass index among preschool children. Chinese Preventive Medicine, 19(2), 81?85.
[郭思玉, 陸紅艷, 張建端. (2018). 學(xué)齡前兒童飲食行為與體質(zhì)量指數(shù)相關(guān)性研究. 中國(guó)預(yù)防醫(yī)學(xué)雜志, 19(2), 81?85.]
Haber, S. N., amp; Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4?26.
Harris, H. A., Fildes, A., Mallan, K. M., amp; Llewellyn, C. H. (2016). Maternal feeding practices and fussy eating in toddlerhood: A discordant twin analysis. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 81.
Harris, H. A., Jansen, E., Mallan, K. M., Daniels, L., amp; Thorpe, K. (2018). Do dads make a difference? Family feeding dynamics and child fussy eating. Journal of Developmental and Behavioral Pediatrics, 39(5), 415?423.
Haruno, M., amp; Kawato, M. (2006). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. Journal of Neurophysiology, 95(2), 948?959.
Haszard, J. J., Skidmore, P. M. L., Williams, S. M., amp; Taylor, R. W. (2015). Associations between parental feeding practices, problem food behaviours and dietary intake in New Zealand overweight children aged 4?8 years. Public Health Nutrition, 18(6), 1036?1043.
Hayes, A. F., amp; Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? Psychological Science, 24(10), 1918?1927.
Hommer, R. E., Seo, D., Lacadie, C. M., Chaplin, T. M., Mayes, L. C., Sinha, R., amp; Potenza, M. N. (2013). Neural correlates of stress and favorite-food cue exposure in adolescents: A functional magnetic resonance imaging study. Human Brain Mapping, 34(10), 2561?2573.
Hori, Y., Minamimoto, T., amp; Kimura, M. (2009). Neuronal encoding of reward value and direction of actions in the primate putamen. Journal of Neurophysiology, 102(6), 3530?3543.
Horien, C., Noble, S., Finn, E. S., Shen, X., Scheinost, D., amp; Constable, R. T. (2018). Considering factors affecting the connectome-based identification process: Comment on Waller et al. Neuroimage, 169, 172?175.
Horodynski, M. A., Stommel, M., Brophy-Herb, H., Xie, Y., amp; Weatherspoon, L. (2010). Populations at risk across the lifespan: Case studies: Low-income African American and non-Hispanic White mothers' self-efficacy, “picky eater” perception, and toddler fruit and vegetable consumption. Public Health Nursing, 27(5), 408?417.
Houston-Price, C., Butler, L., amp; Shiba, P. (2009). Visual exposure impacts on toddlers' willingness to taste fruits and vegetables. Appetite, 53(3), 450?453.
Jansen, P. W., Derks, I. P. M., Mou, Y., van Rijen, E. H. M., Gaillard, R., Micali, N., … Hillegers, M. H. J. (2020). Associations of parents' use of food as reward with children's eating behaviour and BMI in a population-based cohort. Pediatric Obesity, 15(11), e12662.
Jiang, T., Soussignan, R., Schaal, B., amp; Royet, J. P. (2015). Reward for food odors: An fMRI study of liking and wanting as a function of metabolic state and BMI. Social Cognitive and Affective Neuroscience, 10(4), 561?568.
Klockars, A., Pal, T., Levine, A. S., amp; Olszewski, P. K. (2021). Neural basis of dysregulation of palatability-driven appetite in Autism. Current Nutrition Reports, 10(4), 391?398.
Kong, F., He, Q., Liu, X., Chen, X., Wang, X., amp; Zhao, J. (2018). Amplitude of low-frequency fluctuations during resting state differentially predicts authentic and hubristic pride. Journal of Personality, 86(2), 213?219.
Kutbi, H. A. (2021). Picky eating in school-aged children: Sociodemographic determinants and the associations with dietary intake. Nutrients, 13(8), 2518.
Lafraire, J., Rioux, C., Giboreau, A., amp; Picard, D. (2016). Food rejections in children: Cognitive and social/environmental factors involved in food neophobia and picky/fussy eating behavior. Appetite, 96, 347?357.
Lee, M. H., Smyser, C. D., amp; Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866?1872.
Leventhal, A. M., Martin, R. L., Seals, R. W., Tapia, E., amp; Rehm, L. P. (2007). Investigating the dynamics of affect: Psychological mechanisms of affective habituation to pleasurable stimuli. Motivation and Emotion, 31(2), 145?157.
Li, G., Hu, Y., Zhang, W., Wang, J., Ji, W., Manza, P., … Wang, G. J. (2023). Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Molecular Psychiatry, 28(4), 1466?1479.
Li, W., Bian, Z., Chen, X., Wang, J., Luo, Y., Liu, Y., … Chen, H. (2023). The relationship between frontotemporal regions and early life stress in children aged 9 to 12: Evidence from multimodal fMRI. Acta Psychologica Sinica, 55(4), 572?587.
[李為, 邊子茗, 陳曦梅, 王俊杰, 羅一君, 劉永, ... 陳紅. (2023). 9~12歲兒童應(yīng)激與額顳區(qū)的關(guān)聯(lián): 來(lái)自多模態(tài)腦影像的證據(jù). 心理學(xué)報(bào), 55(4), 572?587.]
Liu, L., Tian, L., amp; Guo, J. (2019). The associations of parent-adolescent relationship with adolescent risk-taking behavior: A moderated mediating model. Psychological Development and Education, 35(2), 210?218.
[劉玲玲, 田錄梅, 郭俊杰. (2019). 親子關(guān)系對(duì)青少年冒險(xiǎn)行為的影響:有調(diào)節(jié)的中介模型. 心理發(fā)展與教育, 35(2), 210?218.]
Liu, Y., amp; Chang, C. (2023). The relationship between early childhood development and feeding practices during the dietary transitional period in rural China: A cross-sectional study. Frontiers in Public Health, 11, 1202712.
Lo, K., Cheung, C., Lee, A., Keung, V., amp; Tam, W. (2016). Associated demographic factors of instrumental and emotional feeding in parents of Hong Kong children. Journal of the Academy of Nutrition and Dietetics, 116(12), 1925?1931.
Lou, W., Wang, D., Wong, A., Chu, W. C. W., Mok, V. C. T., amp; Shi, L. (2019). Frequency-specific age-related decreased brain network diversity in cognitively healthy elderly: A whole-brain data-driven analysis. Human Brain Mapping, 40(1), 340?351.
Luo, L., amp; Han, P. (2023). Assessing food-induced emotion using functional magnetic resonance imaging: A systematic review. Food Quality and Preference, 108(19), 104877.
Machado, B., Dias, P., Lima, V., Carneiro, A., amp; Gon?alves Sónia. (2021). Frequency and correlates of picky eating and overeating in school-aged children: A Portuguese population-based study. Journal of Child and Family Studies, 30(5), 1198?1213.
Mallan, K. M., Jansen, E., Harris, H., Llewellyn, C., Fildes, A., amp; Daniels, L. A. (2018). Feeding a fussy eater: Examining longitudinal bidirectional relationships between child fussy eating and maternal feeding practices. Journal of Pediatric Psychology, 43(10), 1138?1146.
Mason, T. B. (2015). Parental instrumental feeding, negative affect, and binge eating among overweight individuals. Eating Behaviors, 17, 107?110.
Maximino, P., Leme, A. C. B., Malzyner, G., Ricci, R., Gioia, N., Fussi, C., amp; Fisberg, M. (2021). Time to reconsider feeding difficulties in healthy children: A narrative synthesis of definitions and associated factors. Nutrire, 46(2), 20.
McCormick, V., amp; Markowitz, G. (2013). Picky eater or feeding disorder? Strategies for determining the difference. Advance for NPs amp; PAs, 4(3), 18?22.
Mizuno, K., Kawatani, J., Tajima, K., Sasaki, A. T., Yoneda, T., Komi, M., … Watanabe, Y. (2016). Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome. Neuroimage: Clinical, 12, 600?606.
Modabbernia, A., Janiri, D., Doucet, G. E., Reichenberg, A., amp; Frangou, S. (2021). Multivariate patterns of brain-behavior- environment associations in the Adolescent Brain and Cognitive Development Study. Biological Psychiatry, 89(5), 510?520.
Morales, I., amp; Berridge, K. C. (2020). 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiology amp; Behavior, 227, 113152.
Morrison, H., Power, T. G., Nicklas, T., amp; Hughes, S. O. (2013). Exploring the effects of maternal eating patterns on maternal feeding and child eating. Appetite, 63, 77?83.
Nembhwani, H. V., amp; Winnier, J. (2020). Impact of problematic eating behaviour and parental feeding styles on early childhood caries. International Journal of Paediatric Dentistry, 30(5), 619?625.
Nimbley, E., Golds, L., Sharpe, H., Gillespie-Smith, K., amp; Duffy, F. (2022). Sensory processing and eating behaviours in autism: A systematic review. European Eating Disorders Review, 30(5), 538?559.
Northstone, K., amp; Emmett, P. (2013). The associations between feeding difficulties and behaviours and dietary patterns at 2 years of age: The ALSPAC cohort. Maternal amp; Child Nutrition, 9(4), 533?542.
Paakki, J.J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., … Kiviniemi, V. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Research, 1321, 169?179.
Pelchat, M. L., Johnson, A., Chan, R., Valdez, J., amp; Ragland, J. D. (2004). Images of desire: Food-craving activation during fMRI. Neuroimage, 23(4), 1486?1493.
Pereboom, J., Thijs, C., Eussen, S., Mommers, M., amp; Gubbels, J. S. (2023). Association of picky eating around age 4 with dietary intake and weight status in early adulthood: A 14-year follow-up based on the KOALA birth cohort study. Appetite, 188, 106762.
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. The American Journal of Psychiatry, 166(6), 702?710.
Plassmann, H., Schelski, D. S., Simon, M. C., amp; Koban, L. (2022). How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. Wiley Interdisciplinary Reviews. Cognitive Science, 13(1), e1562.
Podsakoff, P. M., MacKenzie, S. B., amp; Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(1), 539?569.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., amp; Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676?682.
Robinson, T. E., amp; Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive?sensitization view. Addiction, 95(S2), 91?117.
Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J., amp; Simpson, S. J. (1986). Sensory-specific satiety: Food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Research, 368(1), 79?86.
Royet, J. P., Meunier, D., Torquet, N., Mouly, A. M., amp; Jiang, T. (2016). The neural bases of disgust for cheese: An fMRI Study. Frontiers in Human Neuroscience, 10, 511.
Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., amp; Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506?518.
Smith, A. D., Herle, M., Fildes, A., Cooke, L., Steinsbekk, S., amp; Llewellyn, C. H. (2017). Food fussiness and food neophobia share a common etiology in early childhood. Journal of Child Psychology and Psychiatry, 58(2), 189?196.
Stoeckel, L. E., Weller, R. E., Cook, E. W., Twieg, D. B., Knowlton, R. C., amp; Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage, 41(2), 636?647.
Taylor, C. M., amp; Emmett, P. M. (2019). Picky eating in children: Causes and consequences. Proceedings of the Nutrition Society, 78(2), 161?169.
Taylor, C. M., Northstone, K., Wernimont, S. M., amp; Emmett, P. M. (2016). Picky eating in preschool children: Associations with dietary fibre intakes and stool hardness. Appetite, 100, 263?271.
Taylor, C. M., Wernimont, S. M., Northstone, K., amp; Emmett, P. M. (2015). Picky/fussy eating in children: Review of definitions, assessment, prevalence and dietary intakes. Appetite, 95, 349?359.
Temple, J. L., Chappel, A., Shalik, J., Volcy, S., amp; Epstein, L. H. (2008). Daily consumption of individual snack foods decreases their reinforcing value. Eating Behaviors, 9(3), 267?276.
Terenzi, D., Madipakkam, A. R., Molter, F., Mohr, P. N. C., Losecaat Vermeer, A. B., Liu, L., amp; Park, S. Q. (2022). Neural correlates underlying social-cue-induced value change. The Journal of Neuroscience, 42(32), 6276?6284.
Tharner, A., Jansen, P. W., Kiefte-de Jong, J. C., Moll, H. A., van der Ende, J., Jaddoe, V. W. V., … Franco, O. H. (2014). Toward an operative diagnosis of fussy/picky eating: A latent profile approach in a population-based cohort. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 14.
Tooley, U. A., Bassett, D. S., amp; Mackey, A. P. (2021). Environmental influences on the pace of brain development. Nature Reviews Neuroscience, 22(6), 372?384.
van den Bosch, I., Dalenberg, J. R., Renken, R., van Langeveld, A. W., Smeets, P. A., Griffioen-Roose, S., … Boesveldt, S. (2014). To like or not to like: Neural substrates of subjective flavor preferences. Behavioural Brain Research, 269, 128?137.
Varangis, E., Razlighi, Q., Habeck, C. G., Fisher, Z., amp; Stern, Y. (2019). Between-network functional connectivity is modified by age and cognitive task domain. Journal of Cognitive Neuroscience, 31(4), 607?622.
Waller, L., Walter, H., Kruschwitz, J. D., Reuter, L., Müller, S., Erk, S., amp; Veer, I. M. (2017). Evaluating the replicability, specificity, and generalizability of connectome fingerprints. Neuroimage, 158, 371?377.
Wang, J., Tang, L., Wang, M., Wu, G., Li, W., Wang, Y., … Wang, Z. (2023). Fronto-temporal dysfunction in appetitive regulation of bulimia nervosa with affective disorders: A regional homogeneity and remote connectivity pattern analysis. Journal of Affective Disorders, 340, 280?289.
Wang, S., Zhao, Y., Cheng, B., Wang, X., Yang, X., Chen, T., … Gong, Q. (2018). The optimistic brain: Trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Human Brain Mapping, 39(10), 3943?3955.
Wardle, J., Guthrie, C. A., Sanderson, S., amp; Rapoport, L. (2001). Development of the children's eating behaviour questionnaire. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(7), 963?970.
Wardle, J., Herrera, M. L., Cooke, L., amp; Gibson, E. L. (2003). Modifying children's food preferences: The effects of exposure and reward on acceptance of an unfamiliar vegetable. European Journal of Clinical Nutrition, 57(2), 341?348.
Wolfe, K., Olds, D., Asperin, A., Phillips, W., DeSanto, J. R., Healthcare, O. S. F., amp; Liu, W. C. (2015, July). How neophilics see food differently: Evidence from fMRIs. Paper presented at the meeting of the Annual International Council on Hotel, Restaurant, and Institutional Education Summer Conference, Orlando, FL.
Wolstenholme, H., Heary, C., amp; Kelly, C. (2019). Fussy eating behaviours: Response patterns in families of school-aged children. Appetite, 136, 93?102.
Wolstenholme, H., Kelly, C., Hennessy, M., amp; Heary, C. (2020). Childhood fussy/picky eating behaviours: A systematic review and synthesis of qualitative studies. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 2.
Xu, Z., Zhao, W., Wang, H., Tian, Y., amp; Lei, X. (2023). Functional connectivity between dorsal attention and default mode networks mediates subjective sleep duration and depression in young females. Journal of Affective Disorders, 325, 386?391.
Xue, Y., Lee, E., Ning, K., Zheng, Y., Ma, D., Gao, H., … Zhang, Y. (2015). Prevalence of picky eating behaviour in Chinese school-age children and associations with anthropometric parameters and intelligence quotient. A cross-sectional study. Appetite, 91, 248?255.
Yan, C. G., Wang, X. D., Zuo, X. N., amp; Zang, Y. F. (2016). DPABI: Data processing amp; analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339?351.
Yang, J., Gohel, S., amp; Vachha, B. (2020). Current methods and new directions in resting state fMRI. Clinical Imaging, 65, 47?53.
Yarkoni, T., amp; Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100?1122.
Yuan, Z., Wang, W., Zhang, X., Bai, X., Tang, H., Mei, Y., … Wang, Y. (2022). Altered functional connectivity of the right caudate nucleus in chronic migraine: A resting-state fMRI study. The Journal of Headache and Pain, 23(1), 154.
Zang, Y., Jiang, T., Lu, Y., He, Y., amp; Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394?400.
Zhang, H., Jiang, X., Zhang, Y. H., Yuan, J., Tan, Z. J., Xu, T., amp; Shang, L. (2021). Development and preliminary evaluation of Chinese school-aged children's eating behavior scale. Journal of Health, Population, and Nutrition, 40(1), 41.
Zhang, P., Liu, Y., Lv, H., Li, M., Yu, F., Wang, Z., … Wang, Z. (2019). Integration of neural reward processing and appetite-related signaling in obese females: Evidence from Resting-State fMRI. Journal of Magnetic Resonance Imaging, 50(2), 541?551.
Zheng, L., Song, D., Chen, C., Li, F., amp; Zhu, D. (2016). Reliability and validity of a Chinese version of Child Feeding Questionnaire among parents of preschoolers. Chinese Journal of Child Health Care, 24(10), 1019?1023.
[鄭麗霞, 宋道平, 陳楚琳, 李芳芳, 朱大喬. (2016). 中文版兒童喂養(yǎng)問(wèn)卷在學(xué)齡前兒童家長(zhǎng)中的信效度分析. 中國(guó)兒童保健雜志, 24(10), 1019?1023.]
Zhou, H., amp; Long, L. R. (2004). Statistical remedies for common method biases. Advances in Psychological Science, 12(6), 942?950.
[周浩, 龍立榮. (2004). 共同方法偏差的統(tǒng)計(jì)檢驗(yàn)與控制方法. 心理科學(xué)進(jìn)展, 12(6), 942?950.]
Zickgraf, H. F., amp; Elkins, A. (2018). Sensory sensitivity mediates the relationship between anxiety and picky eating in children/ adolescents ages 8?17, and in college undergraduates: A replication and age-upward extension. Appetite, 128, 333?339.
Zickgraf, H. F., Richard, E., Zucker, N. L., amp; Wallace, G. L. (2022). Rigidity and sensory sensitivity: Independent contributions to selective eating in children, adolescents, and young adults. Journal of Clinical Child amp; Adolescent Psychology, 51(5), 675?687.
Zou, Q., Wu, C. W., Stein, E. A., Zang, Y., amp; Yang, Y. (2009). Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage, 48(3), 515?524.
Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., … Milham, M. P. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432?1445.
Zeng, S. Y. (2018). The impact of dietary behaviors on executive functions in children: The mediating role of body mass index (Unpublished master’s thesis). Shaanxi Normal University, Xi'an, China.
[曾思瑤. (2018). 飲食行為對(duì)兒童執(zhí)行功能的影響:BMI指數(shù)的中介作用 (碩士學(xué)位論文). 陜西師范大學(xué), 西安].
The impact of instrumental feeding on picky eating behavior in children
aged 9 to 12: Evidence from resting-state fMRI
CUI Yicen1, ZHANG Yixiao1, CHEN Ximei1, XIAO Mingyue1, LIU Yong1,2, SONG Shiqing1,
GAO Xiao1,2, GUO Cheng1,2, CHEN Hong1,2,3
(1 Faculty of Psychology, Southwest University, Chongqing 400715, China)
(2 Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China)
(3 Research Center of Psychology and Social Development, Chongqing 400715, China)
Abstract
Picky eating is a common dietary issue among children characterized by lack of variety of foods consumed due to rejection of familiar (or unfamiliar) foods. The influencing factor model of picky eating behavior in children indicates that environmental and cognitive factors are key elements influencing this. Studies have found that instrumental feeding exacerbates picky eating behavior in children. However, due to the relatively young age of children in previous studies, research on the relationship between instrumental feeding and picky eating behaviors in school-aged children is insufficient. Furthermore, the brain plays a central role in guiding eating behavior; however, to date, limited neuroscientific research on the neural basis of picky eating behaviors in school-aged children exists. This study aimed to utilize resting-state functional magnetic resonance imaging (rs-fMRI) data combined with a machine learning method to explore the neural basis of picky eating behaviors in children. Additionally, it attempted to show the neural mechanisms through which instrumental feeding influences picky eating behavior.
A total of 139 children were recruited for this study. Instrumental feeding and picky eating behaviors were assessed through parent-reported measurements and rs-fMRI was conducted. A total of 87 children were included in the formal analyses as those who did not participate in the two behavioral measurements and with unqualified rs-fMRI scans were excluded. This study utilized regional homogeneity and functional connectivity to evaluate the resting-state neural substrates of picky eating behaviors. Subsequently, a machine learning method is employed to validate the stability of our results. Additionally, a mediation model was constructed to investigate the mediating role of resting-state neural substrates in the relationship between instrumental feeding and picky eating behavior.
Results showed that picky eating behavior was positively correlated with regional homogeneity in the right caudate. Functional connectivity results showed that picky eating behavior was positively correlated with functional connectivity between the right caudate and left putamen. A prediction analysis based on a cross-validation machine learning method indicated a significant correlation between picky eating behavior scores predicted by the aforementioned neural substrates (i.e., regional homogeneity in the right caudate and functional connectivity between the right caudate and left putamen) and the actual observed picky eating behavior scores. The mediation model further suggested that functional connectivity between the right caudate and left putamen could mediate the relationship between instrumental feeding and picky eating behavior. Specifically, instrumental feeding might negatively influence the functional connectivity between the right caudate and left putamen, and further reduce picky eating behavior.
By combining resting-state regional homogeneity and functional connectivity analyses, this study detected altered functional brain activity related to picky eating behaviors in children aged 9 to 12. Specifically, hyperactive neural interactions within the brain areas involved in sensory sensitivity and reward processing may explain the manifestation of picky eating behavior in children. Additionally, instrumental feeding negatively influences picky eating behavior through brain activity in regions involved in sensory sensitivity and reward processing. This study provides new insights into the resting-state neural substrates of children's picky eating behavior, extends the influencing factor model of children's picky eating behavior, and provides theoretical support for interventions to improve poor picky eating behavior in children through parental feeding practices.
Keywords "picky eating behavior, instrumental feeding, children, resting-state fMRI