摘要: 針對(duì)含無(wú)壓段的長(zhǎng)距離調(diào)水工程,采用二階Godunov格式的有限體積法進(jìn)行有壓與無(wú)壓交接水力計(jì)算模擬.首先根據(jù)有限體積法,分別對(duì)有壓與無(wú)壓的控制方程離散,采用Riemann求解器計(jì)算通量,并引入MINMOD斜率限制器進(jìn)行數(shù)據(jù)重構(gòu).邊界處采用虛擬邊界,實(shí)現(xiàn)了計(jì)算區(qū)域與邊界處的統(tǒng)一.在1個(gè)無(wú)壓計(jì)算時(shí)步內(nèi),進(jìn)行數(shù)個(gè)有壓計(jì)算,從而實(shí)現(xiàn)有壓與無(wú)壓的交接計(jì)算.將所建模型與傳統(tǒng)特征線法計(jì)算結(jié)果進(jìn)行對(duì)比,驗(yàn)證了所建模型的精確性.結(jié)果表明,在庫(kù)朗數(shù)小于1.00時(shí),MOC在有壓流與無(wú)壓流均會(huì)產(chǎn)生較大的計(jì)算誤差,而FVM計(jì)算更加準(zhǔn)確.對(duì)比了有壓與無(wú)壓交接水力計(jì)算結(jié)果與有壓段獨(dú)立計(jì)算的結(jié)果,后者結(jié)果更加保守,工程經(jīng)濟(jì)性較差,證明了提出的有壓與無(wú)壓的交接水力計(jì)算的必要性與準(zhǔn)確性.
關(guān)鍵詞: 有壓管流;明渠流;有限體積法;Godunov格式;水力瞬變
中圖分類(lèi)號(hào): TV143.1 "文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)04-0373-07
DOI:10.3969/j.issn.1674-8530.22.0249
吳金遠(yuǎn), 周領(lǐng), 胡垠盈,等.有壓與無(wú)壓交接水力系統(tǒng)有限體積法模擬分析[J].排灌機(jī)械工程學(xué)報(bào),2024,42(4):373-379,387.
WU Jinyuan, ZHOU Ling, HU Yinying, et al. Finite volume method simulation analysis of combined hydraulic transients of pressu-rized pipe flow and open channel flow[J].Journal of drainage and irrigation machinery engineering(JDIME),2024,42(4):373-379,387.(in Chinese)
Finite volume method simulation analysis of combined hydraulic
transients of pressurized pipe flow and open channel flow
WU Jinyuan1,2, ZHOU Ling1,3*, HU Yinying1, XU Yuyang1
(1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu 210098,China; 2. Shanghai Muni-cipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China; 3. Yangtze Institute for Conservation and Development, Nanjing, Jiangsu 210098, China)
Abstract: The finite volume method (FVM) of the second-order Godunov scheme was used to simulate the long-distance water conveyance system with pressurized and open channel sections. Firstly, the governing equations of pressurized pipe flow and open channel flow were respectively discretized according to FVM, the flux was calculated by the Riemann solver, and the MINMOD slope limiters were introduced to avoid spurious oscillations during data reconstruction. The virtual-boundary approach was presented to achieve a unified computation scheme for all the control volumes at the internal domain and boundaries. In an open channel calculation time interval, several pressure calculations were carried out to realize the joint calculation of pressurized pipe flow and open channel flow. The model proposed in this paper was compared with the traditional method of characteristics (MOC) to verify the accuracy of the proposed model, and the sensitivity of the calculation time interval was analyzed. The results show that when the Courant number is less than 1.00, MOC will produce large calculation errors in both pressurized pipe flow and open channel flow, while FVM calculations are more accurate. The results of the combined hydraulic calculation of pressurized pipe flow and open channel flow were compared with that of the independent calculation of the pressurized section. The latter result is more conservative, which makes the economics of the construction design stage poor. Therefore, the joint calculation of pressurized pipe flow and open channel flow proposed in this study is of high necessity.
Key words: pressurized pipe flow;open channel flow;finite volume method;Godunov scheme;hydraulic transients
由于水資源分布的不均勻性以及人類(lèi)社會(huì)對(duì)水需求的不均衡性,長(zhǎng)距離調(diào)水已經(jīng)成為必然.中國(guó)已有南水北調(diào)、引黃濟(jì)青、東深供水等工程[1-2],能緩解和解決部分地區(qū)缺水的迫切需要[3].而隨著輸水規(guī)模的日益增大,長(zhǎng)距離輸水系統(tǒng)逐步包含有壓流、無(wú)壓重力流以及有壓與無(wú)壓相結(jié)合的復(fù)雜供水系統(tǒng)等,而在這些復(fù)雜系統(tǒng)運(yùn)行中往往存在著高壓力、大流量、多流態(tài)等特點(diǎn)[4-6],該類(lèi)工程對(duì)水力運(yùn)行安全可靠性、控制精準(zhǔn)性要求很高[7-8],因此,對(duì)該類(lèi)工程的精確數(shù)值模擬是十分必要的.
現(xiàn)階段,對(duì)于輸水系統(tǒng)水力瞬變常用的數(shù)值模擬計(jì)算方法為特征線法(method of characteristics, MOC),但MOC在復(fù)雜管網(wǎng)系統(tǒng)中,受制于庫(kù)朗數(shù)條件[9],在有壓瞬變流中需要進(jìn)行插值計(jì)算或者調(diào)整波速進(jìn)行計(jì)算;而在無(wú)壓非恒定流中,其波速時(shí)刻都會(huì)產(chǎn)生變化,因此只能進(jìn)行插值計(jì)算,從而產(chǎn)生較大的計(jì)算誤差.而在無(wú)壓非恒定流中,隱式差分法也常常被使用,例如Preissman隱式法,但其編碼計(jì)算更復(fù)雜,效率也較低[10].綜上所述, 由于MOC計(jì)算缺乏穩(wěn)定性,而隱式差分法效率低下,所以針對(duì)含有無(wú)壓段的復(fù)雜水力輸水系統(tǒng),需建立一種新的求解方式,以彌補(bǔ)上述方法的缺陷.
有限體積法(finite volume method, FVM)最早被運(yùn)用于求解淺水方程,而鮮用于有壓管流.ZHAO等[11]基于Godunov求解格式,采用Riemann求解方法,得到了一階與二階的水錘計(jì)算格式.LEN等[12]建立和評(píng)估了一種管道內(nèi)部與邊界處均具有二階Godunov精度的有限體積法求解格式.而后不僅將該格式應(yīng)用于有壓管流,還拓展至明渠非恒定流、均質(zhì)流以及明滿(mǎn)交替流之中.畢勝等[13]基于Godunov格式,建立了二維水流-輸運(yùn)方程的高精度耦合數(shù)學(xué)模型.趙越等[14]采用Godunov格式,并引入雙虛擬邊界對(duì)水錘方程進(jìn)行數(shù)值求解,實(shí)現(xiàn)了計(jì)算區(qū)域內(nèi)部與邊界處的統(tǒng)一,并研究了庫(kù)朗數(shù)、對(duì)流項(xiàng)等參數(shù)的敏感性.
為了解決MOC在處理有壓流與無(wú)壓流工序復(fù)雜、精度較低的問(wèn)題,文中采用二階Godunov的FVM,對(duì)某含有明渠段的長(zhǎng)距離輸水工程的水力瞬變進(jìn)行模擬,并分析有壓段獨(dú)立計(jì)算以及計(jì)算時(shí)間步長(zhǎng)對(duì)有壓與無(wú)壓聯(lián)合計(jì)算的影響.
2 計(jì)算分析
2.1 簡(jiǎn)單算例驗(yàn)證
為了驗(yàn)證上述有壓流與無(wú)壓流數(shù)學(xué)模型及其求解格式的正確性,分別對(duì)其進(jìn)行模型驗(yàn)證.
2.1.1 有壓段模型驗(yàn)證
設(shè)置一上游水庫(kù),下游閥門(mén)的簡(jiǎn)單管道,管道長(zhǎng)500 m,波速為1 000 m/s,上游水頭為10 m,初始流速為0.1 m/s,重力加速度為9.806 m/s2,總的計(jì)算時(shí)間取10 s,下游閥門(mén)設(shè)置為瞬時(shí)關(guān)閉,管道無(wú)摩阻,將閥門(mén)處的水錘計(jì)算結(jié)果與MOC計(jì)算結(jié)果進(jìn)行對(duì)比,并分析庫(kù)朗數(shù)Cr對(duì)2種計(jì)算格式的影響.
根據(jù)圖3與圖4的計(jì)算結(jié)果(其中精確解為管道在無(wú)摩阻條件下理想的水錘波計(jì)算結(jié)果),當(dāng)庫(kù)朗數(shù)Cr為1.00時(shí),MOC與FVM均能夠模擬精確計(jì)算結(jié)果,驗(yàn)證了文中有壓流模型的準(zhǔn)確性.同時(shí),當(dāng)庫(kù)朗數(shù)小于1.00時(shí),2種計(jì)算格式均會(huì)產(chǎn)生一定的數(shù)值耗散,但相比于MOC,在相同庫(kù)朗數(shù)條件下,F(xiàn)VM數(shù)值耗散更小,說(shuō)明文中所采用的模型計(jì)算更加準(zhǔn)確.
2.1.2 無(wú)壓段模型驗(yàn)證
選擇LEN[19]論文中的算例進(jìn)行無(wú)壓流模型的驗(yàn)證.該模型參數(shù):管道長(zhǎng)1 000 m,截面為直徑15 m的圓形,管道中點(diǎn)處存在一閘門(mén),閘門(mén)上游水深為10 m,下游水深為3 m,初始時(shí)刻為靜水狀態(tài),上下游出口處均無(wú)進(jìn)出流量.閘門(mén)設(shè)置為瞬時(shí)開(kāi)啟,將文中模型計(jì)算所得的管道內(nèi)水面線與MOC、論文中的結(jié)果進(jìn)行對(duì)比.具體計(jì)算結(jié)果如下:
根據(jù)圖5所示的模擬計(jì)算結(jié)果(以LEN[19]作為精確解),圖中x為明渠位置,y為明渠水深.在該算例中,相比于MOC,文中所建模型的計(jì)算值結(jié)果與精確解更接近,這是由于在無(wú)壓非恒定流中,其波速并不固定,會(huì)隨著時(shí)間與空間的變化而變化,因此, MOC在進(jìn)行無(wú)壓非恒定流計(jì)算時(shí),必須進(jìn)行插值計(jì)算,從而造成了誤差,且誤差隨計(jì)算時(shí)間的延長(zhǎng)而增大.這表明了文中所建立的求解無(wú)壓非恒定流模型的正確性與優(yōu)越性.
2.2 工程實(shí)例分析
已知某大型輸調(diào)水工程由有壓輸水段與無(wú)壓重力流段組成,2部分由一高位水池相連接.該工程的具體布置圖如圖6所示.
由于該工程中無(wú)壓段長(zhǎng)度約為120 km,約為有壓段長(zhǎng)度的12倍,為了提高模擬計(jì)算精度,將無(wú)壓段長(zhǎng)度進(jìn)行縮減.簡(jiǎn)化后的管道參數(shù)如表1所示,表中L為管長(zhǎng),D為管徑, μ為管道糙率,sp為管道坡率.
在該工程中,5臺(tái)水泵完全相同,泵組相應(yīng)的參數(shù):額定流量Qr=22 m3/s,額定揚(yáng)程Hr=162 m,額定轉(zhuǎn)速nr=333.33 r/min,額定效率ηr=0.924,額定功率50 000 kW,單臺(tái)機(jī)組的轉(zhuǎn)動(dòng)慣量GD2=330 t·m2.前池水位取上游設(shè)計(jì)水位0.72 m,高位水池池底高程142 m,設(shè)計(jì)水位148.50 m,下游水庫(kù)水位為6.83 m;調(diào)壓室主室為直筒型,橫截面為D=12 m的圓形,阻抗口直徑為3.5 m;高位水池面積為4 500 m2;泵后閥門(mén)采用折線關(guān)閉規(guī)律,轉(zhuǎn)折開(kāi)度為0.2,第1段關(guān)閉時(shí)間為25 s,第2段關(guān)閉時(shí)間為35 s.
已知該工程對(duì)計(jì)算參數(shù)存在以下要求:最大反轉(zhuǎn)轉(zhuǎn)速不超過(guò)400 r/min,最大水頭不超過(guò)210 m,不出現(xiàn)負(fù)壓,調(diào)壓室最高涌浪高度不大于175 m,不小于76 m.采用二階Godunov格式的有限體積法對(duì)上述系統(tǒng)的五泵失電工況進(jìn)行數(shù)值模擬,分析各項(xiàng)參數(shù)控制值是否滿(mǎn)足工程要求,具體計(jì)算結(jié)果如圖7所示.
根據(jù)圖7的計(jì)算結(jié)果,二階Godunov格式的有限體積法對(duì)于類(lèi)似的復(fù)雜工程也有很好的適用性.且文中所計(jì)算的各項(xiàng)參數(shù)均滿(mǎn)足工程要求,同時(shí)根據(jù)圖7d高位水池水位H″的計(jì)算結(jié)果,文中對(duì)于有壓與無(wú)壓聯(lián)合的計(jì)算符合預(yù)期結(jié)果,且基本滿(mǎn)足工程要求,即該種有壓與無(wú)壓的聯(lián)合求解方式是合理的.
為了研究不同參數(shù)對(duì)于系統(tǒng)中水力瞬變結(jié)果的影響,對(duì)系統(tǒng)中參數(shù)進(jìn)行敏感性分析.
1) 聯(lián)合計(jì)算的必要性分析
為了驗(yàn)證聯(lián)合計(jì)算的必要性,將高位水池考慮為恒水位水池進(jìn)行獨(dú)立計(jì)算,以此來(lái)比較有壓段的計(jì)算結(jié)果,具體計(jì)算結(jié)果如圖8以及表2所示,圖中H為泵出口處水頭,H′為調(diào)壓室水位.
根據(jù)圖8與表2的計(jì)算結(jié)果,當(dāng)把有壓段進(jìn)行獨(dú)立計(jì)算時(shí),對(duì)于水泵的最大反轉(zhuǎn)轉(zhuǎn)速nmax-r沒(méi)有影響,但是泵出口處的最大壓力Hmax-p與調(diào)壓室的最大涌浪高度Hmax-s計(jì)算結(jié)果更大.這是由于水泵最大反轉(zhuǎn)轉(zhuǎn)速一般出現(xiàn)在閥門(mén)快關(guān)時(shí)間段內(nèi),而此時(shí)高位水池并不會(huì)出現(xiàn)過(guò)大的水位波動(dòng);而隨著時(shí)間流逝,高位水池中的水會(huì)在重力作用下從無(wú)壓段流走,進(jìn)而導(dǎo)致2種情況下在后續(xù)的計(jì)算中產(chǎn)生較大的差異.因此,在實(shí)際工程設(shè)計(jì)中,獨(dú)立計(jì)算可以保證安全性有較大的裕度,但是經(jīng)濟(jì)性較差,而聯(lián)合計(jì)算結(jié)果更貼近實(shí)際情況,且可以一定程度減少調(diào)壓井等平水建筑物的施工量,經(jīng)濟(jì)性更好,因此,對(duì)于含有有壓與無(wú)壓的復(fù)雜輸調(diào)水工程,聯(lián)合計(jì)算是必要的.
2) 計(jì)算時(shí)間步長(zhǎng)的影響
根據(jù)文中的1.3節(jié)可以得出,文中對(duì)于有壓與無(wú)壓的聯(lián)合計(jì)算主要取決于有壓段與無(wú)壓段的計(jì)算時(shí)間步長(zhǎng),為了既能夠滿(mǎn)足聯(lián)合計(jì)算精度的要求,同時(shí)還有著較高的計(jì)算效率.文中分別選擇不同的有壓段的計(jì)算時(shí)間步長(zhǎng)(0.010,0.025,0.050,0.100 s),與文中所采用的0.070 s的計(jì)算結(jié)果進(jìn)行對(duì)比分析,并保持各時(shí)間間隔下庫(kù)朗數(shù)均為0.95左右,以降低庫(kù)朗數(shù)對(duì)計(jì)算結(jié)果的影響.要求各計(jì)算時(shí)間步長(zhǎng)下的總計(jì)算時(shí)間為1 200 s,并分別選擇第1個(gè)涌波極大值點(diǎn)與最后1個(gè)極小值點(diǎn)進(jìn)行誤差分析.具體計(jì)算結(jié)果如圖9、表3所示(表中所計(jì)算的誤差值均是以0.01 s的計(jì)算結(jié)果為標(biāo)準(zhǔn)),表中tcpu為程序計(jì)算時(shí)長(zhǎng),HA為A點(diǎn)的水頭,εA為A點(diǎn)處的計(jì)算相對(duì)誤差,HB為B點(diǎn)處的水頭,εB為B點(diǎn)處的計(jì)算相對(duì)誤差.
根據(jù)圖9與表3的計(jì)算結(jié)果所示,取不同的時(shí)間間隔對(duì)于計(jì)算結(jié)果的精度確實(shí)有著一定的影響.當(dāng)時(shí)間間隔較大時(shí),點(diǎn)A和點(diǎn)B的計(jì)算結(jié)果均小于時(shí)間間隔較小時(shí)的計(jì)算結(jié)果.且各時(shí)間間隔下的計(jì)算結(jié)果與0.01 s的相對(duì)誤差隨著時(shí)間間隔的變大而變大,且隨著計(jì)算時(shí)間的延長(zhǎng),各時(shí)間間隔下的相對(duì)誤差都會(huì)增大.但是當(dāng)時(shí)間間隔變小時(shí),其計(jì)算時(shí)間呈現(xiàn)指數(shù)級(jí)增加.例如,文中所選擇的時(shí)間間隔為0.07 s,計(jì)算間隔為0.01 s的7倍,但是其計(jì)算時(shí)間僅約為0.01 s的1/40,而其在A,B這2點(diǎn)的具體計(jì)算的絕對(duì)誤差均小于0.05 m,A點(diǎn)相對(duì)誤差也不足1%,且在過(guò)渡過(guò)程的計(jì)算中,往往最主要的在于瞬變剛開(kāi)始時(shí)刻各參數(shù)的變化值,且當(dāng)計(jì)算至點(diǎn)A時(shí),水泵處閥門(mén)已經(jīng)完全關(guān)閉,此時(shí)管道內(nèi)的主要瞬變過(guò)程已經(jīng)結(jié)束.因此,選擇較大的計(jì)算時(shí)間步長(zhǎng),不僅對(duì)于該工程中整個(gè)瞬變過(guò)程中控制參數(shù)的計(jì)算結(jié)果影響不大,而且還可以大大提高對(duì)該工程的計(jì)算模擬效率.
3 結(jié) 論
1) 分別建立了二階Godunov格式的FVM有壓瞬變流與無(wú)壓非恒定流的數(shù)學(xué)模型,并實(shí)現(xiàn)了對(duì)某含有明渠段的長(zhǎng)距離輸水工程的水力瞬變計(jì)算模擬.
2) 無(wú)論是有壓流還是無(wú)壓流,MOC均受限于庫(kù)朗數(shù)條件,在Crlt;1.00時(shí),會(huì)產(chǎn)生嚴(yán)重的數(shù)值耗散,造成計(jì)算結(jié)果的誤差,而二階Godunov格式的FVM對(duì)于庫(kù)朗數(shù)的影響小,計(jì)算更加精確.
3) 當(dāng)有壓段進(jìn)行獨(dú)立計(jì)算時(shí),其由于未考慮高位水池通過(guò)無(wú)壓段流走的流量,使得有壓段的計(jì)算結(jié)果過(guò)于保守,可能使得工程在設(shè)計(jì)施工階段時(shí)的經(jīng)濟(jì)性較差.
4) 當(dāng)選擇較大的計(jì)算時(shí)間步長(zhǎng)時(shí),其計(jì)算結(jié)果與小時(shí)間間隔會(huì)有一定差異,但是其對(duì)于整個(gè)瞬變過(guò)程中各參數(shù)的計(jì)算結(jié)果并無(wú)過(guò)大影響,且還可以大大提高水力瞬變的模擬精度.
參考文獻(xiàn)(References)
[1] 鄭志民.長(zhǎng)距離引水系統(tǒng)超大型輸水泵站工藝設(shè)計(jì)要點(diǎn)[J].凈水技術(shù),2021,40(S2):36-40.
ZHENG Zhimin. Key points of process design for ultra-large pumping station of long-distance water diversion system[J]. Water purification technology, 2021, 40(S2): 36-40.(in Chinese)
[2] 何凡,路培藝,尹婧,等.中國(guó)水資源空間均衡評(píng)價(jià)與空間關(guān)聯(lián)性分析[J]. 水資源保護(hù), 2023,39(3):148-155.
HE Fan, LU Peiyi, YIN Jing,et al. Spatial equilibrium evaluation and spatial correlation analysis of water resources in China[J]. Water resources protection, 2023,39(3):148-155. (in Chinese)
[3] WANG K, WANG Y, MA J. Transient numerical simulation of gas-liquid two-phase flow in long distance water supply pipeline[J]. IOP conference series: earth and environmental science, 2020, 510:052042.
[4] 路夢(mèng)瑤, 田雨, 劉小蓮. 長(zhǎng)距離有壓輸水系統(tǒng)事故停泵水錘防護(hù)措施研究[J]. 水利水電技術(shù)(中英文), 2022, 53(S2): 243-248.
LU Mengyao, TIAN Yu, LIU Xiaolian. Study on protective measures of water hammer caused by accidental pump shutdown in long-distance pressurized water conveyance system[J]. Water resources and hydropower engineering, 2022, 53(S2): 243-248. (in Chinese)
[5] 沈炬鵬, 許璞璇, 彭旭, 等. 深埋長(zhǎng)距離有壓輸水隧洞檢修通風(fēng)局部阻力特性研究[J]. 水利水電技術(shù)(中英文), 2022, 53(S1): 380-387.
SHEN Jupeng, XU Puxuan, PENG Xu, et al. Research on local resistance characteristics for maintenance ventilation of deep-buried long distance pressurized water transmission tunnel[J]. Water resources and hydropower engineering, 2022, 53(S1): 380-387. (in Chinese)
[6] ZHOU J, DENG T, PENG J" H, et al. Experimental study on pressure pulses in long-distance gas pipeline during the pigging process [J]. Science progress, 2020, 103(1):1-23.
[7] 陳益民, 程文超,周建旭,等.白鶴灘水電站輸水發(fā)電系統(tǒng)水力干擾穩(wěn)定性分析[J]. 水利水電科技進(jìn)展,2022,42(5):78-84.
CHEN Yimin,CHENG Wenchao,ZHOU Jianxu,et al. Stability analysis on hydraulic disturb in water conveyance and hydropower system of Baihetan Hydropower Station[J]. Advances in science and technology of water resources,2022,42(5):78-84. (in Chinese)
[8] 張棟俊,宋欣欣,姜宇,等.基于Bentley-Hammer軟件的長(zhǎng)距離壓力輸水工程水錘防護(hù)措施設(shè)計(jì)研究[J].給水排水,2021,47(S2):473-478.
ZHANG Dongjun, SONG Xinxin, JIANG Yu, et al. Design and research of water hammer protection measures for long-distance pressure water transmission project based on Bentley-Hammer software[J]. Water amp; wastewater engineering, 2021, 47(S2): 473-478. (in Chinese)
[9] HWANG Y H. Development of a characteristic particle method for water hammer simulation[J]. Journal of hydraulic engineering, 2013, 139(11): 1175-1192.
[10] 王楓.基于Preissman四點(diǎn)隱式差分的洪水位計(jì)算方法[J].水科學(xué)與工程技術(shù), 2018(1): 34-36.
WANG Feng. Research on flood location calculation method based on Preissman four point implicit difference[J]. Water sciences and engineering technology, 2018(1): 34-36. (in Chinese)
[11] ZHAO M, GHIDAOUI M S. Godunov-type solutions for water hammer flows[J]. Journal of hydraulic enginee-ring, 2004, 130(4): 341-348.
[12] LEN A, GHIDAOUI M, SCHMIDT A, et al. An efficient finite-volume scheme for modeling water hammer flows[M]. Toronto: Guelph Ont. CHI., 2007.
[13] 畢勝, 周建中, 陳生水,等. Godunov格式下高精度二維水流—輸運(yùn)耦合模型[J]. 水科學(xué)進(jìn)展, 2013, 24(5): 706-714.
BI Sheng, ZHOU Jianzhong, CHEN Shengshui,et" al. A high-precision two-dimensional flow-transport coupled model based on Godunov′s schemes[J]. Advances in water science, 2013, 24(5): 706-714. (in Chinese)
[14] 趙越,周領(lǐng),劉德有,等. 基于有限體積法Godunov格式的水錘計(jì)算模型[J]. 水利水電科技進(jìn)展,2019,39(01):76-81.
ZHAO Yue, ZHOU Ling, LIU Deyou, et al. Water hammer model based on finite volume method and Godunov-type scheme[J]. Advances in science and technology of water resources, 2019, 39(1): 76-81. (in Chinese)
[15] 宋利祥, 周建中, 鄒強(qiáng),等. 一維淺水方程的強(qiáng)和諧Riemann求解器[J]. 水動(dòng)力學(xué)研究與進(jìn)展:A輯, 2010,25(2):231-238.
SONG Lixiang, ZHOU Jianzhong, ZOU Qiang, et al. A well-balanced Riemann solver for one-dimensional shallow water equations[J]. Chinese journal of hydrodynamics, 2010,25(2):231-238. (in Chinese)
[16] TORO E F. Riemann solvers and numberical methods for fluid dynamics: a practical introduction[M]. Berlin: Verlag Berlin Heidelberg, 2009.
[17] 耿艷芬, 王志力, 金生. 一維淺水方程的高精度GODUNOV格式[J]. 水動(dòng)力學(xué)研究與進(jìn)展:A輯, 2005, 20(4):507-512.
GENG Yanfen, WANG Zhili, JIN Sheng. A high resolution Godunov-type scheme for one dimensional shallow water flow[J]. Chinese journal of hydrodynamics, 2005, 20(4): 507-512. (in Chinese)
[18] 周領(lǐng),吳金遠(yuǎn),王豐,等.抽水蓄能電站水力瞬變的有限體積法建模模擬[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2022, 54(6):79-86.
ZHOU Ling, WU Jinyuan, WANG Feng, et al. Numerical simulation of hydraulic transients in pumped storage power station with finite volume method[J]. Journal of Harbin Institute of Technology, 2022, 54(6):79-86. (in Chinese)
[19] LEN A S. Improved modeling of unsteady free surface, pressurized and mixed flows in storm-sewer systems [D]. United States:University of Illinois at Urban-Champaign, 2007.
(責(zé)任編輯 朱漪云)
收稿日期: 2022-10-22; 修回日期: 2023-04-03; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-11
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240408.1528.020
基金項(xiàng)目: 國(guó)家自然科學(xué)基金資助項(xiàng)目(51839008,51679066);霍英東教育基金會(huì)青年教師基金項(xiàng)目(161068)
第一作者簡(jiǎn)介: 吳金遠(yuǎn)(1997—),男,江蘇宜興人,助理工程師(wjy_hhu@163.com.),主要從事水電站、泵站水力學(xué)研究.
通信作者簡(jiǎn)介: 周領(lǐng)(1985—),男,安徽滁州人,教授(zlhhu@163.com),主要從事水電站、泵站水力學(xué)研究.