• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶劑化電子的傳奇歷史

    2021-11-17 07:40:58貝洛尼杰奎琳
    關(guān)鍵詞:薩克雷洛尼杰奎琳

    貝洛尼·杰奎琳

    (巴黎薩克雷大學(xué))

    1 Alkaline metal solutions in liquid ammonia

    In the mid-19th century,liquid ammonia was found to be able to dissolve without reaction,unlike water,sodium and other alkaline metals in intense blue solutions that were widely used,notably by Weyl[1],to effect previously difficult chemical reductions of organic or inorganic molecules[2].However,the handling of this solvent is very complex because it is liquid only below-33°C at normal pressure.It must therefore be kept cold,but also sheltered from the atmosphere,otherwise sodium would be oxidized to the air and cold ammonia would condense water vapours.In addition,metal solutions are metastable and,even very pure,they decompose very slowly into hydrogen and amide.Despite this,Kraus,assistant to A.A.Noyes at the Massachusetts Institute of Technology,decided in1904for his thesis subject to measure the conductivity of various ions in salt solutions in liquid NH3(Fig.1)[3].

    Fig.1 C.A.Kraus vacuum equipment to measure the conductivity of alkaline metal solutions in low-temperature liquid ammonia[3].

    While he had already determined the conductivity of each ion of alkaline salts,Kraus also wanted to compare these results with measurements in alkaline metal solutions and,to his surprise,their conductivity was far superior to those of salts.Stranger also,conductivity did not depend on the nature of the metal.He therefore concluded in1908[4]first that alkaline metals were dissociated in ammonia into ions,and then that the common complementary anion of these solutions,responsible for most of their conductivity and blue color,could only be a solvated electron:"the anion is an electron surrounded by solvent molecules"..."a solvated electron"...

    This audacious concept of a solvent electron,similar,despite its very different nature,to a monovalent anion stabilized by the polarization of solvent molecules,immediately prompted a great deal of work[2].Gibson and Argo established optical absorption spectra for the solvated electron in diluted alkaline and alkaline-earthous metals solutions in ammonia and methylamine[5-6]. They were characterized by a wide,intense and asymmetrical band in energy,with a maximum in the near IR.Later,it was shown that at lower temperature or higher pressure these spectra were moved to the visible[2],as were the halide absorption spectra.Like them,they have been attributed to a transfer of the charge to the molecules of the solvation layer(or CTTS,charge transfer to solvent).Early on,the expansion of the volume of the solution observed when the metal dissolved in the ammonia had suggested that the electron occupied a cavity much larger than its own size.This result inspired the early theoretical models of the structure of the solvated electron described by Ogg[7]and then by Jortner[8].The spectrum was attributed to an excitation of the1s→2p transition of a particle,in a cavity created by the mutual repulsion of hydrogen atoms of the polar solvent molecules oriented towards the electron.

    2 Ionizing radiation

    R?ntgen's[9]discovery in December1895of an invisible and very penetrating X-rays,generated by the impact of cathode rays on the anticathode of a Crookes tube,and then by H.Becquerel of the uranic rays in1896,suddenly extended the fields of photophysics and photochemistry to much more energetic radiation.Pierre and Marie Curie discovered in the pechblende in1898two new elements much more radioactive than uranium,polonium[10]and radium[11],and emitting specific radiation(Fig.2).

    Fig.2 Image of a wallet on a photographic plaque in Marie Curie's thesis[12].The radiation used was γ rays emitted by a source of radium contained in glass(the radiation β was deflected by a magnetic field).The mode of penetration is very similar to that of X-rays.

    The following year,they published the physicalchemical effects of these radiations on matter[13],in particular,in addition to the ionization of gases,the production of ozone from oxygen,and the production of molecular hydrogen and hydrogen peroxide in radioactive water solutions.The initial ions of the water are assumed to be H2O+and H2O-which,after a fast reaction with H2O,give birth respectively to the radicals OH·and H·[14].On the basis of this radical model,the radiolytic yields of products formed in various solutions can be gradually explained[15-18].

    3 The hydrated electron

    However,in the1950s,some results were beyond this[19-20].In particular in1952,G.Stein of the Hebrew University of Jerusalem found very different results for the reduction of aqueous methylene blue solutions in acidic or neutral environments[21].He concludes that in addition to the radical H-,a second reductive species should be considered.He was the first to propose the hydrated electron eaq-as an analog of the electron ammonized eam-,known in solutions of alkaline metals in liquid ammonia.The hydrated electron would come from the electron originally derived from the ionization of the water.Immediately,the theorist R.L.Platzman[21]describes in his model how this electron can escape recombination with the parent cation and thus solve the solvent.

    Despite this,the hypothesis of a hydrated electron will take a decade to impose itself.The first argument against it was the stability of eam-while eaqwould be a very short-lived intermediary.Nor could any metastable blue color of the ammoniated electron be observed after liquid ammonia irradiation by a continuous accelerator[22].Prudently,the authors concluded that his concentration may have been too low.Another difficulty was that the aqueous solutions studied in radiolysis,even deaerated,were often very acidic and in this case the hydrated electron,reacting with a proton,is actually replaced by a radical H·.In addition,even in a neutral environment,many solutes are reduced indiscriminately by H·or eaq-by giving the same products.

    On the other hand,G.Stein and J.Jortner observe a fleeting blue color by putting water or alcohol in contact with sodium under argon atmosphere,suggesting the existence,at least transient,of a solvated electron also in these liquids[23].In1958,chloroacetic acid radiolysis produced hydrogen in an acidic environment but chloride ions in a neutral environment[24].In1961,studies of the ionic force on the radiolysis of cationic or anionic solutes show that the predominant radical species in neutral environment carries a negative charge[25].

    However,in a1961review of water radiolysis by Hart and Platzman,the hydrated electron is not even mentioned.The resolution of this controversy is also not the objective of the early experiments to detect reactional intermediaries by the pulsed radiolysis method developed by Matheson and Dorfman who observe the free radical I2[26].

    Similarly,J.W.Boag[27],in his relationship of historical observations of eaq-using the pulsed radiolysis installation he had just developed at the Gray Laboratory in London,reports that E.J.Hart had in fact come to join him in order to detect free carbonate radicals.But two distinct absorption maxima are observed,one of which is found in pure water,and is moved to the infrared when the water is added with ammonia.The spectrum is therefore assigned to eaq-.The key result of this highlight was communicated to the2nd International Congress of Radiation Research in Harrogate in1962.At the same conference,J.P.Keene also reports on his observation,independently,of the new spectrum by using the pulse radiolysis installation he built at the Patterson Laboratory in Manchester,spectrum which he also assigned to the hydrated electron.Boag proposes to publish their respective results simultaneously in the same issue of the journal Nature[28-30].In the same year,J.Jortner,Ottolenghi and G.Stein observe by flash photolysis the same spectrum of eaq-produced by photodetachment from the iodide anion[31].

    Fig.3 Optical absorption spectrum of hydrated electron observedforthefirsttimebypulseradiolysisinasol utionof sodiumcarbonate(withthepeaksoftheradicalCO3-·at600 nm andeaq-at700nm)(a),andin pure water(witheaq- )(b),bothdeaerated[31].Todetectananomolarconcentration of eaq-,theoptical pathwas elongatedbyplacingthe4cm optical cellatthecenterofa multiple reflectionsystem.Atthis concentration,the decay ofeaq-byrecombinationsis veryslowandis observedformorethan50ms.

    4 The solvated electrons

    These results had a great impact and triggered a proliferation of research.A Weyl Symposium was created,with its first edition in1963[32],to commemorate the centenary since Weyl's discovery of metal solutions in ammonia.In addition to the recent works by specialists in the field,Jortner[32]presents a review on the evolution of theories on the structure of the solvated electron that preceded its semicontinuous model,which he applied not only to eam-but also for the first time to eaq-which had just been highlighted.This structure consisted of a cavity surrounded by a few polarized solvent molecules and then a continuum of solvent,characterized in particular by its density and dielectric constants,optical and static.The model accounts for the wavelengths of the respective maxima according to temperature and pressure.Very quickly,thanks to newly installed pulse radiolysis facilities and shorter pulses,a very wide variety of liquids,more or less polar,were ionized and solvated electrons detected.Despite their instability,the very similar properties of their transient absorption spectra were compared with fast IR detections in alcohols and polyols,amines,ethers,sulphides,carbonates,ionic liquids and even hydrocarbons[33-36](Fig.4),or their reactivity with series of molecules.

    Fig.4 Optical absorption spectra of electrons solvated in different liquids,calibrated into molar absorption coefficients.GLY:glycol;PD:propane diol;EG:ethylene glycol;MeOH:methanol;EtOH:ethanol;PrOH:propanol;EDA:ethane-1.2-diamine;DEA:diehanolamine;13PDA:propane-1.3-diamine;THF:tetrahydrofurane;DME:dimethylether;DEE:diethylether;Diglyme:bis(2-methoxyethyl)ether;R4NNTf2:methyl-tributyl-ammonium bis[trifluoromethyl-sulfonyl]imide;DEC:diethylcarbonate.(Adapted from[33-36]).

    Hereafter,the following editions of the Weyl Symposiums[36]have brought together experimentalists and theorists discussing solvated electrons produced either by pulsed radiolysis or by dissolution of alkaline and alkaline-earth metals in liquid ammonia,amines and certain ethers.One of the interesting aspects of the solvated electron is to appear thus as the smallest solvated chemical species which,despite its transient nature,can be formed and studied in the greatest number of environments.It is also compared with electrons trapped in irradiated ices[37].

    Thanks to the developments of the simulation,numerous theoretical models have been proposed to account for the properties of the solvated electron,including the hydrated electron,and to describe its Structure(Fig.5)[38].

    Fig.5 Structure of the hydrated electron simulated by molecular dynamics[38].The charge of the electron is delocalized in the2.5A radius cavity.H2O molecules are oriented towards the central charge by one of their H atoms.

    The pertubations of water molecules in the solvation layer are sometimes calculated[39].A recent review analyzed these models in detail.The simulated optical absorption spectrum that is closest to the experiment is composed of transitions between the fundamental state and about fifteen excited states(Fig.6)[40].

    Fig.6 Comparison between the optical absorption spectra of the hydrated electron obtained by the experiment or based on simulations based on the theory of the functional of density with3or15states[40].

    5 Box1-Instability of esolv-

    How to explain the large difference between the eammetastability in blue metal solutions in ammonia or amines,and the rapid decay of solvated electrons produced by pulse radiolysis,including in NH3(which explains why the1953experiments failed to observe any blue color[24])?In fact,the solvated electron is in a fundamental state,which would be stable if its existence were not limited by its very high chemical reactivity that depends on the conditions(and improperly characterized by a lifetime).In NH3and amines,it is inert against alkaline or alkaline-earth cations.It therefore decreases only very slowly with impurities or acidic ions slowly released from the walls of the container(the ionization product of NH3itself is only Kion-10-23M2).While in radiolysis,eam-reacts with the NH4+cations and other radical species formed simultaneously.In addition,it was shown by pulse radiolysis that in water the dismutation reaction between two eaq-was very fast in producing dihydrogen and OH-.It also occurs during the contact between water and sodium metal and produces hydrogen explosions with oxygen from the air,well known to apprentice chemists.

    But,provided that liquid ammonia is added with hydrogen to capture oxidizing radicals,and Alkaline amidurn NaNH2to capture NH4+ions,theradiationinduced electron eambecomes as stable as in metal solutions.Thanks to this inertia,the characteristic blue color was observed in this case after a simple stationary irradiation(Fig.7)[41],and also after photolysis and photodetachment from NHWhatever the mode of formation,the identity between the solvated electrons was thus definitively established.Blue eamsolutions were also obtained in NH3by electrochemistry(with alkaline halide as the electrolyte)[2,42]or by photo-injection from a semiconductor[43].

    Fig.7 Optical absorption spectrum of a hydrogen and sodium amide solution in liquid ammonia irradiated at20°C(spectrum is recorded in a sealed test tube,resistant to91.19kPa[41]).

    A.J.Swallow[44]even calculated that,given the formation of eaq-by irradiation by cosmic rays and by photodetchment from chlorides by the Sun's UV rays,its near-stationary concentration in the oceans would be about10-9molar("Many of the short-lived chemical species......are known to exist naturally......")(Fig.8).

    Fig.8 Formation of eaq-in the oceans[44].

    As early as1971,Baxendale and Wardman[45]observed for the first time after a5ns pulse the solvation dynamics of an electron in the viscousnpropanol at low temperature,which slowed down molecular movements(Fig.9).The initial spectrum is located in the infrared and the absorption at1300nm then disappears in1μs while simultaneously the spectrum of the completely solvated electron develops and stabilizes with its maximum at500nm.The first spectrum is assigned to a pre-solvated electron and the solvation time is estimated atτ1/2=50ns(Fig.9,insets).

    Fig.9 Solvation of es-in the n-propanol at152K after ionization by a5ns pulse of a pulse accelerator[45].Insets:pre-solvated electron decay at1300nm and growth of es-at500nm.

    It will be necessary to wait for the pulses of100 femtoseconds offered by the lasers with a biphotonic UV excitation for the electron solvation,much faster at room temperature,can be observed in water(τ1/2=200fs)[46](Fig.10)or polyols(τ1/2=10ps for glycerol)[47].In liquid ammonia at-50°C,solvated electrons in blue solutions were excited in the IR band at1280 nm to eject them from their solvent cavity and the relaxation time to the solvent state wasτ1/2=150fs[48],which,given the temperature,is even faster than in the water.On the other hand,the solvation relaxation of an electron in the ionic liquid[C4mpyr][NTf2],with larger molecules and heterogeneous density domains,is distinguished by two different velocity processes(τ1/2=70.4ps andτ1/2=574ps)[49].

    Fig.10 Solvation of eaq-after ionization of water molecules at 294K by a biphotonic UV excitation by a laser pulse of100fs(τ1/2=200fs)[46].

    Gradually,advances in pulse radiolysis of water solutions have helped to determine the UV optical absorption spectra of H-and OH-radicals.But after subtracting these bands from the total spectrum in pure water,it remained another component,correlated with the infrared absorption band of eaq-,and shifted like it between20and34℃to the larger wavelengths,but much less intense(Fig.11,inset)[50].With this precise deconvolution,the authors concluded that the UV component must be assigned to eaq-and that it corresponds to the edge of the absorption band,shifted to the visible,of water molecules from the solvation layer,disturbed by the transfer of the electron charge.This would therefore be the first observation of a spectrum of a solvation layer.

    Given the very comparable properties of all solvated electrons,the UV absorption spectra of very pure sodium solutions in ammonia were in turn examined at-50℃and20℃[51].In this case,the solution contains only eam-and Na+.The spectra display indeed UV absorption bands proportional to the concentration of the metal and also correlated with the IR bands of eam-(Fig.11).They are shifted from the band edge of pure ammonia,as well as those of eaq-at20℃and34℃compared to the pure water band edges(Fig.11,inset).These elements therefore support the previous interpretation of a spectrum due to solvation molecules,which,by analogy,should also appear in the spectra of all other solvated electrons.More generally,the'solvation'absorption band should exist for ions whose spectrum is also due to a charge transfer to solvent,such as halides,but in this case it would be masked by the main UV spectrum.

    Fig.11 UV-visible optical absorption spectra of the ammoniated electron at-50℃and20°C.Inset:comparison between the UV optical absorption bands of eam-at-50℃and 20°C and eaq-at20°C and the NH3and H2O solvents;scales multiplied by4;adapted from[50]and[51].

    6 Conclusion

    A consensus seems to emerge that the solvated electron occupies a cavity of size and shape varying with temperature and pressure,that it attracts towards its negative charge the H atoms of one of the polar groups of the solvation molecules whose structure is perturbed,and that its optical spectrum,very dissymmetrical in energy,results from a transition between a fundamental state and several linked excited states.Actually,the solvated electron remains a particularly interesting probe of solvation in all kinds of environments,and therefore of their structure,and this strange chemical species will probably spark much more research.

    (Translated with permission from L’Act.Chim.,2021,460-461,p.17-22.)

    猜你喜歡
    薩克雷洛尼杰奎琳
    東印度公司與《名利場(chǎng)》中的帝國(guó)書(shū)寫(xiě)
    杰奎琳駕馭身體密碼
    特別健康(2018年4期)2018-07-03 00:38:24
    ENSAE學(xué)院巴黎薩克雷校區(qū)
    名利場(chǎng)意象分析之五味酒
    偷拍杰奎琳
    愛(ài)你(2016年17期)2016-11-26 07:45:45
    偷拍杰奎琳
    《名利場(chǎng)》與《純真年代》中的女性形象比較
    來(lái)自中國(guó)的小鴨子
    国产精品久久久久久久久免| 久久精品影院6| 国产一区二区激情短视频| 在线观看午夜福利视频| 内地一区二区视频在线| 又黄又爽又免费观看的视频| avwww免费| 嫩草影院精品99| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 永久网站在线| 久久精品影院6| 亚洲四区av| 中文在线观看免费www的网站| 特级一级黄色大片| 此物有八面人人有两片| 成人三级黄色视频| 久久99热6这里只有精品| 免费人成视频x8x8入口观看| 91在线精品国自产拍蜜月| 午夜激情福利司机影院| 97超碰精品成人国产| 日本免费一区二区三区高清不卡| 一级毛片电影观看 | 亚洲国产高清在线一区二区三| 国产高清激情床上av| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 男女边吃奶边做爰视频| 欧美色欧美亚洲另类二区| 亚洲人成网站在线观看播放| 国产三级在线视频| 欧美zozozo另类| 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 亚洲欧美成人综合另类久久久 | 99久久成人亚洲精品观看| 亚洲精品久久国产高清桃花| 久久精品综合一区二区三区| 国产成人影院久久av| 久久精品国产鲁丝片午夜精品| 婷婷亚洲欧美| 99热只有精品国产| 久99久视频精品免费| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 人人妻人人看人人澡| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 日本撒尿小便嘘嘘汇集6| 99热精品在线国产| 成年版毛片免费区| 欧美高清成人免费视频www| av女优亚洲男人天堂| 欧美成人一区二区免费高清观看| 久久久色成人| 精品人妻一区二区三区麻豆 | 国产亚洲精品综合一区在线观看| 欧美不卡视频在线免费观看| 日韩av不卡免费在线播放| av中文乱码字幕在线| 男女做爰动态图高潮gif福利片| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 国产成人一区二区在线| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 午夜视频国产福利| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 你懂的网址亚洲精品在线观看 | 成人国产麻豆网| 男女视频在线观看网站免费| 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 一进一出好大好爽视频| 精品欧美国产一区二区三| 亚洲在线自拍视频| 国产三级中文精品| 日本a在线网址| 亚洲精品456在线播放app| 熟妇人妻久久中文字幕3abv| 日韩大尺度精品在线看网址| 中文字幕av成人在线电影| 亚洲成人av在线免费| 国内精品一区二区在线观看| 日韩,欧美,国产一区二区三区 | 国产精品乱码一区二三区的特点| 日韩制服骚丝袜av| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区 | 少妇人妻一区二区三区视频| 日韩高清综合在线| 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| a级毛片免费高清观看在线播放| 久久久久性生活片| 网址你懂的国产日韩在线| 日日撸夜夜添| 热99re8久久精品国产| 日韩成人伦理影院| eeuss影院久久| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品| 精品福利观看| 99久久中文字幕三级久久日本| 给我免费播放毛片高清在线观看| a级一级毛片免费在线观看| 欧美一区二区精品小视频在线| 久久久精品94久久精品| 99热这里只有是精品在线观看| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 亚洲成人久久爱视频| 亚洲人成网站在线观看播放| 看非洲黑人一级黄片| 一区二区三区免费毛片| 少妇的逼水好多| 无遮挡黄片免费观看| 岛国在线免费视频观看| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲美女视频黄频| 亚洲国产色片| 国产视频内射| 日本三级黄在线观看| 国产大屁股一区二区在线视频| 欧美潮喷喷水| 亚洲色图av天堂| 国产三级在线视频| 日韩成人av中文字幕在线观看 | 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 亚洲在线自拍视频| 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 老女人水多毛片| 国产女主播在线喷水免费视频网站 | 久久精品国产亚洲av香蕉五月| 高清毛片免费观看视频网站| 亚洲人成网站在线观看播放| 日日撸夜夜添| 免费看av在线观看网站| 精品一区二区三区视频在线观看免费| 神马国产精品三级电影在线观看| 91久久精品电影网| 国产蜜桃级精品一区二区三区| 国产一区二区三区av在线 | 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 哪里可以看免费的av片| 国产精品久久视频播放| 日本撒尿小便嘘嘘汇集6| 啦啦啦观看免费观看视频高清| 插逼视频在线观看| 亚洲国产欧美人成| 久久久久久久久久久丰满| 成人av一区二区三区在线看| 毛片一级片免费看久久久久| 在线播放无遮挡| 日韩中字成人| 好男人在线观看高清免费视频| 尾随美女入室| 我的女老师完整版在线观看| 又爽又黄无遮挡网站| 日本成人三级电影网站| 观看美女的网站| 中文在线观看免费www的网站| 1000部很黄的大片| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看 | 午夜精品一区二区三区免费看| 蜜臀久久99精品久久宅男| 免费搜索国产男女视频| 久久亚洲国产成人精品v| 久久久成人免费电影| 简卡轻食公司| 九九在线视频观看精品| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 五月伊人婷婷丁香| 99热6这里只有精品| 免费无遮挡裸体视频| 亚洲自拍偷在线| 黑人高潮一二区| 久久精品国产亚洲网站| 身体一侧抽搐| 69人妻影院| 成人美女网站在线观看视频| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| 国产探花极品一区二区| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 亚洲av第一区精品v没综合| 淫妇啪啪啪对白视频| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 精品午夜福利在线看| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 国内精品宾馆在线| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 欧美激情在线99| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av| 免费看av在线观看网站| 黄色配什么色好看| 国产精品综合久久久久久久免费| 最新在线观看一区二区三区| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 色吧在线观看| 噜噜噜噜噜久久久久久91| 一边摸一边抽搐一进一小说| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 女生性感内裤真人,穿戴方法视频| 亚洲av中文av极速乱| 久久精品人妻少妇| 日本 av在线| 欧美性感艳星| 人妻少妇偷人精品九色| 淫妇啪啪啪对白视频| 黄色日韩在线| 亚洲自拍偷在线| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 日韩国内少妇激情av| 免费高清视频大片| 亚洲第一电影网av| 日本色播在线视频| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频| 99热网站在线观看| 久久精品国产99精品国产亚洲性色| 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 18+在线观看网站| 99热只有精品国产| 午夜久久久久精精品| 无遮挡黄片免费观看| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 国产黄a三级三级三级人| ponron亚洲| 久久欧美精品欧美久久欧美| 少妇的逼好多水| 禁无遮挡网站| 男女那种视频在线观看| 精品熟女少妇av免费看| 色哟哟·www| 亚洲不卡免费看| 日本与韩国留学比较| 简卡轻食公司| 成人av一区二区三区在线看| 国产精华一区二区三区| 中文亚洲av片在线观看爽| 69人妻影院| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩精品一区二区| 精品午夜福利在线看| 色尼玛亚洲综合影院| 91av网一区二区| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 久久九九热精品免费| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 国产激情偷乱视频一区二区| 欧美bdsm另类| 久久午夜福利片| 国产真实乱freesex| 久久久国产成人精品二区| av在线亚洲专区| 最好的美女福利视频网| 校园人妻丝袜中文字幕| 成年av动漫网址| 国产亚洲精品久久久久久毛片| 久久久成人免费电影| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 狠狠狠狠99中文字幕| 国产精品不卡视频一区二区| 我要看日韩黄色一级片| 中文资源天堂在线| 听说在线观看完整版免费高清| 国产欧美日韩精品一区二区| 国产精品三级大全| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看| 国产乱人偷精品视频| 色在线成人网| 日韩高清综合在线| 欧美丝袜亚洲另类| 性插视频无遮挡在线免费观看| 在线看三级毛片| 伊人久久精品亚洲午夜| 深夜精品福利| 麻豆av噜噜一区二区三区| 亚洲电影在线观看av| 精品人妻一区二区三区麻豆 | 亚洲成av人片在线播放无| 91av网一区二区| 99久久精品国产国产毛片| 97超碰精品成人国产| 久久精品国产亚洲av香蕉五月| 人妻少妇偷人精品九色| 欧美激情久久久久久爽电影| 寂寞人妻少妇视频99o| 国产精品99久久久久久久久| 美女大奶头视频| 午夜精品在线福利| 欧美绝顶高潮抽搐喷水| 搡女人真爽免费视频火全软件 | 成人鲁丝片一二三区免费| 99视频精品全部免费 在线| 亚洲无线在线观看| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 内射极品少妇av片p| 嫩草影院精品99| 精品久久久久久久久久免费视频| 男女啪啪激烈高潮av片| 国产蜜桃级精品一区二区三区| 岛国在线免费视频观看| 久久精品国产99精品国产亚洲性色| 你懂的网址亚洲精品在线观看 | 不卡一级毛片| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 日韩欧美精品免费久久| 国内精品久久久久精免费| 精品一区二区三区视频在线| 日本一二三区视频观看| 国产探花在线观看一区二区| 身体一侧抽搐| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 国产精品福利在线免费观看| 插阴视频在线观看视频| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久大av| 级片在线观看| 亚洲自偷自拍三级| 国产激情偷乱视频一区二区| 亚洲精品国产成人久久av| 在线国产一区二区在线| 久久综合国产亚洲精品| 久久久久国产网址| 国产高清有码在线观看视频| 欧美最新免费一区二区三区| 日本一二三区视频观看| 国产高清视频在线播放一区| 久久人人爽人人片av| 国产av在哪里看| 国产视频内射| 久久精品国产自在天天线| 中出人妻视频一区二区| 日韩精品有码人妻一区| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 成年av动漫网址| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 亚洲av成人av| 亚洲精华国产精华液的使用体验 | 国产视频内射| eeuss影院久久| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 韩国av在线不卡| 国产精品无大码| 在线看三级毛片| 国产真实伦视频高清在线观看| 如何舔出高潮| 亚洲综合色惰| 99精品在免费线老司机午夜| 亚洲最大成人av| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| h日本视频在线播放| 观看美女的网站| 18+在线观看网站| 国产一区二区在线观看日韩| 国产精品无大码| videossex国产| 欧美日本视频| 丰满的人妻完整版| 亚洲精品456在线播放app| 日本免费一区二区三区高清不卡| 性色avwww在线观看| 日韩,欧美,国产一区二区三区 | 亚洲av中文av极速乱| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 久久人妻av系列| 国产男人的电影天堂91| 久久亚洲国产成人精品v| 欧美成人a在线观看| 久久精品国产自在天天线| 国产精品久久视频播放| 成人精品一区二区免费| www.色视频.com| 最新在线观看一区二区三区| 高清午夜精品一区二区三区 | 亚洲av.av天堂| 国产91av在线免费观看| 午夜福利在线在线| 中出人妻视频一区二区| 高清日韩中文字幕在线| 国产欧美日韩精品一区二区| 日本免费a在线| 欧美不卡视频在线免费观看| 毛片女人毛片| 此物有八面人人有两片| 色av中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 色av中文字幕| 深夜精品福利| 国产精品不卡视频一区二区| 国产精品久久久久久av不卡| 精品一区二区三区人妻视频| a级毛色黄片| 国产精品无大码| 久久精品国产亚洲av天美| 国产精品免费一区二区三区在线| 成人精品一区二区免费| 我要搜黄色片| 波野结衣二区三区在线| 亚洲国产色片| 亚洲精品日韩av片在线观看| 国内久久婷婷六月综合欲色啪| 99热网站在线观看| 青春草视频在线免费观看| 久久精品影院6| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 国产在线男女| avwww免费| 国产精品人妻久久久影院| 国产精品久久久久久久久免| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 波多野结衣巨乳人妻| 色吧在线观看| 性欧美人与动物交配| 91久久精品电影网| 成人性生交大片免费视频hd| 你懂的网址亚洲精品在线观看 | 午夜免费男女啪啪视频观看 | 一个人看的www免费观看视频| 国内精品宾馆在线| 午夜福利18| 精品久久久久久久久久久久久| 亚洲av免费在线观看| 亚洲天堂国产精品一区在线| 看非洲黑人一级黄片| 欧美bdsm另类| 久久人人爽人人片av| 99久久久亚洲精品蜜臀av| 亚洲婷婷狠狠爱综合网| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 精品久久久久久久人妻蜜臀av| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 欧美色视频一区免费| 国产真实伦视频高清在线观看| 老师上课跳d突然被开到最大视频| 亚洲国产欧美人成| 亚洲av五月六月丁香网| 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| 国产大屁股一区二区在线视频| 丰满乱子伦码专区| 国产精品1区2区在线观看.| 久99久视频精品免费| 欧美日韩精品成人综合77777| 淫妇啪啪啪对白视频| 超碰av人人做人人爽久久| 国产高清不卡午夜福利| 午夜激情福利司机影院| 精品一区二区免费观看| 欧美高清成人免费视频www| 亚洲五月天丁香| 在线观看av片永久免费下载| 免费黄网站久久成人精品| 精品久久久久久久久av| 国产精品国产高清国产av| 99在线视频只有这里精品首页| 久久国产乱子免费精品| 午夜精品一区二区三区免费看| 欧美日韩乱码在线| 精品一区二区三区视频在线观看免费| 性欧美人与动物交配| 久久久久久久久久黄片| 搞女人的毛片| 日本欧美国产在线视频| 一级a爱片免费观看的视频| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 午夜福利在线观看免费完整高清在 | 好男人在线观看高清免费视频| 成人三级黄色视频| 午夜精品一区二区三区免费看| 搡老妇女老女人老熟妇| 永久网站在线| 精品午夜福利视频在线观看一区| 床上黄色一级片| 黄色一级大片看看| 精品人妻熟女av久视频| 久久精品国产自在天天线| av专区在线播放| 国产精品久久久久久av不卡| 波多野结衣高清无吗| 直男gayav资源| 久久久精品欧美日韩精品| 九九在线视频观看精品| 久久久国产成人精品二区| 国产精品一区二区三区四区久久| 成人高潮视频无遮挡免费网站| av女优亚洲男人天堂| 国内揄拍国产精品人妻在线| 波多野结衣巨乳人妻| 日日干狠狠操夜夜爽| 波野结衣二区三区在线| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 色哟哟哟哟哟哟| 国产精品一区www在线观看| 色哟哟哟哟哟哟| 午夜爱爱视频在线播放| 97碰自拍视频| 久久久国产成人精品二区| 在线观看一区二区三区| 精品人妻一区二区三区麻豆 | а√天堂www在线а√下载| av福利片在线观看| 国产亚洲欧美98| 波多野结衣高清作品| 婷婷亚洲欧美| 麻豆乱淫一区二区| 日本精品一区二区三区蜜桃| 国产毛片a区久久久久| 最近的中文字幕免费完整| 免费av毛片视频| 久久久久久久久久成人| 国产真实乱freesex| 99久久精品热视频| 国产精品亚洲美女久久久| 国产精品嫩草影院av在线观看| 少妇丰满av| 18+在线观看网站| 久久国内精品自在自线图片| 日韩中字成人| 人人妻人人看人人澡| 99久久精品国产国产毛片| 看非洲黑人一级黄片| 日韩欧美在线乱码| 毛片女人毛片| 成人国产麻豆网| 尾随美女入室| av女优亚洲男人天堂| www.色视频.com| 欧美绝顶高潮抽搐喷水| 一进一出抽搐动态| 美女黄网站色视频| 国产精品国产高清国产av| 免费在线观看成人毛片| 亚洲18禁久久av| 免费无遮挡裸体视频| 桃色一区二区三区在线观看| 久久人人爽人人爽人人片va| 亚洲专区国产一区二区| 成人二区视频| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 乱人视频在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美一区二区三区在线观看| 伦精品一区二区三区| 国产成人aa在线观看| 99久久中文字幕三级久久日本| 久久久久国产网址|