摘"要: "氣候變化引發(fā)的干旱頻度和強(qiáng)度嚴(yán)重影響植物生長(zhǎng)發(fā)育,在全球氣候變化背景下,量化植物木質(zhì)部抗栓塞的能力對(duì)評(píng)估植物耐旱性尤為重要。為評(píng)價(jià)杜鵑品種間的耐旱性及篩選強(qiáng)抗旱性品種,該文以錦繡杜鵑‘紫鶴’(Rhododendron × pulchrum ‘zihe’)、西洋杜鵑‘楊梅紅’(Rhododendron × hybridum ‘yangmeihong’)、映山紅(R. simsii)3種灌木杜鵑為材料,利用光學(xué)技術(shù)構(gòu)建花瓣和葉片栓塞脆弱性曲線,測(cè)定花瓣和葉片解剖結(jié)構(gòu)性狀,并分析木質(zhì)部水力功能和解剖結(jié)構(gòu)性狀的相關(guān)性。結(jié)果表明:(1)錦繡杜鵑‘紫鶴’、西洋杜鵑‘楊梅紅’、映山紅3種杜鵑花瓣的P12、P50和P88值(分別發(fā)生12%、50%和88%栓塞時(shí)對(duì)應(yīng)的水勢(shì)值)大于葉片。(2)3種杜鵑的花瓣和葉片栓塞脆弱性存在一定的變異,花瓣和葉片發(fā)生栓塞的快慢不一致,這種變異可能是雜交園藝花卉植物的重要特征。(3)P50值與其形態(tài)特征相關(guān)性分析顯示,葉片P50值與葉片柵欄組織厚度呈負(fù)相關(guān),花瓣P(guān)50值與花瓣厚度呈正相關(guān)。綜上認(rèn)為,3種杜鵑花瓣栓塞脆弱性高于葉片,干旱脅迫下植物優(yōu)先犧牲花瓣從而保護(hù)葉片,栓塞脆弱性可能與葉片柵欄組織厚度和花瓣厚度相關(guān)。該研究為干旱地區(qū)篩選、培育抗旱性強(qiáng)的杜鵑品種及園林杜鵑植物選擇和樹(shù)種配置提供了科學(xué)依據(jù)。
關(guān)鍵詞: 栓塞脆弱性, 抗旱性, 導(dǎo)管結(jié)構(gòu), 形態(tài)結(jié)構(gòu), 光學(xué)法
中圖分類號(hào): "Q945
文獻(xiàn)標(biāo)識(shí)碼: "A
文章編號(hào): "1000-3142(2024)04-0710-11
Embolism vulnerability analysis of petals and leaves
in three species of shrub Rhododendron
XIA Ying 1,4, LI Jieting 1,4, TANG Ming 1,2, TANG Jing1,2, ZHANG Ximin3,4*
( 1. School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; 2. Key Laboratory of State Forestry Administration on Biodiversity
Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China; 3. Key Laboratory of Environment Friendly
Management
on Alpine Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, Guiyang 550025, China;
4. Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China )
Abstract: "Climate change has been observed to increase the frequency and intensity of drought, which can adversely affect plant growth and development. Therefore, it is crucial to quantify plant xylem resistance to embolism, particularly in the context of global climate change, to study the process of plant response to drought. "In this study, we aimed to evaluate the drought tolerance of Rhododendron cultivars and "select those with strong drought resistance by using three species of shrub Rhododendron, namely Rhododendron × pulchrum ‘zihe’, Rhododendron × hybridum "‘yangmeihong’ and R. simsii, as the materials. We used optical techniques "to construct embolism vulnerability curves in petal and leaf tissues, and measured petal and leaf anatomical structural traits, and also analyzed the correlation between xylem hydraulic function and anatomical structural traits. The results were as follows: (1) The P12, P50 and P88 values (water potential values corresponding to the occurrence of 12%, 50% and 88% embolism) of petals in Rhododendron × pulchrum ‘zihe’, Rhododendron × hybridum "‘yangmeihong’ and R. simsii were higher than those of leaves. (2) The embolism vulnerability of petal and leaf tissues varied among the three species, and the speed of petal and leaf embolism occurrence did not coincide, which may be an important characteristic of hybridized horticultural flowering plants. (3) The correlation analysis between P50 values and their morphological characteristics showed that the P50 values of leaves were negatively correlated with leaf palisade tissue thickness, and the P50 values of petals were positively correlated with petal thickness. In conclusion, the study suggests that the petal embolism vulnerability of the three shrubs of Rhododendron is higher than that of the leaves, and the plants preferentially sacrifice the petals to protect the leaves under drought stress. Furthermore, "the embolism vulnerability may be related to the leaf palisade tissue thickness and petal thickness. Our findings provide "scientific references for screening and cultivating drought-resistant Rhododendron varieties, and selecting and configuring tree species of Rhododendron plants in arid areas.
Key words: embolism vulnerability, drought resistance, vessel structure, morphological structure, ""optical
世界氣象組織在《2021年全球氣候狀況》的報(bào)告中指出,2020年全球二氧化碳濃度達(dá)到413.2 mg·kg-1,為工業(yè)化前水平的149%,達(dá)到歷史新高。全球平均氣溫比工業(yè)化前水平高出約(1.11±0.13) ℃,并且未來(lái)全球?qū)?huì)持續(xù)變暖(羅瀾,2022)。全球氣候變暖,特別是極端干旱事件的發(fā)生頻率增加,導(dǎo)致大規(guī)模樹(shù)木死亡和森林退化,嚴(yán)重影響全球森林生態(tài)系統(tǒng)結(jié)構(gòu)和功能(Bennett et al., 2015; Duke et al., 2017; Blackman et al., 2019)。據(jù)報(bào)道,全球干旱導(dǎo)致的災(zāi)害占全部自然災(zāi)害的5%,干旱導(dǎo)致的損失約占全部自然災(zāi)害損失的30%(何斌等,2011)。更嚴(yán)重的是,由于人類活動(dòng),未來(lái)氣候變化預(yù)計(jì)可能加劇全球水文循環(huán),導(dǎo)致很多地區(qū)出現(xiàn)更加頻繁和嚴(yán)重的干旱事件。根據(jù)內(nèi)聚力-張力學(xué)說(shuō)(Dixon, 1938),蒸騰拉力驅(qū)動(dòng)水分在植物木質(zhì)部導(dǎo)管中傳輸,當(dāng)蒸騰拉力超過(guò)木質(zhì)部?jī)?nèi)部水柱抗張力強(qiáng)度時(shí),栓塞形成(Tyree amp; Sperry, 1989),即水分在導(dǎo)管內(nèi)呈現(xiàn)不連續(xù)的傳輸。木質(zhì)部栓塞是干旱期間植物存活或者死亡的一個(gè)十分重要的決定性因素(Cardoso et al., 2020),因此,可以通過(guò)木質(zhì)部栓塞抗性來(lái)評(píng)估植物抗旱性。通常情況下,栓塞脆弱性越大,植物越不耐旱;反之亦然。鑒于此,栓塞脆弱性已經(jīng)被廣泛應(yīng)用于評(píng)價(jià)很多物種之間的耐旱性(Brodribb et al., 2016a; Hochberg et al., 2017; Sorek et al., 2020; Johnson et al., 2021)。例如,Zhang和Brodribb(2017)對(duì)桃金娘葉遠(yuǎn)志(Pologala myrtifolia)、香蕉百香果(Passiflora tarminiana)、豌豆(Pisum sativum)和番茄(Solanum lycopersicum) 4種不同植物葉片進(jìn)行栓塞脆弱性研究,比較了4種植物的抗旱性;Brodribb 等(2016b)對(duì)桃金娘科(Myrtaceae)、海桐科(Pittosporaceae)、合椿梅科(Cunoniaceae)、菊科(Asteraceae)的被子植物葉片研究表明,葉片水力導(dǎo)度與栓塞形成有關(guān);Han 等(2022)測(cè)量了10種植物(喬木和灌木)的栓塞抗性和形態(tài)指標(biāo),比較了它們的抗旱能力。
花是被子植物繁殖、進(jìn)化和多樣性的重要器官(Regal, 1977; Soltis amp; Soltis, 2014),延長(zhǎng)花期可以使植物吸引更多的傳粉者,從而增加繁殖成功率(Rathcke, 2003)。植物花期除了受環(huán)境溫度、光照等生境因子影響外(Primack, 1985),水分條件也是影響花期的非生物因子之一。當(dāng)開(kāi)花期間面臨土壤環(huán)境水分不足或干旱脅迫時(shí),花瓣組織因缺水而呈現(xiàn)萎蔫,甚至導(dǎo)致花朵掉落。因此,花的生長(zhǎng)發(fā)育需要大量的水分供給(Roddy amp; Dawson, 2012)。根據(jù)木質(zhì)部分割理論,在干旱期間樹(shù)木成本相對(duì)較低的器官(如葉)木質(zhì)部比成本高的器官(如莖)更脆弱(Tyree amp; Ewers, 1991)。例如,在水分匱缺下,葡萄葉片器官先脫落,從而保護(hù)莖(Charrier et al., 2016); 與莖相比,葉片和花瓣在干旱條件下的脆弱性更高(Noif et al., 2015;Zhang amp; Brodribb, 2017);在水分脅迫期間,與樹(shù)干相比,頂端新生枝條更容易遭受脅迫(Rood et al., 2003)。
杜鵑花屬于杜鵑花科(Ericaceae)、杜鵑花屬(Rhododendron)植物,是我國(guó)及世界名花之一,廣泛分布于世界各地(Sharma et al., 2014)。在中國(guó)西南地區(qū)(貴州、重慶、云南、四川)分布了許多杜鵑資源,對(duì)該地區(qū)的旅游發(fā)展具有重要的作用(如貴州百里杜鵑景區(qū))。近年來(lái),全球氣候變暖引發(fā)的干旱對(duì)植物生存造成嚴(yán)重的威脅。葉片和花瓣作為植物水分交換的末端組織,它們?cè)诳刂扑稚⑹е邪l(fā)揮了重要的作用。以往通過(guò)栓塞抗性研究植物耐旱性主要集中在植物莖(Brodribb et al., 2017; Levionnois et al., 2021; Feng et al., 2021)和葉片組織(Brodribb et al., 2016a; Skelton et al., 2018; Lechthaler et al., 2019),對(duì)花瓣栓塞脆弱性的報(bào)告較少(李榮等,2015)。作為觀賞花卉資源,育種學(xué)家對(duì)杜鵑花進(jìn)行種間雜交并獲得了不同花色的園藝觀賞品種,這些品種已經(jīng)在市場(chǎng)上進(jìn)行推廣,為了能更好地對(duì)這些品種進(jìn)行培育和推廣,對(duì)杜鵑花品種之間的耐旱性評(píng)估則極為重要。為此,本研究以錦繡杜鵑(Rhododendron × pulchrum)、西洋杜鵑(Rhododendron × hybridum)、映山紅(R. simsii)為研究對(duì)象,采用光學(xué)技術(shù)方法,構(gòu)建3種灌木杜鵑花瓣和葉片栓塞脆弱性曲線并計(jì)算P50值(木質(zhì)部發(fā)生50%栓塞時(shí)對(duì)應(yīng)的水勢(shì)值),擬探討下列問(wèn)題:(1)比較3種灌木杜鵑木質(zhì)部的栓塞脆弱性差異,評(píng)估其耐旱性;(2)探究干旱條件下杜鵑花瓣組織是否發(fā)生栓塞;(3)分析花瓣和葉片形態(tài)性狀特征與P50之間的關(guān)系。以期為干旱地區(qū)園林杜鵑植物選擇和樹(shù)種配置提供理論支持,為評(píng)估杜鵑植物耐旱性大小建立抗旱指標(biāo)體系。
1"材料與方法
1.1 植物材料
西洋杜鵑‘楊梅紅’(Rhododendron × hybridum ‘yangmeihong’)、錦繡杜鵑‘紫鶴’(Rhododendron × pulchrum ‘zihe’)、映山紅(R. simsii )購(gòu)買(mǎi)于貴州省黔南州惠水縣花卉基地(各15盆,每盆一株植物),帶有花瓣的植株于貴州師范大學(xué)植物生理與發(fā)育調(diào)控重點(diǎn)實(shí)驗(yàn)室溫室內(nèi)(光周期12 h,溫度22 ℃,光照強(qiáng)度350 μmol· m-2·s-1,相對(duì)濕度60%~70%)培養(yǎng)至部分花朵完全開(kāi)放(圖1),之后進(jìn)行實(shí)驗(yàn)處理。
1.2 花瓣和葉片的光學(xué)栓塞脆弱性曲線構(gòu)建
栓塞脆弱性曲線參考Brodribb等(2016b)的光學(xué)技術(shù)方法略有修改。先將帶有葉片和花瓣的枝條剪下(約10 cm長(zhǎng)),立即插入盛有水的燒杯中吸水至飽和。再將葉片(枝條頂端往下第5片)或花瓣放置在立體顯微鏡(XTL-6745TJ4-T1000, 蘇州倍特嘉光電科技有限公司)的載物臺(tái)上,葉片或者花瓣展開(kāi)鋪平后,用透明膠帶固定。在上述溫室條件下每隔60 s捕獲一張圖像,直到觀察葉片或花瓣褐變。另外,采用上述相同的方法剪取其他枝條頂端往下第5至第8片葉片吸水飽和,在上述溫室條件進(jìn)行自然干旱,采用露點(diǎn)水勢(shì)儀(WP4-T, Gene Company Limited, USA)每隔20~60 min測(cè)量一次葉片或花瓣的水勢(shì),每個(gè)物種測(cè)定3個(gè)生物學(xué)重復(fù)。使用ImageJ(National Institute of Health, New York, NY, USA)軟件中的圖像減法來(lái)識(shí)別和量化栓塞。利用Weibull函數(shù) [V=(x-100)log(1-x/100)]對(duì)水勢(shì)和栓塞百分比進(jìn)行擬合,獲得栓塞脆弱性曲線(Tomasella et al., 2021)。
1.3 花瓣和葉片形態(tài)特征測(cè)量
取正常生長(zhǎng)葉片(枝條頂端往下第5至第8片)和花瓣,在主脈中部剪切面積約0.5 cm × 0.5 cm的組織塊,制成石蠟切片,顯微鏡下拍照,用ImageJ圖像分析軟件測(cè)量花瓣和葉片厚度、上表皮厚度、下表皮厚度、葉片柵欄組織厚度、葉片海綿組織厚度(王兆成等,2021)。葉脈密度測(cè)定參照Roddy 等(2013)的方法,用2%的NaOH溶液將花瓣和葉片脫色至透明后置于顯微鏡下拍照,用ImageJ軟件測(cè)量葉脈密度。葉脈密度=選取范圍內(nèi)葉脈長(zhǎng)度之和/選取面積。氣孔密度參照宋艷波等(2022)的方法,在花瓣和葉片背面涂上薄薄一層透明指甲油,靜置30 min,用鑷子輕輕撕取油膜,置于顯微鏡下觀察,記錄氣孔數(shù)量。氣孔密度=氣孔數(shù)量/視野面積。
1.4 木質(zhì)部導(dǎo)管結(jié)構(gòu)測(cè)量
距葉片基部0.2 cm處,截取長(zhǎng)度約為0.5 cm的主脈,參考陸世通等(2021)的方法制作永久裝片,并于顯微鏡下拍照,用ImageJ軟件測(cè)定解剖結(jié)構(gòu)性狀,然后通過(guò)以下公式計(jì)算相關(guān)參數(shù)。
(1)導(dǎo)管密度(N)=橫截面所有導(dǎo)管數(shù)量橫截面的面積;
(2)導(dǎo)管直徑(D)="4AΠ,式中A為導(dǎo)管面積;
(3)導(dǎo)管內(nèi)徑跨度(b)="A1+A22×4,式中A1和A2分別為相鄰導(dǎo)管面積;
(4)(t/b)2,式中t為相鄰導(dǎo)管間的垂直距離,b為導(dǎo)管內(nèi)徑跨度。
1.5 數(shù)據(jù)處理
所有數(shù)據(jù)采用SPSS 25中單因素方差進(jìn)行顯著性分析(Plt;0.05),采用皮爾森相關(guān)性分析解剖性狀與栓塞抗性之間的相關(guān)性。
2"結(jié)果與分析
2.1 3種灌木杜鵑花瓣和葉片光學(xué)栓塞脆弱性
利用光學(xué)脆弱性方法,可以從時(shí)間和空間上觀察花瓣和葉片栓塞傳播。從栓塞發(fā)生時(shí)間來(lái)看,3種杜鵑栓塞出現(xiàn)均為葉片早于花瓣(圖2)。在種內(nèi),3種植物花瓣的P50值(木質(zhì)部發(fā)生50%栓塞時(shí)對(duì)應(yīng)的水勢(shì)值)均高于葉片(圖3,表1),表明在自然干旱下,花瓣比葉片的栓塞脆弱性高,更容易發(fā)生栓塞。在種間,花瓣的P50表現(xiàn)為 錦繡杜鵑‘紫鶴’最低, 西洋杜鵑‘楊梅紅’最高;葉片的P50則表現(xiàn)為 映山紅最低, 西洋杜鵑‘楊梅紅’最高(表1)。此外,P12和P88在不同種間也存在類似的變化(P<0.05)(表1)。
A. 錦繡杜鵑‘紫鶴’花瓣光學(xué)圖像; B. 映山紅花瓣光學(xué)圖像; C. 西洋杜鵑‘楊梅紅’花瓣光學(xué)圖像; D. 錦繡杜鵑‘紫鶴’花瓣彩色圖譜; E. 映山紅花瓣彩色圖譜; F. 西洋杜鵑‘楊梅紅’花瓣彩色圖譜; G. 錦繡杜鵑‘紫鶴’葉片光學(xué)圖像; H. 映山紅葉片光學(xué)圖像; I. 西洋杜鵑‘楊梅紅’葉片光學(xué)圖像; J. 錦繡杜鵑‘紫鶴’葉片彩色圖譜; K. 映山紅葉片彩色圖譜; L. 西洋杜鵑‘楊梅紅’葉片彩色圖譜。
A. Optical image of Rhododendron × pulchrum ‘zihe’ petal; B. Optical image of R. simsii petal; C. Optical image of Rhododendron × hybridum ‘yangmeihong’ petal; D. Color atlas of Rhododendron × pulchrum ‘zihe’ petal; E. Color atlas of R. simsii petal; F. Color atlas of Rhododendron × hybridum ‘yangmeihong’ petal; G. Optical image of Rhododendron × pulchrum ‘zihe’ leaf; H. Optical image of R. simsii leaf; I. Optical image of Rhododendron × hybridum ‘yangmeihong’ leaf; J. Color atlas of Rhododendron × pulchrum ‘zihe’ leaf; K. Color atlas of R. simsii leaf; L. Color atlas of Rhododendron × hybridum ‘yangmeihong’ leaf.
2.2 花瓣和葉片形態(tài)結(jié)構(gòu)特征
由表2可知,3種杜鵑種間花瓣厚度、上表皮厚度、下表皮厚度存在顯著性差異(P<0.05),而葉脈密度無(wú)顯著性差異(P>0.05),同時(shí),在花瓣上均沒(méi)有觀察到氣孔的分布。另外,3種杜鵑種間葉片的各種形態(tài)結(jié)構(gòu)存在很大差異(P<0.05)(表2)。
2.3 木質(zhì)部導(dǎo)管結(jié)構(gòu)特征
葉片木質(zhì)部導(dǎo)管結(jié)構(gòu)性狀結(jié)果表明,3種杜鵑種間的導(dǎo)管密度、導(dǎo)管直徑、導(dǎo)管內(nèi)徑跨度、管壁厚度存在顯著性差異(P<0.05),而(t/b)2 無(wú)顯著性差異(P>0.05)(表3)。
2.4 花瓣和葉片栓塞脆弱性與形態(tài)特征相關(guān)性分析
3種杜鵑花瓣和葉片形態(tài)結(jié)構(gòu)與P50值相關(guān)性分析顯示,花瓣P(guān)50值與上表皮厚度、下表皮厚度、葉脈密度無(wú)顯著相關(guān)性 (P>0.05)(圖4), 僅與花瓣厚度呈顯著正相關(guān)性(r2=0.45,P=0.02)(圖4:A)。另外,葉片P50值與柵欄組織厚度呈顯著負(fù)相關(guān)(r2=0.45,P=0.02)(圖4:D),與其他形態(tài)結(jié)構(gòu)無(wú)顯著相關(guān)性(P>0.05)(圖4)。同樣,葉片P50值與葉片木質(zhì)部導(dǎo)管結(jié)構(gòu)之間也沒(méi)有顯著的相關(guān)性(P>0.05)(圖5)。
3"討論與結(jié)論
3.1 杜鵑花瓣栓塞脆弱性高于葉片且存在變異
應(yīng)用光學(xué)可視化技術(shù), 在杜鵑品種中成功觀察到葉片和花瓣木質(zhì)部栓塞時(shí)空變化,該技術(shù)前期已經(jīng)用于杜鵑植物和其他物種的耐旱性評(píng)價(jià)(夏英等,2023)。在本研究中,觀察到杜鵑花瓣和葉片的栓塞脆弱性在品種之間存在一定的變異,例如,葉片栓塞脆弱性為映山紅最弱,而花瓣則是錦繡杜鵑‘紫鶴’最弱。這與前期Rodriguez等(2018)報(bào)道的橄欖植物結(jié)果不太一致,他們認(rèn)為栓塞抗性最強(qiáng)的植物個(gè)體,根和葉片也表現(xiàn)出較強(qiáng)的栓塞抗性。對(duì)于本研究中杜鵑花瓣和葉片的栓塞脆弱性在品種之間存在一定的變異,推測(cè)這可能是由于杜鵑品種之間花瓣顏色存在差異所致,植物花瓣花色呈現(xiàn)與花青素的種類和含量有關(guān)(Heursel, 1981; 陶秀花等,2015),花青素可作為滲透調(diào)節(jié)劑提高植物抗旱性(Forkmann, 1991)。因此,不同顏色的花瓣中,花青素含量的差異可能影響花瓣的抗旱性,因而導(dǎo)致花瓣的栓塞脆弱性出現(xiàn)一定的變異。
本研究的一個(gè)重要目標(biāo)是分析花在木質(zhì)部脆弱性譜中的地位,特別是水力分割理論。在本研究中,錦繡杜鵑‘紫鶴’、西洋杜鵑‘楊梅紅’、映山紅花瓣的P12、P50和P88值均大于葉片,說(shuō)明杜鵑花瓣比葉片更加脆弱,即在干旱條件下,花瓣組織最容易受到損傷。這與水力分割理論的觀點(diǎn)一致,表明在水分缺乏時(shí),杜鵑植物可能優(yōu)先犧牲重要性較小和投資成本較低的花瓣,保護(hù)生存和繁殖至關(guān)重要的葉片器官(Zimmermann, 1983;Zhang amp; Brodribb, 2017),這種策略對(duì)于多年生的杜鵑植物個(gè)體來(lái)說(shuō),非常有利于它們的長(zhǎng)期生存和繁衍后代。
3.2 杜鵑品種葉片和花瓣栓塞脆弱性與形態(tài)結(jié)構(gòu)的關(guān)系
導(dǎo)管是輸送水分的重要組織,導(dǎo)管特性(如導(dǎo)管長(zhǎng)度、導(dǎo)管直徑、導(dǎo)管類型、紋孔膜的超微結(jié)構(gòu)等)直接影響木質(zhì)部栓塞的形成。另外,木質(zhì)部栓塞脆弱性受到解剖結(jié)構(gòu)(如氣孔、葉片組織厚度等)的影響。在本研究中,解剖結(jié)構(gòu)性狀與栓塞脆弱性的相關(guān)性分析結(jié)果表明,杜鵑葉片柵欄組織厚度與P50成負(fù)相關(guān)性,說(shuō)明杜鵑葉片柵欄組織越厚,抗旱性越強(qiáng)。原因可能是較厚的柵欄組織可防止和緩解水分快速蒸發(fā)(潘學(xué)軍等,2010),從而增強(qiáng)植物的抗旱能力。本研究觀察到栓塞脆弱性與木質(zhì)部導(dǎo)管密度、導(dǎo)管直徑、導(dǎo)管內(nèi)徑跨度、導(dǎo)管壁厚、(t/b)2等結(jié)構(gòu)之間無(wú)相關(guān)性。猜測(cè)可能是由于干旱誘發(fā)栓塞形成與木質(zhì)部的許多結(jié)構(gòu)有關(guān),如木質(zhì)部汁液組成、導(dǎo)管壁的化學(xué)性質(zhì)、紋孔膜性狀、細(xì)胞類型等都可能影響木質(zhì)栓塞(Guillermina et al., 2011; Li et al., 2016; Lens et al., 2022)。當(dāng)前研究未涉及到上述相關(guān)指標(biāo),后期需要開(kāi)展更多關(guān)于解剖結(jié)構(gòu)特征的研究,分析它們與栓塞脆弱性的關(guān)系。
與葉片不同,在3種灌木杜鵑花瓣上、下表皮上都沒(méi)有觀察到氣孔,因此認(rèn)為花瓣可能通過(guò)角質(zhì)層進(jìn)行水分散失。在本研究中,從最初栓塞發(fā)生的時(shí)間來(lái)看,花瓣出現(xiàn)栓塞的時(shí)間較晚于葉片,可能是由于角質(zhì)層控制水分散失比氣孔控制水分散失較慢,延緩了花瓣中栓塞的形成。本研究結(jié)果與Zhang 和 Brodribb (2017)報(bào)道的結(jié)果不一致,他們?cè)谘芯刻医鹉锶~遠(yuǎn)志、香蕉百香果、豌豆和番茄花瓣和葉片時(shí)發(fā)現(xiàn),在這些植物花瓣上觀察到氣孔分布,栓塞出現(xiàn)時(shí)間稍微早于葉片。因此,本研究結(jié)果認(rèn)為杜鵑花瓣上角質(zhì)層對(duì)花瓣木質(zhì)部栓塞脆弱性有一定的貢獻(xiàn)。
在3種灌木杜鵑中,自然干旱下,花瓣和葉片均能發(fā)生栓塞且花瓣栓塞脆弱性強(qiáng)于葉片。另外,花瓣和葉片栓塞脆弱性在3種灌木杜鵑之間存在一定的變異,這種變異可能是雜交園藝花卉植物的重要特征。本研究發(fā)現(xiàn),栓塞脆弱性與葉片柵欄組織厚度呈負(fù)相關(guān),和花瓣厚度呈正相關(guān)。本研究結(jié)果對(duì)未來(lái)選擇耐旱杜鵑物種具有重要意義,為干旱地區(qū)造林樹(shù)種的選擇和樹(shù)種配置提供了理論支持。
參考文獻(xiàn):
BENNETT AC, MCDOWELL NG, ALLEN CD, et al., 2015. Larger trees suffer most during drought in forests worldwide [J]. Nat Plants, 1(10): 15139.
BLACKMAN CJ, CREEK D, MAIER C, et al., 2019. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure [J]. Tree Physiol, 39(6): 910-924.
BLANKE MM, LOVATT CJ, 1993. Anatomy and transpiration of the avocado inflorescence [J]. Ann Bot, 71(6): 543-547.
BRODRIBB TJ, CARRIQUI M, DELZON S, et al., 2017. Optical measurement of stem xylem vulnerability [J]. Plant Physiol, 174(4): 2054-2061.
BRODRIBB TJ, BIENAIME D, MARMOTTANT P, et al., 2016a. Revealing catastrophic failure of leaf networks under stress [J]. Proc Natl Acad Sci USA, 113(17): 4865-4869.
BRODRIBB TJ, SKELTON RP, MCADAM S, et al., 2016b. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure [J]. New Phytol, 209(4): 1403-1409.
CARDOSO AA, BATZ TA, MCADAM S, et al., 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana [J]. Plant Physiol, 182(1): 547-554.
CHARRIER G, TORRES-RUI JM, BADEL E, et al., 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension [J]. Plant Physiol, 172(3): 1657-1668.
DIXON HH, 1938. The croonian lecture: transport of substances in plants [J]. R Soc London, 125(838): 1-25.
DUKE NC, KOVACS JM, GRIFFITHS AD, et al., 2017. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event [J]. Mar Freshwater Res, 68(10): 1816-1829.
FENG F, LOSSO A, TYREE M, et al., 2021. Cavitation fatigue in conifers: a study on eight European species [J]. Plant Physiol, 186(3): 1580-1590.
FORKMANN G, 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering [J]. Plant Breed, 106(1): 1-26.
GUILLERMINA DS, ALEJANDRO MM, COCHARD H, et al., 2011. Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir [Pseudotsuga menziesii (Mirb.)] [J]. Ann For Sci, 68(4): 747-757.
HAN H, XI B, WANG Y, et al., 2022. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China [J]. Tree Physiol, 42(6): 1203-1215.
HEURSEL J, 1981. Diversity of flower colours in Rhododendron simsii Planch. and prospects for breeding [J]. Euphytica, 30(1): 9-14.
HOCHBERG U, WINDT CW, PONOMARENKO A, et al., 2017. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems [J]. Plant Physiol, 174(2): 764-775.
JOHNSON KM, LUCANI C, BRODRIBB TJ, et al., 2021. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death [J]. New Phytol, 233(1): 207-218.
LECHTHALER S, COLANGELI P, GAZZZBIN M, et al., 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves [J]. J Exp Bot, 70(21): 6195-6201.
LENS F, GLEASON SM, BORTOLAM G, et al., 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms [J]. New Phytol, 236(6): 2019-2036.
LEVIONNOIS S, JANSEN S, WANDJIRT, et al., 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees [J]. New Phytol, 229(3): 1453-1466.
LI R, JIANG ZM, ZHANG SX, et al., 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. "[李榮, 姜在民, 張碩新, 等, 2015. 木本植物木質(zhì)部栓塞脆弱性研究新進(jìn)展 [J]. 植物生態(tài)學(xué)報(bào), 39(8): 838-848.]
LI S, KLEPSCH M, JANSEN S, et al., 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem [J]. Iawa J, 37(2): 152-171.
LU ST, CHEN S, LI Y, et al., 2021. Relationship between water transport, anatomical structure and mechanical strength of stem and root xylem of three species of plants in the family Pinus spp. [J]. Chin J Plant Ecol, 45(6): 659-669. "[陸世通, "陳森, "李彥, "等, 2021. 羅漢松科3種植物莖和根木質(zhì)部水分運(yùn)輸、解剖結(jié)構(gòu)與機(jī)械強(qiáng)度之間的關(guān)系 [J]. 植物生態(tài)學(xué)報(bào), nbsp;45(6): "659-669.]
LUO L, 2022. World meteorological organization releases《the state of the global climate 2021》 [N]. China Meteorological News, (3). "[羅瀾, 2022. 世界氣象組織發(fā)布《2021年全球氣候狀況》 [N]. 中國(guó)氣象報(bào), (3).]
NOLF M, CREEK D, DUURSMA R, et al., 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 38(12): 2652-2661.
PAN XJ, ZHANG WE, YANG XY, et al., 2010. Correlation between drought resistance and leaf anatomical structure of wild Vitis quinquangularis seedlings in karst mountainous areas [J]. Guizhou Agric Sci, 38(9): 176-178. "[潘學(xué)軍, "張文娥, "楊秀永, 等, 2010. 喀斯特山區(qū)野生葡萄實(shí)生苗葉片解剖結(jié)構(gòu)與抗旱性的關(guān)系 [J]. 貴州農(nóng)業(yè)科學(xué), "38(9): "176-178.]
REGAL PJ, 1977. Ecology and evolution of flowering plant dominance [J]. Science, 196(4290): 622-629.
PRIMACK RB, 1985. Longevity of individual flowers [J]. Ann Rev Ecol Syst, 16(16): 15-37.
RATHCKE BJ, 2003. Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae) [J]. Am J Bot, 90(9): 1328-1332.
RODDY AB, DAWSON TE, 2012. Determining the water dynamics of flowering using miniature sap flow sensors [J]. Acta Hortic, (951): 47-53.
RODDY AB, GUILLIAMS CM, LILITTHAM T, et al., 2013. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny [J]. J Exp Bot, 64(13): 4081-4088
RODRIGUEZ D, CARINS M, LUCANI C, et al., 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 218(3): 1025-1035.
ROOD SB, BRAATNE JH, HUGHES FM, 2003. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration [J]. Tree Physiol, 23(16): 1113-1124.
SHARMA A, POUDEL RC, LI A, et al., 2014. Genetic diversity of Rhododendron delavayi var. delavayi (C. B. Clarke) Ridley inferred from nuclear and chloroplast DNA: implications for the conservation of fragmented populations [J]. Plant Syst Evol, 300(8): 1853-1866.
SKELTON RP, DAWSON TE, THOMPSON SE, et al., 2018. Low vulnerability to xylem embolism in leaves and stems of North American oaks [J]. Plant Physiol, 177(3): 1066-1077.
SOLTIS PS, SOLTIS DE, 2014. Flower diversity and angiosperm diversification [J]. Meth Mol B, 1110: 85-102.
SONG YB, YANG YH, DUAN PJ, et al., 2022. Comparison of 6 tomato leaf epidermal preparation methods [J]. J Agric, 12(1): 45-52. "[宋艷波, "楊云浩, "段鵬軍, "等, "2022. 6種番茄葉表皮制片方法比較 [J]. 農(nóng)學(xué)學(xué)報(bào), "12(1): 45-52.]
SOREK Y, GREENSTEIN S, NETZER Y, et al., 2020. Increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes [J]. New Phytol, 229(4): 1955-1965.
TAO XH, YUAN Y, XU YQ, et al., 2015. Anthocyptide composition analysis of hyacinth petals [J]. Acta Hortic Sin, 42(2): 301-310. "[陶秀花, "袁媛, "徐怡倩, "等, "2015. 風(fēng)信子花瓣花色苷組成分析 [J]. 園藝學(xué)報(bào), "42(2): "301-310.]
TOMASELLA M, CASOLO V, NATALE S, et al., 2021. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra [J]. New Phytol, 231(1): 108-121.
TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.
TYREE MT, SPERRY JS, 1989. Vulnerability of xylem to cavitation and embolism [J]. Ann Rev Plant Physiol, 40: 19-36.
WANG ZC, WANG L, ZHOU MY, et al., 2021. Comparison of leaf structure characteristics and branch water conduction function of three thin-shelled pecan cultivars [J]. J Plant Resour Environ, 30(3): 38-45. "[王兆成, "王磊, "周夢(mèng)鈺, "等, "2021. 3個(gè)薄殼山核桃品種葉片結(jié)構(gòu)特征和枝條導(dǎo)水功能比較 [J]. 植物資源與環(huán)境學(xué)報(bào), "30(3): "38-45.]
XIA Y, LI JT, TANG J, et al., 2023. Comparative study on embolism vulnerability in petals and leaves of Camellia japonica and Rhododendron hybridum [J]. Acta Bot Boreal-Occident Sin, 43(1): 79-87. "[夏英, 李婕婷, 唐婧, 等, 2023. 山茶和西洋杜鵑花瓣及葉片的栓塞脆弱性比較 [J]. 西北植物學(xué)報(bào), 43(1): 79-87.]
ZHANG FP, BRODRIBB TJ, 2017. Are flowers vulnerable to xylem cavitation during drought? [J]. Proc Biol Sci, 284(1854): 20162642.
ZIMMERMANN MH, 1983. The hydraulic architecture of plants [J]. Springer Berlin Heidelberg. DOI:10.1007/97836622262785.
(責(zé)任編輯"周翠鳴)
DOI: 10.11931/guihaia.gxzw202210084
夏英, 李婕婷, 唐明, 等, 2024.
三種灌木杜鵑花瓣和葉片的栓塞脆弱性分析 [J].廣西植物, 44(4): 710-720.
XIA Y, LI JT, TANG M, et al., 2024.Embolism vulnerability analysis of petals and leaves in three species of shrub Rhododendron [J].Guihaia, 44(4): 710-720.
夏英等: 三種灌木杜鵑花瓣和葉片的栓塞脆弱性分析
收稿日期: "2023-04-24"接受日期: 2023-05-23
基金項(xiàng)目: "國(guó)家自然科學(xué)基金和貴州喀斯特科學(xué)研究中心聯(lián)合基金(U1812401); 國(guó)家自然科學(xué)基金(32260393); 貴州省林業(yè)和草原局科研項(xiàng)目(黔林科合[2019]10號(hào)); 貴州省科技計(jì)劃項(xiàng)目(黔科合支撐[2021]一般224); 貴州省教育廳工程研究中心項(xiàng)目(黔教合KY字[2021]007)。
第一作者: 夏英(1997—),碩士研究生,主要研究方向?yàn)橹参锬婢成恚‥-mail)2530532517@qq.com。
通信作者: "張習(xí)敏,正高級(jí)實(shí)驗(yàn)師,碩士生導(dǎo)師,主要研究方向?yàn)槎霹N病蟲(chóng)害,(E-mail)zhxm409@163.com。