摘"要: "為明確國家二級(jí)保護(hù)植物半楓荷與近緣類群的系統(tǒng)發(fā)育關(guān)系,分析葉綠體基因的適應(yīng)性進(jìn)化。該研究利用22個(gè)物種的24條葉綠體基因組序列構(gòu)建最大似然樹和貝葉斯樹,探討半楓荷及其近緣類群的系統(tǒng)發(fā)育關(guān)系,并通過不同模型檢測半楓荷與近緣類群的葉綠體編碼基因的變異位點(diǎn)與選擇壓力間的關(guān)系。結(jié)果表明:(1)半楓荷葉綠體基因組具有133個(gè)基因,包括蛋白質(zhì)編碼基因88個(gè)(其中11個(gè)具有內(nèi)含子)、tRNA基因37個(gè)、rRNA基因8個(gè)。(2)半楓荷及其近緣屬蕈樹屬、楓香樹屬8個(gè)物種的葉綠體基因組在序列長度、基因數(shù)量及組成、GC含量等方面相對(duì)保守,反向重復(fù)區(qū)與小單拷貝區(qū)邊界高度保守。小單拷貝區(qū)和大單拷貝區(qū)的變異程度較高,而反向重復(fù)區(qū)的變異程度較低。(3)半楓荷與蕈樹屬、楓香樹屬物種聚成蕈樹科分支,并可劃分為3個(gè)亞分支,亞分支間或物種間可能存在雜交或不完全譜系分選。(4)適應(yīng)性進(jìn)化結(jié)果顯示,在不同模型下蕈樹科分支的物種在ndhA等葉綠體基因受選擇約束(純化選擇),位點(diǎn)模型也檢測到10個(gè)基因的28個(gè)位點(diǎn)P大于0.99,這些編碼基因變異可能與蕈樹科植物適應(yīng)性分化有關(guān)。該研究結(jié)果支持半楓荷隸屬于蕈樹科,蕈樹科內(nèi)物種的葉綠體基因可能存在適應(yīng)性進(jìn)化,這為同名異物類藥材的資源保護(hù)和民族藥的創(chuàng)新研發(fā)提供了參考資料。
關(guān)鍵詞: 半楓荷, 蕈樹科, 葉綠體基因組, 系統(tǒng)發(fā)育, 適應(yīng)性進(jìn)化
中圖分類號(hào): "Q949
文獻(xiàn)標(biāo)識(shí)碼: "A
文章編號(hào): "1000-3142(2024)04-0670-12
Plastid phylogenomics resolving phylogeny and
evolution of Semiliquidambar cathayensis
ZHOU Yun, WEI Yanyan
( College of Pharmacy, Guangxi Medical University, Naning 530021, China )
Abstract: "Semiliquidambar cathayensis is treated as a grade-two protected plant in China. However, its phylogenetic relationships with species from Hamamelidaceae and Altingiaceae remain unclear. In order to analyze the phylogenetic relationships and adaptive evolution of chloroplast genomes between S. cathayensis and its closely related taxa including species from Hamamelidaceae and Altingiaceae, we reconstructed the maximum likelihood tree and the Bayesian tree to discover the phylogenetic relationships between S. cathayensis and its closely related taxa from 24 sequences that representing 22 species, and further detected the correlation between adaptive sites and selective pressure of protein coding genes under varying models including site model, clade model and branch model. Altingiaceae clade was chosen as the foreground clade. The results were as follows: (1) A total of 133 genes were annotated, including 88 protein-coding genes (11 genes with intron), 37 tRNA genes and eight rRNA genes. (2) Eight chloroplast genomes representing eight species from S. cathayensis and Altingia, Liquidambar were relatively conservative in sequence length, gene number and composition, GC content, and there was not obvious diversity in the four boundaries. Relatively high variation interspecific were also detected in LSC and SSC regions among these eight chloroplast genomes, while the IR regions were high conservatism. (3) Phylogenetic trees showed that S. cathayensis and sampled species of Altingiaceae clustered a group, which further divided into three clades, namely Clade I, Clade Ⅱ and Clade Ⅲ. The phylogenetic relationships among these clades remain unclear due to hybridization or incomplete lineage sorting (ILS) according to the results of test of ILS. (4) The chloroplast genes such as ndhA, ndhG and rps12 were subjected to selection pressure under the clade model and branch model. Furthermore, 28 sites of ten genes were detected under positive selection with P-value greater than 0.99 based on the site model, which may be related to the adaptive evolution of Altingiaceae. In this study, the results of plastid phylogenomics supports that S. cathayensis belongs to Altingiaceae. Several coding genes among these species of Altingiaceae may have adaptive evolution. These results will provide data for the further resource protection of homonym drugs and pharmacognostic researches of ethnodrug.
Key words: Semiliquidambar cathayensis, Altingiaceae, chloroplast genome, phylogeny, adaptive evolution
瑤藥半楓荷(或半荷風(fēng)、扁荷崩)為半楓荷(Semiliquidambar cathayensis)的干燥地上部分,因富含生物堿、黃酮類、萜類等而具有祛風(fēng)除濕、活血舒筋等功效(Yang et al., 2019;裘碩等,2020);其野生資源少量分布在我國南部和東南部山區(qū),為國家二級(jí)保護(hù)植物。目前,用于研究半楓荷群體遺傳多樣性的分子標(biāo)記主要有ISSR(黃麗華等,2021)、SSR(葉興壯等,2020,2021a)和SRAP(葉興壯等,2021b),表明半楓荷居群結(jié)構(gòu)不穩(wěn)定,人為干擾、生境破壞等因素導(dǎo)致其瀕危。因此,對(duì)半楓荷的合理開發(fā)和管理都極為重要,新藥源的尋找已非常緊迫(傅立國,1991; Ye et al., 2020b)。半楓荷因形態(tài)性狀上具有異形葉、穗狀花序且雌雄同株等特點(diǎn)而歸置于金縷梅科(Hamanelidaceae)楓香樹亞科(Subfam. Liqquidambaroideae)半楓荷屬(廣西壯族自治區(qū)、中國科學(xué)院廣西植物研究所,2005)。該屬植物在形態(tài)上與蕈樹科的楓香樹屬(Liguidambar)和蕈樹屬(Altingia)相似,在某些地區(qū)也將蕈樹屬的蕈樹(Altingia chinensis)作為藥材半楓荷使用。由于以半楓荷同名同用途的植物有5科7屬14種(謝石楊等,2018),因此亟需對(duì)半楓荷類藥材正本溯源或開源。分子系統(tǒng)學(xué)研究結(jié)果表明半楓荷應(yīng)歸置于蕈樹科(Altingiaceae)半楓荷屬(Semiliquidambar)(Angiosperm Phylogeny Group, 1998; Shi et al., 2001)。目前,涉及半楓荷的分子系統(tǒng)學(xué)研究側(cè)重于分析金縷梅科和蕈樹科之間或蕈樹科屬間物種的系統(tǒng)發(fā)育關(guān)系(Shi et al., 1998, 2019; Ickert-Bond amp; Wen, 2006; Wu et al., 2010; Xiang et al., 2019; Tang et al., 2020; Ye et al., 2020a; Zhang et al., 2020)。半楓荷及其近緣類群種間的系統(tǒng)發(fā)育關(guān)系尚需進(jìn)一步分析,而探討半楓荷與蕈樹科或金縷梅科植物的系統(tǒng)發(fā)育關(guān)系有利于對(duì)半楓荷及其混偽品進(jìn)行分子鑒定,從而達(dá)到正本清源的目的。此外,蕈樹科3個(gè)屬植物主要分布在我國西南地區(qū),半楓荷及其近緣類群在基因的結(jié)構(gòu)或進(jìn)化速率上是否有分化,進(jìn)而對(duì)藥理療效存在影響還需進(jìn)一步分析。
通過葉綠體基因組序列的比較分析和系統(tǒng)發(fā)育樹的構(gòu)建等方式可評(píng)估物種系統(tǒng)發(fā)育位置和演化關(guān)系(Sloan et al., 2014; Williams et al., 2019)。在此基礎(chǔ)上,利用葉綠體編碼基因的進(jìn)化速率差異評(píng)估不同植物類群的基因變異與選擇壓力間的關(guān)系,可作為探索新藥源的基礎(chǔ)(Waldvogel et al., 2020; Zhao et al., 2020)。目前,半楓荷及近緣類群的蕈樹科、金縷梅科多個(gè)物種的葉綠體基因組已有報(bào)道,鑒于此,本研究利用公共數(shù)據(jù)庫中已公開發(fā)表的半楓荷及其近緣類群的葉綠體基因組,擬探討:(1)通過構(gòu)建系統(tǒng)發(fā)育樹來揭示半楓荷在蕈樹科或金縷梅科的系統(tǒng)發(fā)育位置;(2)分析半楓荷及其近緣類群的葉綠體基因的進(jìn)化位點(diǎn)與選擇壓力的關(guān)系。旨在為半楓荷的鑒定、資源開發(fā)提供一定的借鑒。
1"材料與方法
1.1 數(shù)據(jù)收集
通過NCBI數(shù)據(jù)庫(The National Center for Biotechnology Information)檢索半楓荷、蕈樹科和金縷梅科等近緣類群的葉綠體基因組序列信息,共檢索到蕈樹科半楓荷屬的半楓荷2個(gè)個(gè)體序列、蕈樹屬3個(gè)物種、楓香樹屬4個(gè)物種(其中楓香樹2個(gè)個(gè)體序列);另外,選擇金縷梅、水絲梨等10個(gè)金縷梅科的物種、虎皮楠科1個(gè)物種、連香樹科1個(gè)物種、毛茛科2個(gè)物種,總共22個(gè)物種的24條葉綠體基因組序列。下載檢索到的物種的葉綠體基因組序列、名稱、基因組序列號(hào)如表1所示。
1.2 葉綠體基因組比較分析
采用Geneious R9(Kearse et al., 2012)分析并統(tǒng)計(jì)蕈樹科8個(gè)物種葉綠體基因組序列的4個(gè)邊界(大單拷貝區(qū)LSC、小單拷貝區(qū)SSC和反向重復(fù)區(qū)IR)長度和基因數(shù)目類型等信息(表1)。采用R軟件的IRscope程序(Amiryousefi et al., 2018)對(duì)蕈樹科8個(gè)物種的4個(gè)邊界的收縮與擴(kuò)張進(jìn)行可視化分析。利用mVISTA軟件(Frazer et al., 2004)基于基因重排和倒位的全局比對(duì)模式(Shuffle-LAGAN)對(duì)半楓荷及其近緣類群8個(gè)物種葉綠體基因組序列進(jìn)行同源性比較研究,并利用Geneious R9軟件中的Mauve多重基因組比對(duì)法對(duì)這8個(gè)物種的葉綠體基因組序列進(jìn)行共線性比較。
1.3 系統(tǒng)發(fā)育分析
利用在線MAFFT v7(Katoh et al., 2002)(https://mafft.cbrc.jp/alignment/software/)比對(duì)從NCBI上檢索到的22個(gè)物種的24條葉綠體基因組序列(表1)。利用DMABE v6.4.29對(duì)比對(duì)序列是否適合用于系統(tǒng)發(fā)育研究進(jìn)行序列替代飽和度分析,評(píng)估觀測Iss值(index of substitution saturation)是否顯著低于Iss.c值(critical index of substitution saturation)(Xia et al., 2003; Xia amp; Lemey, 2009)。其中,Iss.c可分為Iss.cSym(對(duì)稱性替代飽和指數(shù))和IssAsym(非對(duì)稱性替代飽和指數(shù))。利用在線網(wǎng)站CIPRES Web Portal 2.0(http://www.phylo.org)的RA × ML進(jìn)行最大似然樹(maximum likelihood,ML)的構(gòu)建。最大似然分析采用GAMMA模型,快速自展法1 000次。利用jModelTest(Posada amp; Crandall, 1998; Darriba et al., 2012)計(jì)算AIC值,并為每個(gè)數(shù)據(jù)集選取最優(yōu)建樹模型。利用MrBayes v3.2.6(Ronquist amp; Huelsenbeck, 2003)構(gòu)建貝葉斯樹(Bayesian,BI),運(yùn)算300萬代,每1 000代取樣1次,去掉未達(dá)到穩(wěn)態(tài)的前25%的樹,其余的樹用來計(jì)算后驗(yàn)概率。
利用溯祖模擬去檢測不完全譜系分選對(duì)于核基因樹和葉綠體樹的沖突存在多大影響。先在溯祖模型下利用軟件DendroPy v4.1.0(Sukumaran amp; Holder, 2010)對(duì)24條葉綠體基因組序列模擬得到10 000棵葉綠體物種樹,再利用ASTRAL構(gòu)建物種樹作為參考,對(duì)這10 000棵模擬樹進(jìn)行匯總,得到各個(gè)分支頻率(clade frequency)。在不完全譜系分選的情況下,由于任何在經(jīng)驗(yàn)葉綠體樹(empirical plastid tree)中所得系統(tǒng)發(fā)育關(guān)系都應(yīng)該在模擬的葉綠體樹(simulated plastid tree)中體現(xiàn),因此各分支應(yīng)該具有較高支持率;而在雜交情況下,經(jīng)驗(yàn)葉綠體樹的部分分支在模擬基因樹中支持率較低甚至不存在(Garía et al., 2017; Morales-Briones et al., 2018)。
1.4 適應(yīng)性進(jìn)化分析
利用Geneious R9將24條葉綠體基因組的各個(gè)基因提取后比對(duì),并去掉終止密碼子,用EasyCodeML(Gao et al., 2019)將基因組比對(duì)序列批量轉(zhuǎn)換成 .pml格式。將基于24條葉綠體基因組構(gòu)建的最大似然樹作為樹文件(.nwk格式),利用EasyCodeML軟件分別選擇進(jìn)化枝模型(clade model)、枝模型(branch model)和位點(diǎn)模型(stie model)進(jìn)行適應(yīng)性進(jìn)化分析。進(jìn)化枝模型可以檢測整個(gè)進(jìn)化枝或重點(diǎn)關(guān)注支系上特異位點(diǎn)的選擇約束性;枝模型可以檢測所關(guān)注支系的選擇約束強(qiáng)度;位點(diǎn)模型可以在不考慮支系的情況下檢測受到正選擇位點(diǎn)的情況。在進(jìn)化枝模型和枝模型中,將蕈樹科分支標(biāo)記為前景枝。
2"結(jié)果與分析
2.1 半楓荷葉綠體基因組結(jié)構(gòu)的基本特征
由表1可知,半楓荷的葉綠體基因組為160 430~160 444 bp,LSC為88 969~88 991 bp,SSC為18 913~18 917 bp, IR為26 261~26 281 bp, GC含量均為37.9%,無差異。半楓荷與蕈樹科7個(gè)物種的葉綠體基因組相比,基因總數(shù)為133個(gè),rRNA為8個(gè)(其中4個(gè)在IR區(qū)),tRNA為37個(gè)(其中7個(gè)在IR區(qū)),蛋白質(zhì)編碼基因數(shù)為88個(gè)(其中7個(gè)在IR區(qū)),其中共檢測到11個(gè)含內(nèi)含子的蛋白編碼基因,即rps16、atpF、rpoC1、ycf3、clpP、petB、petD、rpl16、rpl2、ndhB、ndhA,其中rpl2、ndhB分布在IR區(qū),ycf3和clpP有2個(gè)內(nèi)含子,而內(nèi)含子長度的變化導(dǎo)致基因長度有變化(表1)。8個(gè)物種中matK、ndhK基因的蛋白質(zhì)編碼區(qū)序列長度有變化。與之相比,金縷梅科7個(gè)物種的基因總數(shù)為133個(gè),rRNA為8個(gè)(其中4個(gè)在IR區(qū)),tRNA為37個(gè)(其中7個(gè)在IR區(qū)),蛋白質(zhì)編碼基因數(shù)為88個(gè)(其中7個(gè)在IR區(qū))。
2.2 半楓荷及其近緣屬葉綠體基因組IR與SC邊界
半楓荷與近緣類群共8個(gè)物種的葉綠體基因組在序列長度、基因排序及數(shù)量、GC含量等相對(duì)保守,IR區(qū)和SC區(qū)邊界的過渡區(qū)域上基因排布無差異,僅基因序列長短有差異,具有高度保守性(圖1)。IRb與LSC邊界除半楓荷在rps19與rpl2的間隔區(qū)之外,其余7個(gè)物種都在基因rps19上。IR區(qū)和SSC區(qū)邊界均在ycf1上。
2.3 半楓荷及其近緣屬葉綠體基因組序列變異分析[BT)]
采用mVISTA軟件,對(duì)半楓荷及蕈樹科7個(gè)物種的葉綠體基因組序列同源性進(jìn)行分析,在全局對(duì)比模式下檢測基因重排和倒位(圖2)。圖2結(jié)果表明,蕈樹科8個(gè)物種葉綠體基因組4個(gè)部分排列順序保守性高,在非基因編碼區(qū)有明顯變異,而基因編碼區(qū)變異不明顯。SSC和LSC均有明顯變異,尤其在LSC區(qū)域的基因間隔區(qū)變異較高,IR區(qū)變異程度相對(duì)較低。
每個(gè)不同顏色的區(qū)塊代表不同基因。 黑色代表的是轉(zhuǎn)運(yùn)RNA; 紅色代表的核糖體RNA; 白色的是蛋白質(zhì)編碼基因; 綠色代表具有內(nèi)含子的轉(zhuǎn)運(yùn)RNA。
The small blocks of various colors represent genes. Black represents transfer RNA (tRNA); red represents ribosomal RNA; white represents protein
coding gene; green represents intron-containing tRNA.
以貝葉斯樹為骨架, 比例尺代表替換率為0.02。分支上數(shù)值為最大似然法自展支持率、貝葉斯法的后驗(yàn)概率和模擬基因樹的分支頻率。
Phylogenetic tree is drawn based on BI tree. The scale bar shows 0.02 substitutions/site. Numbers above branches are ML bootstrap values, BI posterior probability and clade frequencies of the simulated gene trees.
2.4 半楓荷及其近緣屬葉綠體基因組共線性分析
利用Geneious R9的Mauve比對(duì)法檢測半楓荷及蕈樹科7個(gè)物種的葉綠體基因組的重排和共線性(圖3),通過多重基因組比對(duì)法檢測出8個(gè)物種的葉綠體基因組之間有1個(gè)局部共線塊(locally collinear block),這表明蕈樹科8個(gè)物種之間的基因組具有高度相似性,同時(shí)并未檢測到重排或倒置。
2.5 系統(tǒng)發(fā)育分析
使用DAMBE對(duì)上述葉綠體基因組序列矩陣進(jìn)行堿基替換飽和度檢測,結(jié)果表明在隨機(jī)抽取4個(gè)、8個(gè)、16個(gè)、32個(gè)類群時(shí),對(duì)稱拓?fù)浣Y(jié)構(gòu)和非對(duì)稱拓?fù)浣Y(jié)構(gòu)中的序列替換飽和指數(shù)(Iss)都顯著小于標(biāo)準(zhǔn)替換飽和指數(shù)(Iss.c),可以用于后續(xù)系統(tǒng)發(fā)育樹的構(gòu)建。篩選出的最佳模型是GTR+I+G,基于24個(gè)葉綠體基因組序列構(gòu)建的最大似然樹(ML)和貝葉斯樹(BI)拓?fù)浣Y(jié)構(gòu)基本一致(圖4)。蕈樹科的物種聚為一類,金縷梅科物種聚為一類。其中,蕈樹科物種中半楓荷(Semiliquidambar cathayensis)與蕈樹(Altingia chinensis)、楓香樹(Liquidambar formosana)、缺萼楓香樹(L. acalycina)構(gòu)成Clade I(99/1.00);細(xì)青皮(Altingia excelsa)和云南蕈樹(A. yunnanensis)構(gòu)成Clade II(100/1.00);蘇合香(Liquidambar orientalis)和北美楓香(L. styraciflua)構(gòu)成Clade III(100/1.00);虎皮楠(Daphniphyllum oldhamii)和連香樹(Cercidiphyllum japonicum)各自單獨(dú)成一支,并依次構(gòu)成蕈樹科物種的姐妹類群;所取樣的金縷梅科物種可劃分為Fothergilleae分支、Hamamelideae分支、Eustigmtaeae分支和Corylopsideae分支?;谒葑婺M檢測不完全譜系分選對(duì)于葉綠體樹的拓?fù)浣Y(jié)構(gòu)的影響,多個(gè)分支的分支頻率較低(圖4),表明蕈樹科內(nèi)多個(gè)分支的系統(tǒng)位置不排除受到葉綠體不完全譜系分選和雜交的影響。
2.6 適應(yīng)性分化
利用枝模型以蕈樹科分支為前景枝,檢測到3個(gè)基因受到選擇約束(0lt;ωlt;1),即ndhA(ω=0.051,Plt;0.05)、ndhG(ω=0.024,Plt;0.01)、rps12(ω=0.000 1,Plt;0.01)。利用進(jìn)化枝模型以蕈樹科分支為前景枝,檢測到12個(gè)基因(atpE、atpF、ndhA、ndhJ、psbM、rpl14、rpoC2、rps2、rps3、rps4、rps12、rps14)有明顯的選擇約束性(表2)。利用位點(diǎn)模型檢測葉綠體基因組上各基因的正選擇位點(diǎn),發(fā)現(xiàn)accD、atpE、atpF、clpP、ndhA等10個(gè)基因受到選擇壓力,其中有45個(gè)位點(diǎn)受到正選擇P值大于0.95,28個(gè)位點(diǎn)P值大于0.99(表3)。
3"討論與結(jié)論
3.1 半楓荷屬與蕈樹屬、楓香樹屬的系統(tǒng)發(fā)育關(guān)系
本研究基于葉綠體基因組對(duì)半楓荷屬與蕈樹屬、楓香樹屬的親緣關(guān)系進(jìn)行分析,結(jié)果表明,半楓荷屬、蕈樹屬和楓香樹屬3個(gè)屬的物種均不能各自構(gòu)成單系類群,支持將半楓荷屬歸置于蕈樹科,這與基于葉綠體基因數(shù)據(jù)的分子系統(tǒng)學(xué)、花粉粒形態(tài)等研究結(jié)果一致(Ickert-Bond amp; Wen, 2013),但《中國植物志》基于異型葉、花單性等形態(tài)性狀將半楓荷屬、蕈樹屬和楓香樹屬歸置于金縷梅科的楓香樹亞科。這些屬的形態(tài)鑒別要點(diǎn),如葉片的長度和形狀、葉柄粗細(xì)及長度、果序上萼齒的長度等數(shù)量性狀在同屬植物或近緣屬中存在連續(xù)變異,從而缺少系統(tǒng)性量化標(biāo)準(zhǔn),加之半楓荷屬植物具有同科楓香樹屬和蕈樹屬植物的過渡形態(tài)性狀。因此,很難根據(jù)形態(tài)性狀將半楓荷屬植物與蕈樹屬、楓香樹屬植物進(jìn)行區(qū)分。
Ickert-Bond和Wen(2013)分子系統(tǒng)學(xué)結(jié)果表明,半楓荷屬、蕈樹屬和楓香樹屬物種為東亞分支(E. Asia Clade),但分支內(nèi)各物種親緣關(guān)系模糊不清,可能需要進(jìn)一步開發(fā)高分辨率的分子標(biāo)記來分析各物種系統(tǒng)發(fā)育關(guān)系。本研究基于葉綠體基因組比較分析,發(fā)現(xiàn)蕈樹科8個(gè)物種的葉綠體基因組在基因結(jié)構(gòu)、排列和數(shù)目,IR和SC連接區(qū)均具有較高的保守性,各物種基因組的長度變化主要體現(xiàn)在內(nèi)含子或編碼區(qū)序列的長度變化。因此,后續(xù)可從葉綠體基因組的編碼區(qū)間隔區(qū)等相對(duì)高變異區(qū)域開發(fā)高分辨率的分子標(biāo)記用于半楓荷的分子鑒定、遺傳分化等研究。
3.2 半楓荷及其近緣類群的系統(tǒng)發(fā)育關(guān)系
本研究基于葉綠體基因組對(duì)半楓荷及其近緣類群的系統(tǒng)發(fā)育關(guān)系進(jìn)行分析,結(jié)果表明所取樣半楓荷個(gè)體沒有構(gòu)成單系類群,半楓荷與蕈樹、楓香樹、缺萼楓香樹構(gòu)成Clade I(99/1.00),利用溯祖原理的葉綠體基因樹的檢測結(jié)果表明,蕈樹科內(nèi)多個(gè)分支的分支頻率較低, 蕈樹科內(nèi)各分支可能存在雜交或葉綠體不完全譜系分選,說明半楓荷的親本暫時(shí)不能確定。這與前人的分子系統(tǒng)學(xué)結(jié)果一致,半楓荷與楓香樹、缺萼楓香樹構(gòu)成單系分支,但支持率不高,推測半楓荷可能是個(gè)雜交種(Shi et al., 2001; Ickert-Bond amp; Wen, 2013)。由于現(xiàn)有研究選用了少量基因片段和不同的樣本,半楓荷與楓香樹屬和蕈樹屬物種的雜交程度仍然模糊,因此需要在居群水平上研究半楓荷的遺傳背景。
3.3 蕈樹科植物的適應(yīng)性分化
由于環(huán)境變化可以促使植物基因的適應(yīng)性進(jìn)化(Kelly, 2019),因此本研究采取不同的模型檢測到蕈樹科及其近緣類群有多個(gè)基因都可能受到選擇壓力,以探討基因位點(diǎn)的選擇壓力與近緣物種、環(huán)境是否存在一定相關(guān)性。
基于本研究的進(jìn)化枝模型結(jié)果發(fā)現(xiàn),以蕈樹科分支作為前景枝時(shí),多個(gè)atp基因、ndh基因和rps基因有明顯的選擇約束性,這些基因在其他植物類群中大多與光合作用、轉(zhuǎn)錄翻譯等功能相關(guān)。例如,ndh類基因家族在光合作用中有著至關(guān)重要的作用,同時(shí)任何環(huán)境改變或是植物受到脅迫等壓力,該類基因也會(huì)敏感的發(fā)生變異(Martín amp; Sabater, 2010; Zhao et al., 2020);核糖體蛋白大小亞基基因rpl和rps是植物轉(zhuǎn)錄翻譯過程中的重要基因,rps12、atpF等基因的轉(zhuǎn)錄本參與葉綠體II型內(nèi)含子的剪切過程(Vogel et al., 1999),其中ATP合酶基因在光合作用中必不可少;而rpoC2基因編碼葉綠體RNA聚合酶的β亞基,在轉(zhuǎn)錄工程中發(fā)揮重要作用。蕈樹科物種大多分布在我國西南地區(qū),由此推測其光合作用功能可能為了適應(yīng)相對(duì)高溫高濕的環(huán)境,而與金縷梅科植物存在差異。這與田曉明等(2018)基于半楓荷的轉(zhuǎn)錄組數(shù)據(jù)結(jié)果類似,半楓荷轉(zhuǎn)錄組中有92個(gè)Unigene映射在光合作用調(diào)控通路,32個(gè)Unigene映射到光合作用—天線蛋白通路。因此,本研究結(jié)果可以為在基因水平上研究半楓荷的光照響應(yīng)提供基礎(chǔ)。
本研究基于位點(diǎn)模型分析不同基因的氨基酸位點(diǎn)是否經(jīng)歷選擇壓力,結(jié)果表明accD、clpP、rbcL、ycf1和ycf2等10個(gè)基因的45個(gè)位點(diǎn)受到正選擇P值大于0.95,28個(gè)位點(diǎn)P值大于0.99,而基因檢測到正選擇壓力的位點(diǎn)數(shù)目最多,說明變異程度大,這些基因在植物的光合作用、新陳代謝等多個(gè)環(huán)節(jié)都發(fā)揮作用。例如,Slabas和Fawcett(1992)研究結(jié)果表明accD基因編碼乙酰輔酶A羧化酶的β亞基,在脂肪酸的生物合成中發(fā)揮作用,因此在被子植物葉綠體中該基因常會(huì)轉(zhuǎn)移或缺失是植物適應(yīng)環(huán)境的結(jié)果之一,由此本研究推測該基因的變化可能幫助蕈樹科植物適應(yīng)生境;clpP基因是葉綠體基因組內(nèi)編碼clpP蛋白酶的基因家族成員,能降解多肽,既能幫助控制植物的代謝過程正常進(jìn)行,又能在植物的生物抗逆脅迫中發(fā)揮重要作用(鄭春花等,2016),由此本研究推測其在蕈樹科物種適應(yīng)西南地區(qū)相對(duì)濕熱的環(huán)境中可能起關(guān)鍵作用;rbcL在植物光合作用中作為光合電子傳遞的調(diào)節(jié)器,編碼葉綠體中Rubisco的大亞基,該大亞基的C末端區(qū)域在光合系統(tǒng)中具有重要意義(Curmi et al., 1992);ycf1和ycf2基因進(jìn)化速率較快,具有編碼葉綠體ATP酶和調(diào)控植物果實(shí)發(fā)育的功能,與其他植物情況類似,說明ycf類基因在植物中普遍存在適應(yīng)性進(jìn)化的現(xiàn)象(Zhou et al., 2019)??傊?,這些基因可能在蕈樹科植物、半楓荷類原植物適應(yīng)南方的環(huán)境氣候過程中發(fā)揮了重要作用。
目前,半楓荷屬植物主要集中在我國西南地區(qū),現(xiàn)有研究的取樣范圍和分子標(biāo)記選擇受限,使得半楓荷屬的屬間關(guān)系仍存在模糊。本研究目前僅基于公開數(shù)據(jù)庫中的葉綠體基因組序列分析了半楓荷及其近緣類群的葉綠體基因組結(jié)構(gòu)差異、系統(tǒng)發(fā)育關(guān)系和基因位點(diǎn)選擇壓力,未能很好推測半楓荷與楓香樹、缺萼楓香樹、蕈樹等物種的關(guān)系。因此,未來應(yīng)該擴(kuò)大半楓荷及其近緣類群的采樣范圍,選擇分辨率較高的分子標(biāo)記,探討半楓荷與蕈樹屬、楓香樹屬物種的雜交或不完全譜系分選等問題。
參考文獻(xiàn):
AMIRYOUSEFI A, HYVNEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes "[J]. Bioinformatics, 34(17): "3030-3031.
ANGIOSPERM PHYLOGENY GROUP, 1998. An ordinal classfication for the families of flowering plants [J]. Ann Mo Bot Gard, 85(4): "531-553.
CHOI KS, HA YH, JEONG KS, et al., 2018. The complete chloroplast genome of Corylopsis coreana (Hamamelidaceae) [J]. Conserv Genet Resour, 11(3): "291-293.
CURMI PM, CASCIO D, SWEET RM, et al., 1992. Crystal structure of the unactivated form of ribulose-1, 5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-A resolution [J]. J Biol Chem, 267(24): "16980-16989.
DARRIBA D, TABOADA GL, DOALLO R, et al., 2012.jModelTest 2: more models, new heuristics and parallel computing [J]. Nat Methods, 9(8): 772.
DONG WP, XU C, CHENG T, et al., 2013. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales [J]. Genome Biol Evol, 5(5): "989-997.
DONG WP, XU C, WU P, et al., 2018. Resolving the systematic positions of enigmatic taxa: manipulating the chloroplast genome data of Saxifragales [J]. Mol Phylogenet Evol, 126: 321-330.
FRAZER KA, PACHTER L, POLIAKOV A, et al., 2004. VISTA: computational tools for comparative genomics [J]. Nucl Acids Res, 32 (Web Server issue): "W273-W279.
FU LG, 1991. Red book of Chinese plants: rare and endangered plants [M]. Beijing: Science Press. "[傅立國, 1991. 中國植物紅皮書稀有瀕危植物 [M]. 北京: 科學(xué)出版社.]
GAO FL, CHEN CJ, ARAB DA, et al., 2019. EasyCodeML: A visual tool for analysis of selection using CodeML [J]. Ecol Evol, 9(7): "3891-3898.
GARA N, FOLK RA, MEEROW AW, et al., 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae) [J]. Mol Phylogenet Evol, 111: 231-247.
Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 2005. Flora of Guangxi: Vol. 2 [M]. Nanning: Guangxi Science Press: 690-692. "[廣西壯族自治區(qū)、中國科學(xué)院廣西植物研究所, 2005. 廣西植物志: 第2卷 "[M]. 南寧: 廣西科學(xué)出版社: 690-692.]
HUANG LH, CHEN QT, XIAO YS, et al., 2021. Optimization and primers screening of ISSR-PCR reaction system for Semiliquidambar cathayensis Chang [J]. Mol Plant Breed, 19(20): "6782-6789. "[黃麗華, 陳秋婷, 肖雨沙, 等, 2021. 半楓荷ISSR-PCR體系優(yōu)化及引物篩選 [J]. 分子植物育種, 19(20): 6782-6789.]
ICKERT-BOND SM, WEN J, 2006. Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five noncoding chloroplast regions [J]. Mol Phylogenet Evol, 39(2): "512-528.
ICKERT-BOND SM, WEN J, 2013. A taxonomic synopsis of Altingiaceae with nine new combinations [J]. PhytoKeys, 31: 21-61.
KATOH K, MISAWA K, KUMA K, et al., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on a fast Fourier transformation [J]. Nucl Acids Res, 30(14): "3059-3066.
KEARSE M, MOIR R, WILSON A, et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): "1647-1649.
KELLY M, 2019. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes [J]. Philos Trans R Soc Lond B Biol Sci, 374(1768): "20180176.
KIM SC, SHIN S, AHN JY, et al., 2019. Complete chloroplast genome of Corylopsis spicata and phylogenetic analysis [J]. Mitochondrial DNA Part B, 4(2): "2700-2701.
LAI JX, LIN FR, HUANG P, et al., 2020. Characterization of the complete chloroplast genome of Liquidambar acalycina Chang [J]. Mitochondrial DNA Part B, 5(2): "1697-1698.
LEE M, PARK JH, GIL J, et al., 2019. The complete chloroplast genome of Paeonia lactiflora Pall. (Paeoniaceae) [J]. Mitochondrial DNA Part B, 4(2): "2715-2716.
LI HL, CHENG XL, CHEN Y, et al., 2019. Complete plastome sequence of Rhodoleia championii Hook. f.(Hamame-lidaceae) [J]. Mitochondrial DNA Part B, 4(2): "3458-3459.
MARTN M, SABATER B, 2010. Plastid ndh genes in plant evolution [J]. Plant Physiol Biochem, 48(8): "636-645.
MORALES-BRIONES D, LISTON A, TANK DC, 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae) [J]. New Phytol, 218(4): "1668-1684.
PENG Y, YANG LM, WEI J, 2020. The complete chloroplast genome of Sycopsis sinensis Oliver [J]. Mitochondrial DNA Part B, 5(3): "2984-2985.
POSADA D, CRANDALL KA, 1998. jModeltest: testing the model of DNA substitution [J]. Bioinformatics, 14: 817-818.
QIU Q, YANG DJ, XU LH, et al., 2020. The complete chloroplast genome sequence of Altingia yunnanensis [J]. Mitochondrial DNA Part B, 5(1): "1050-1051.
QIU S, CHEN YY, YAN XJ, et al., 2020. Chemical constituents from the leaves of Semiliquidambar cathayensis [J]. J Chin Med Mat, 43(5): "1136-1139. "[裘碩, 陳月圓, 顏小捷, 等, 2020. 金縷半楓荷葉化學(xué)成分研究 [J]. 中藥材, 43(5): 1136-1139.]
REN XL, DU XM, XIN GL, et al., 2018. The complete chloroplast genome of Sinowilsonia henryi (Saxifragales: Hamamelidaceae), an endangered relict species [J]. Conserv Genet Resour, 10(4): "643-645.
RONQUIST F, HUELSENBECK JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19(12): "1572-1574.
SHI S, CHANG HT, CHEN YQ, et al., 1998. Phylogeny of the Hamamelidaceae based on the ITS sequences of nuclear ribosomal DNA [J]. Biochem Syst Ecol, 26(1): "55-69.
SHI S, HUANG Y, ZHONG Y, et al., 2001. Phylogeny of the Altingiaceae based on cpDNA matK, PY-IGS and nrDNA ITS sequences [J]. Plant Syst Evol, 230: 13-24.
SHI YC, DUAN N, LIU BB, 2019. Complete chloroplast genome sequence of Semiliquidambar cathayensis (Hamamelidaceae), a rare and endangered species endemic to China [J]. Mitochondrial DNA Part B, 4(2): "3252-3253.
SLABAS AR, FAWCETT T, 1992. The biochemistry and molecular biology of plant lipid biosynthesis [J]. Plant Mol Biol, 19(1): "169-191.
SLOAN DB, TRIANT DA, FORRESTER NJ, et al., 2014. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae) [J]. Mol Phylogenet Evol, 72: 82-89.
SUKUMARAN J, HOLDER MT, 2010. DendroPy: A Python library for phylogenetic computing [J]. Bioinformatics, 26(12): "1569-1571.
TANG XH, FAN HH, ZHANG J, et al., 2020. The complete chloroplast genome of Semiliquidambar cathayensis HT Chang ‘T5’(Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(2): "1267-1268.
TIAN XM, ZENG LZ, YAN LH, et al., 2018. Study on transcriptome characteristic of Semiliquidambar cathayensis Chang [J]. Hunan For Sci Technol, 45(5): "40-50. "[田曉明, 曾玲珍, 顏立紅, 等, 2018. 半楓荷葉片轉(zhuǎn)錄組特征研究 [J]. 湖南林業(yè)科技, 45(5): 40-50.]
VOGEL JC, RUMSEY FJ, RUSSELL SJ, et al., 1999. Genetic structure, reproductive biology and ecology of isolated populations of Asplenium csikii (Aspleniaceae, Pteridophyta) [J]. Heredity, 83(5): "604-612.
WALDVOGEL AM, FELDMEYER B, ROLSHAUSEN G, et al., 2020. Evolutionary genomics can improve prediction of species′ responses to climate change [J]. Evol Lett, 4(1): "4-18.
WANG Y, LI YQ, YUAN XL, et al., 2019. The complete chloroplast genome sequence of Mytilaria laosensis [J]. Mitochondrial DNA Part B, 4(2): "3916-3917.
WILLIAMS AM, FRISO G, VANWIJK KJ, et al., 2019. Extreme variation in rates of evolution in the plastid Clp protease complex [J]. Plant J, 98(2): "243-259.
WU W, ZHOU RC, HUANG YL, et al., 2010. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia [J]. J Plant Res, 123(2): "231-239.
XIA X, LEMEY P, 2009. Assessing substitution saturation with DAMBE [M] // PHILIPPE L. Phylogenetic handbook: a practical approach to DNA and protein phylogeny. London: Cambridge University Press: 615-630.
XIA X, XIE Z, SALEMI M, et al., 2003. An index of substitution saturation and its application [J]. Mol Phylogenet Evol, 26(1): "1-7.
XIANG XG, XIANG KL, ORTIZ RDC, et al., 2019. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae [J]. J Biogeogr, 46(11): "2622-2631.
XIE SY, YAO KL, WU XJ, 2018. Overview of pharmacological research on Semiliquidambar cathayensis H. T. Chang [J]. J Fujian For Sci Technol, 45(4): "122-127. [謝石楊, 姚凱霖, 吳先基, 等, 2018. 半楓荷藥學(xué)研究概況 [J]. 福建林業(yè)科技, 45(4): 122-127.]
XU Y, XIAO TW, ZHAO N, et al., 2019. Characterization of the complete plastid genome of an endangered species Fortunearia sinensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 4(1): "1432-1434.
YANG DJ, QIU Q, XU LH, et al., 2020. The complete chloroplast genome sequence of Altingia excelsa [J]. Mitochondrial DNA Part B, 5(1): "534-535.
YANG L, LIU RH, HE JW, 2019. Rapid analysis of the chemical compositions in Semiliquidambar cathayensis roots by ultra high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry [J]. Molecules, 24(22): "4098.
YE XZ, WEN GW, ZHANG MZ, et al., 2021a. Genetic diversity and genetic structure of a rare and endangered plant in Semiliquidambar cathayensis Hung T. Chang [J]. Plant Sci J, 39(4): "415-423. "[葉興狀, 文國衛(wèi), 張明珠, 等, 2021a. 珍稀瀕危植物半楓荷的遺傳多樣性及遺傳結(jié)構(gòu) [J]. 植物科學(xué)學(xué)報(bào), 39(4): 415-423.]
YE XZ, ZHANG MZ, LIU YP, et al., 2021b. Analysis on genetic diversity of natural populations of Semiliquidambar cathayensis based on SRAP marker [J]. J Plant Res Environ, 30(4): "60-68. "[葉興狀, 張明珠, 劉益鵬, 等, 2021b. 基于SRAP標(biāo)記半楓荷天然種群的遺傳多樣性分析 [J]. 植物資源與環(huán)境學(xué)報(bào), 30(4): 60-68.]
YE XZ, YANG XJ, WANG MQ, et al., 2020. Analysis of SSR Loci in transcriptome of rare and endangered plants of Semiliquidambar cathayensis [J]. Mol Plant Breed, 18(5): "1585-1592. "[葉興狀, 楊先吉, 王妙青, 等, 2020. 瀕危珍稀植物半楓荷轉(zhuǎn)錄組中SSR位點(diǎn)分析 [J]. 分子植物育種, 18(5): 1585-1592.]
YE XZ, ZHANG MZ, JIANG YT, et al., 2020a. The complete chloroplast genome of Altingia chinensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(2): "1808-1809.
YE XZ, ZHAO GH, ZHANG MZ, et al., 2020b. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period [J]. Forests, 11(4): "434.
YU JJ, HU GX, ZHAO F, et al., 2019. The complete chloroplast genome sequence of Disanthus cercidifolius Subsp. Longipes (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 4(1): "1763-1764.
ZHANG MY, WANG XF, GAO J, et al., 2020. Complete chloroplast genome of Paeonia mairei H. Lév.: characterization and phylogeny [J]. Acta Pharm Sin, 55(1): "168-176. "[張明英, 王西芳, 高靜, 等, 2020. 美麗芍藥葉綠體全基因組解析及系統(tǒng)發(fā)育分析 [J]. 藥學(xué)學(xué)報(bào), 55(1): 168-176.]
ZHANG MZ, JIANG YT, YE XZ, et al., 2020. The complete chloroplast genome of Semiliquidambar cathayensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(1): "695-696.
ZHANG YY, CAI HX, DONG JX, et al., 2019. The complete chloroplast genome of Loropetalum subcordatum, a national key protected species in China [J]. Conserv Genet Resour, 11(4): "377-380.
ZHAO DN, REN Y, ZHANG JQ, 2020. Conservation and innovation: plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau [J]. Mol Phylogenet Evol, 144: 106713.
ZHENG CH, KONG XY, CHEN GX, et al., 2016. Screening, clustering and response to salinity stress of Clp family genes in peanut (Arachis hypogaea L.) [J]. Shandong Agric Sci, 48(12): "1-5. "[鄭春花, 孔祥遠(yuǎn), 陳冠旭, 等, 2016. 花生Clp家族成員的篩選、聚類和鹽脅迫響應(yīng)分析 [J]. 山東農(nóng)業(yè)科學(xué), 48(12): 1-5.]
ZHOU T, RUHSAM M, WANG J, et al., 2019. The complete chloroplast genome of Euphrasia regelii, pseudogenization of ndh genes and the phylogenetic relationships within Orobanchaceae [J]. Front Genet, 10: 444.
ZHU SS, YIN PP, YAP ZY, et al., 2019. Chloroplast genomes of two extant species of Tertiary relict Cercidiphyllum (Cercidiphyllaceae): "comparative genomic and phylogenetic analyses [J]. Mitochondrial DNA Part B, 4(1): "1551-1552.
(責(zé)任編輯"蔣巧媛"王登惠)
DOI: 10.11931/guihaia.gxzw202209047
周云, 韋妍妍, 2024.
基于葉綠體基因組解析半楓荷系統(tǒng)位置和進(jìn)化 [J]. 廣西植物, 44(4): 670-681.
ZHOU Y, WEI YY, 2024.Plastid phylogenomics resolving phylogeny and evolution of Semiliquidambar cathayensis [J].Guihaia, 44(4): 670-681.
周云等: 基于葉綠體基因組解析半楓荷系統(tǒng)位置和進(jìn)化
收稿日期: "2023-03-04"接受日期: ""2023-09-14
基金項(xiàng)目: "廣西一流學(xué)科(藥學(xué))建設(shè)項(xiàng)目(GXFCDP-PS-2018); 廣西自然科學(xué)基金(2021JJB130122)。
第一作者: 周云(1989—),博士,講師,研究方向?yàn)樗幱弥参锓肿淤Y源與遺傳,(E-mail)zoezhou10@163.com。
通信作者