• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics of 2×2 matrix non-Hermitian quantum systems on Bloch sphere

    2024-05-09 05:19:30LibinFu
    Communications in Theoretical Physics 2024年4期

    Libin Fu

    Graduate School of China Academy of Engineering Physics,Beijing 100193,China

    Abstract By casting evolution to the Bloch sphere,the dynamics of 2×2 matrix non-Hermitian systems are investigated in detail.This investigation reveals that there are four kinds of dynamical modes for such systems.The different modes are classified by different kinds of fixed points,namely,the elliptic point,spiral point,critical node,and degenerate point.The Hermitian systems and the unbrokenPT non-Hermitian cases belong to the category with elliptic points.The degenerate point just corresponds to the systems with exceptional point(EP).The topological properties of the fixed point are also discussed.It is interesting that the topological charge for the degenerate point is two,while the others are one.

    Keywords: non-Hermitian quantum system,two-level system,dynamics on the Bloch sphere,PT-symmetry,fixed points

    1.Introduction

    There has recently been a great deal of interest both in the theoretical and experimental study of non-Hermitian systems[1–5].The non-Hermitian systems have been realized in many fields,for example in optics systems [6–9],microwaves systems[10,11],and electronics systems[12–14].Projective Hilbert space establishes a bridge between quantum mechanics and modern differential geometry [15,16],and many important physical quantities,such as Berry curvature [17] and Fisher information[18–20] (the imaginary and real parts of the quantum geometric tensor respectively) are directly related with it.Hence,it plays a crucial role in various aspects of physics,especially in studying geometric and topological properties for quantum systems [21].

    The dynamics on the Projective space also play a role in investigating critical behaviors for many quantum systems,for example,the self-trapping in Bose–Einstein condensates[22–24],the non-adiabatic tunneling [25–27],and so on.For non-Hermitian systems,we can also set up the Projective Hilbert space [28–31].Indeed,for a 2×2 matrix Hermitian system,the Projective space is just a Bloch sphere.Hence,it will be interesting to discuss a 2×2 matrix non-Hermitian system by employing the Bloch sphere.

    In this paper,by introducing the dynamical equations of 2×2 matrix non-Hermitian systems on the Bloch sphere,we investigate the dynamical properties of the systems in detail.We find that there are four kinds of fixed points for 2×2 matrix non-Hermitian systems,elliptic points,spiral points,critical nodes,and degenerate points.The Hermitian systems and unbrokenPT non-Hermitian cases belong to the category with elliptic points.A system with a degenerate point just corresponds to the system with an exceptional point (EP),namely with an isolated degeneracy.The topology charges of different fixed points are investigated.And,the potential application in two-band systems is also discussed.

    The rest of the paper is organized as follows.First,we introduce the definition of the Bloch sphere for non-Hermitian systems in section 2.Then we investigate the dynamical properties on the Bloch sphere for 2×2 matrix non-Hermitian system in section 3.The cases with EP are discussed in section 4.In section 5,we investigate the topological charges of the fixed points.The application in 1D two-band systems is discussed in section 6.Finally,we give a conclusion of our paper in section 7.

    2.Evolution of the non-Hermitian quantum system on the Bloch sphere

    Consider the following Schr?dinger equation

    where the 2×2 matrixHis generally a non-Hermitian Hamiltonian.Let us defineH11+H22=,H11-H22=2Ωeiη,H12=,andH21=for convenience,where Π,Ω,Γ,and Λ are real numbers.The eigenvalues of the system can be easily get

    The eigenvalues are a complex pair in general.The complex eigenvalues are in accordance with time evolution not being unitary for non-Hermitian systems.The degeneracy of a non-Hermitian system is a branch-point (commonly called an exceptional point (EP)),at which the two eigenvalues are equal to each other and the eigenstates are parallel [32].

    The evolution of the non-Hermitian quantum system can be described by the motion on the Bloch sphere[33].For the system with 2×2 matrixH,the vector on the Bloch sphere for a state ∣ψ〉=can be defined aswith,andφ=arg(a)-arg (b),where α denotes the change in norm factor and β is for total phase shift.By denoting cosθ=,it then can be mapped to a unit sphere with the spherical coordinates (θ,φ).

    Combining with the complex conjugations of equation (1),and considering=1,we obtain the dynamical equation of the system on the Bloch sphere,

    the changing in norm

    and the total phase shift

    where

    just corresponds to the so-called dynamic phase.The equation of the phase shift is as the same as what had been obtained for Hermitian system by Aharonov and Anandan [34].The second part in the right hand of the phase shift equation is known as the geometric part.

    3.Classifying non-Hermitian systems with dynamics on the Bloch sphere

    The dynamical behaviors on the Bloch sphere are interesting and play a role in investigating critical effects for many physical systems,for example,the self-trapping phenomena in Bose–Einstein condensates [22–24],the non-adiabatic tunneling [25–27],and so on.

    In this section,we will investigate the dynamical behaviors of 2×2 non-Hermitian systems in detail based on its Bloch sphere which serves as phase space of the dynamical equations (3),(4)

    The fixed points are the solutions of the equations=0 and=0,denoted as(φ*,θ*),and they satisfy the following equations,

    There should be two fixed points in general and related to the eigenstates of the system (1) corresponding to the two eigenvalues (2) respectively.

    A dynamical system may be categorized into different dynamical modes for different parameters by properties of fixed points on phase space.The property of fixed point of phase space is classified by the Jacobian matrix which is obtained by linearizing the dynamical equations around the fixed point [35,36].The Jacobian matrix is

    From the equations (8) and (9),the elements of the Jacobian matrix can be derived as follows

    By taking the equations of fixed point(10) and(11) into account,we can have

    For simplicity,we define

    In general,there are six kinds of fixed points determined by the traceT=J11+J22,determinantD=Det(J)of the Jacobian,and Δ=T2-4Dand can be summarized in figure 1 [37].

    In fact,for different parameter regions in figure 1,the eigenvaluesλ±=of the Jacobian are different.For case I,the λ±are a pure imaginary pair;for case II,λ±are a complex pair;for case III,there are two negative real eigenvalues;for case IV,there is only one nonzero real eigenvalue,i.e.λ+=λ-=-T/2,while for case V the eigenvalues are zeros;for case VI,there are two real eigenvalues with λ+>0>λ-.

    For a 2×2 non-Hermitian system,from (17),we getD=,and then we can obtain Δ=.Hence,for the system Δ≤0,we can immediately know that there are no saddle points and node points for a 2×2 non-Hermitian system.

    We then have four kinds of dynamical modes,a)T=0,Δ<0,the system belonging to Case I.b)T≠0,Δ≠0,the system belonging to Case II.c)T≠0,Δ=0,the system belonging to Case IV.And d)T=Δ=0,the system belonging to Case V.

    For mode a),becauseT=0 and Δ≠0,we easily haveJ1=0,J2≠0.Combining with the fixed point equations(10)and (11),we can get

    Figure 1. The category of the fixed points,classified by trace and determinant of Jacobian matrix J defined in equation(12).Here,the horizontal axis is the trace T=J11+J22 and the vertical axis is determinant D=Det (J).

    Taking equation (2) into account,we can find that the energy gap,Eg=E+-E-,has the following form

    Then,we haveEg=J2/2 which is a real number.Hence,if the fixed point is an elliptic point,it means that the system will have a real energy gap.The Hermitian systems andPT unbroken systems all belong to this kind.We plot the trajectories in phase space in figure 2(a)with a set of parameters satisfyingT=0 as an example.

    For mode b),T≠0,Δ≠0,thenJ1≠0,J2≠0.The system belongs to case II and the fixed points are spirals.ForT>0,the trajectories around it spiral outwards,while forT<0 they spiral inwards.Egis a complex number for this case.An example for such a case is plotted in figure 2(b).

    For mode c),T≠0,Δ=0,andJ1≠0 butJ2=0.The system belongs to Case IV and the fixed points are critical nodes.ForT>0,it is a source,while forT<0 it is a sink.Eg=iJ1/2 is a pure imaginary number.There is an example for such a case in figure 2(c).ThePT broken systems belong to this kind,of which Λ=Γ,δ1=-δ2,and η=π/2.

    The mode d) is for high order critical point with a zero Jacobian matrixJ=0 and the gapEgis also zero,which just corresponds to EP.An example for this case is shown in figure 2(d),in which there is only one fixed point since the two eigenstates coalesce together for EP.We will give more discussions for this case in the following since the EP plays an important role in a non-Hermitian system.

    Table 1. Summary of the properties of the fixed points for a 2×2 non-Hermitian system.Here,PI means pure imaginary.

    Figure 2. The trajectories in the phase space examples for different cases.(a)For dynamical mode a,(b)for mode b,(c)for mode c,and(d) for mode c.

    The above discussions show that the categories of the fixed points are related to the eigenvalues of the Jacobian matrix which is known asλ±=-(J1+J2)2 ±iJ22 sinθ* and also with the energy gap of the non-Hermitian system.We summarize the properties in table 1.

    4.The dynamics on the Bloch sphere for systems with EP

    The EP means a kind of degeneracy which only appear in a non-Hermitian system[32],and the degeneracies also happen for eigenstates so that there is only one fixed point for such a case.The system with an EP has zero gap and zero Jacobian matrix as we know,and for which the parameters satisfy

    Then,from the equations of fixed point(10)and(11),we can easily get

    Obviously,the coordinate θ*for an EP is determined by two parameters among Ω,Λ,and Γ,and φ*is determined by the relation of η and δ.

    In figure 3,we plot the trajectories in phase space with EP for different η but fixed parameters Ω,Λ,and Γ and the relation δ=η-π/2.One can find that the degenerate point is fixed but the dynamic behaviors are quite different for different η.At the fixed point,all the trajectories are tangent,but the tangent direction changes with η.

    Figure 3. The trajectories in phase space for cases with EP.The parameters are Γ=0.8,Λ=1.25,and Ω=1.δ=η- with (a)for η=π,(b) for η=2π/3,(c) for η=π/2,and (d) for η=π/3.

    In order to investigate the dynamics around the fixed point with EP,we need to expand the dynamic equations(8),(9) around the fixed point to 2th order terms of δθ=θ-θ*and δφ=φ-φ*,since the first order terms are zero.The expansions can be written as

    Let us definek=δθ/δφ,and substitute it into equations (24),(25).Then from equations (24),(25),we can obtain

    In figure 3,we plot the lines δθ=kδφ in red dashed lines for different η,which are consistent with the tangent of trajectories at the fixed point for EP.

    5.Topological charge of fixed points

    We can associate a topological charge to the fixed point.Let us introduce a vector fieldv=(vφ,vθ) withvφ=andvθ=.This vector just corresponds to tangent vector of the trajectory in phase space.Obviously,in terms ofv,a fixed point is just forv=0.

    Figure 4. The vector streams of n=(nφ,nθ)in phase space for cases with the same parameters in figure 2 respectively.

    Then,we define a unit vector fieldn=v/v=(nφ,nθ)withv=.Considering a simple closed curveCin phase space,we define the topological charge with

    in which,Aμ=nφ?μnθ-?μnφnθ.[38]

    In fact,if we parameterize the vectorv=(vφ,vθ) via an angle Θ withvφ=vcos Θandvθ=vsin Θ,the path integral of equation(33)will becomew=d Θ,andw?Z is the winding number ofv[39].The integerwis just the topological charge of a fixed point.

    Through calculations,we find that for an elliptic point,a spiral point,and a critical node,the topological charge isw=1 respectively,while for the degenerate point with an EP,the charge isw=2.The results can be understood intuitively.In figure 4,we plot the vector streams of the unit vectorn=(nφ,nθ) in phase space for different cases.One can see that the vectorn=(nφ,nθ)rotates clockwise at a 2π angle when a closed path circulates clockwise which encloses an elliptic point,a spiral point,or a critical node.For the system with an EP,the vector winds twice clockwise when a closed path circulates clockwise which encloses the fixed point.

    The total topological charge for the phase space,the sum of the charge of the fixed points is 2 for all cases,which is determined by the topology of a sphere.We know that the sum of the topological indices of the zero points of a tangent vector field is a topological invariant,the Euler number,which is 2 for a sphere [36,40].

    6.Two-band non-Hermitian systems

    The above discussion can be used in investigating 1D twoband systems,which can be generally described by

    where σi,(i=1,2,3)are the three pauli matrices,vi(k)andgiare real numbers [41].

    Comparing with equation (1),we have Π=η0=0,Ω(k)=,η(k)=arctan[g3/v3(k)],Γ(k)=,δ1(k)=arctan[(g1-v2(k))/(v1(k)+g2)],Λ(k)=,andδ2(k)=arctan[(g1+v2(k))/(v1(k)-g2)].

    For example,ifv1=ta+tbcosk,v2=tbsink,v3=0,andg1=g2=0,one gets aPT -symmetric Su–Schrieffer–Heeger (SSH) model described by [42].

    7.Conclusion

    In the above,we show that the dynamics of 2×2 non-Hermitian systems can be divided into four different categories with the properties of the fixed points in phase space (Bloch sphere serving as phase space).The different kind of fixed point corresponds to the system that has the different energy gap.Especially,for systems with elliptic points,the gap is real,while for a degenerate point,the gap is zero and the system has an EP.The topological properties of the fixed points have also been investigated.The evolutions of the norm and the total phase have not been studied in this paper.We can know that for the fixed point,the norm will increase or decrease exponentially with a constant exponential factor,hence the norm will be infinitely large or infinitely small asymptotically with time.The total phase will change at a constant rate.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Grant No.12088101,and U2330401).

    麻豆av噜噜一区二区三区| 日韩欧美三级三区| 日本黄色视频三级网站网址| 搡老熟女国产l中国老女人| 老师上课跳d突然被开到最大视频| aaaaa片日本免费| 禁无遮挡网站| 搡老妇女老女人老熟妇| 免费高清视频大片| 国内揄拍国产精品人妻在线| 国产精品亚洲一级av第二区| 亚洲,欧美,日韩| 国产av麻豆久久久久久久| 精品免费久久久久久久清纯| 全区人妻精品视频| 看片在线看免费视频| 久久精品国产亚洲av天美| 能在线免费观看的黄片| 91久久精品国产一区二区成人| 97在线视频观看| 亚洲av免费在线观看| 18禁黄网站禁片免费观看直播| 国产精品一区二区三区四区免费观看 | 狠狠狠狠99中文字幕| 亚洲精品色激情综合| 3wmmmm亚洲av在线观看| 寂寞人妻少妇视频99o| 成人永久免费在线观看视频| 亚洲精品乱码久久久v下载方式| 欧美色欧美亚洲另类二区| 噜噜噜噜噜久久久久久91| 日韩大尺度精品在线看网址| 成人二区视频| 日产精品乱码卡一卡2卡三| 99热这里只有是精品在线观看| 俺也久久电影网| 欧美激情在线99| 欧美性感艳星| 精品久久国产蜜桃| 国产成人91sexporn| 亚洲精品成人久久久久久| 在线观看av片永久免费下载| 欧美区成人在线视频| 小说图片视频综合网站| 色5月婷婷丁香| 国产av麻豆久久久久久久| 特大巨黑吊av在线直播| 可以在线观看的亚洲视频| 69av精品久久久久久| 日韩欧美免费精品| 一级毛片电影观看 | 欧美三级亚洲精品| 在线观看午夜福利视频| 国产免费男女视频| 人妻久久中文字幕网| 午夜久久久久精精品| 一区二区三区四区激情视频 | 日韩,欧美,国产一区二区三区 | 人人妻人人澡欧美一区二区| 成人亚洲欧美一区二区av| 国产免费男女视频| 人妻制服诱惑在线中文字幕| 国产伦在线观看视频一区| 99热精品在线国产| 人妻丰满熟妇av一区二区三区| 亚洲国产精品久久男人天堂| 国产69精品久久久久777片| 桃色一区二区三区在线观看| 亚洲精品国产av成人精品 | 亚洲av成人精品一区久久| 久久人妻av系列| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品综合久久99| 亚洲av电影不卡..在线观看| 精品99又大又爽又粗少妇毛片| 中出人妻视频一区二区| 蜜桃亚洲精品一区二区三区| 99热这里只有是精品在线观看| 国产日本99.免费观看| 国产精品一二三区在线看| 午夜激情欧美在线| 一级黄片播放器| 国产成人aa在线观看| 乱系列少妇在线播放| 精品欧美国产一区二区三| 美女cb高潮喷水在线观看| 最近手机中文字幕大全| 日韩高清综合在线| 我要搜黄色片| 99在线人妻在线中文字幕| 久久中文看片网| 国产午夜精品久久久久久一区二区三区 | 午夜亚洲福利在线播放| 国产一区二区亚洲精品在线观看| 成人精品一区二区免费| 能在线免费观看的黄片| 中国美女看黄片| 毛片一级片免费看久久久久| 亚洲av第一区精品v没综合| 天堂动漫精品| 黑人高潮一二区| 99在线人妻在线中文字幕| 国产精品人妻久久久影院| 热99在线观看视频| 少妇人妻一区二区三区视频| 中文字幕av成人在线电影| 免费看a级黄色片| 国产 一区精品| 91av网一区二区| av国产免费在线观看| 久久久午夜欧美精品| 国内少妇人妻偷人精品xxx网站| 亚洲专区国产一区二区| 欧美三级亚洲精品| 国产精品一区二区性色av| 啦啦啦啦在线视频资源| 国产黄色小视频在线观看| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 天天躁日日操中文字幕| 男女视频在线观看网站免费| 久久天躁狠狠躁夜夜2o2o| 午夜福利在线观看吧| 日本欧美国产在线视频| 男人的好看免费观看在线视频| 18禁在线无遮挡免费观看视频 | 欧美丝袜亚洲另类| 99久国产av精品| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 18+在线观看网站| 成人无遮挡网站| 免费在线观看成人毛片| 男人狂女人下面高潮的视频| 99久久精品一区二区三区| 亚洲色图av天堂| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| 精品国产三级普通话版| 91久久精品国产一区二区三区| 亚洲五月天丁香| 如何舔出高潮| 日韩大尺度精品在线看网址| 老熟妇乱子伦视频在线观看| 日日啪夜夜撸| 国产高清视频在线观看网站| 日韩成人av中文字幕在线观看 | 麻豆一二三区av精品| 免费无遮挡裸体视频| 午夜福利在线在线| 深夜精品福利| 亚洲国产精品成人综合色| 一级黄片播放器| 亚洲在线观看片| 精品福利观看| 国产男靠女视频免费网站| 亚洲18禁久久av| 夜夜爽天天搞| 日本黄色片子视频| av专区在线播放| 国产老妇女一区| 婷婷色综合大香蕉| 一区二区三区四区激情视频 | 成人二区视频| 麻豆精品久久久久久蜜桃| 亚洲av.av天堂| 免费不卡的大黄色大毛片视频在线观看 | 18禁裸乳无遮挡免费网站照片| 久久99热这里只有精品18| 亚洲精品色激情综合| 久久久久久国产a免费观看| 我要看日韩黄色一级片| 在线免费观看的www视频| 国产伦精品一区二区三区四那| 看黄色毛片网站| 精品人妻偷拍中文字幕| 2021天堂中文幕一二区在线观| 九九久久精品国产亚洲av麻豆| 在线观看美女被高潮喷水网站| 久久久久性生活片| 99热精品在线国产| 大又大粗又爽又黄少妇毛片口| 日韩 亚洲 欧美在线| 观看美女的网站| 日韩欧美精品免费久久| 三级毛片av免费| 高清毛片免费看| 国产欧美日韩精品一区二区| 日韩国内少妇激情av| av天堂中文字幕网| 国产高清视频在线播放一区| 亚洲最大成人av| 国产高清视频在线观看网站| 亚洲精品国产成人久久av| 亚洲五月天丁香| 最近的中文字幕免费完整| 又爽又黄a免费视频| 波多野结衣巨乳人妻| 伦理电影大哥的女人| 人妻夜夜爽99麻豆av| avwww免费| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 禁无遮挡网站| 中出人妻视频一区二区| 国产成人a区在线观看| 久久久久国产网址| av天堂在线播放| 97超视频在线观看视频| 黄色视频,在线免费观看| 国产精品久久视频播放| 午夜激情欧美在线| 国产乱人偷精品视频| 国产亚洲精品综合一区在线观看| 亚洲最大成人中文| 别揉我奶头 嗯啊视频| 亚洲国产精品sss在线观看| 两个人视频免费观看高清| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 成人欧美大片| 18+在线观看网站| 国产精品久久久久久久电影| 免费看a级黄色片| 国产精品一区二区三区四区久久| 男女之事视频高清在线观看| 亚洲av免费高清在线观看| 精品日产1卡2卡| 成人综合一区亚洲| 国产亚洲精品久久久久久毛片| 亚洲国产高清在线一区二区三| 亚洲av中文av极速乱| 丰满人妻一区二区三区视频av| 日韩欧美免费精品| 在现免费观看毛片| 久久精品国产99精品国产亚洲性色| 老师上课跳d突然被开到最大视频| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 日韩欧美三级三区| av.在线天堂| 国产免费一级a男人的天堂| 免费在线观看影片大全网站| 亚洲av电影不卡..在线观看| 十八禁国产超污无遮挡网站| 久久亚洲国产成人精品v| 熟女电影av网| 精品人妻视频免费看| 亚洲18禁久久av| 露出奶头的视频| 日韩高清综合在线| 色av中文字幕| 日韩成人伦理影院| 人妻夜夜爽99麻豆av| av国产免费在线观看| 天堂√8在线中文| 18禁在线无遮挡免费观看视频 | 日日摸夜夜添夜夜添小说| 国产精品国产高清国产av| 最好的美女福利视频网| 精品久久国产蜜桃| 18禁裸乳无遮挡免费网站照片| 色视频www国产| 美女被艹到高潮喷水动态| 女同久久另类99精品国产91| 无遮挡黄片免费观看| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 最新在线观看一区二区三区| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女| 18禁黄网站禁片免费观看直播| 国产欧美日韩精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 麻豆av噜噜一区二区三区| 国产在线男女| 亚洲国产高清在线一区二区三| eeuss影院久久| 久久久久久国产a免费观看| 日韩高清综合在线| 亚洲精品456在线播放app| 久久人妻av系列| 国产精品1区2区在线观看.| 99国产极品粉嫩在线观看| 有码 亚洲区| 99riav亚洲国产免费| 成熟少妇高潮喷水视频| 国产精品99久久久久久久久| 22中文网久久字幕| 亚洲国产欧洲综合997久久,| videossex国产| 国产v大片淫在线免费观看| 搡老熟女国产l中国老女人| 日本-黄色视频高清免费观看| 男女做爰动态图高潮gif福利片| 嫩草影院新地址| 美女 人体艺术 gogo| 亚洲av中文字字幕乱码综合| 精品熟女少妇av免费看| 午夜a级毛片| 综合色丁香网| 日韩亚洲欧美综合| 国产麻豆成人av免费视频| 国产v大片淫在线免费观看| 少妇的逼水好多| 成人特级黄色片久久久久久久| av免费在线看不卡| videossex国产| 久久草成人影院| 国产精品99久久久久久久久| 日韩人妻高清精品专区| 哪里可以看免费的av片| 毛片女人毛片| 久久久a久久爽久久v久久| 你懂的网址亚洲精品在线观看 | 人妻少妇偷人精品九色| 国产综合懂色| 成人特级黄色片久久久久久久| 国产伦精品一区二区三区视频9| 少妇猛男粗大的猛烈进出视频 | 日韩欧美一区二区三区在线观看| 91在线精品国自产拍蜜月| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆 | 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 成人无遮挡网站| 国产精品久久电影中文字幕| 一个人看视频在线观看www免费| 亚洲欧美日韩无卡精品| 我要搜黄色片| 极品教师在线视频| 精品福利观看| 黄片wwwwww| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 最新在线观看一区二区三区| 真人做人爱边吃奶动态| 国产三级中文精品| 久久久久久伊人网av| 日本一二三区视频观看| 精品久久久久久久久久免费视频| 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看| or卡值多少钱| 男人狂女人下面高潮的视频| 欧美绝顶高潮抽搐喷水| 男女做爰动态图高潮gif福利片| 亚洲最大成人手机在线| 日韩一区二区视频免费看| 中国美女看黄片| 女人被狂操c到高潮| 黄色配什么色好看| 国产精品一及| 一区二区三区高清视频在线| 亚洲精品在线观看二区| 嫩草影院精品99| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲欧美成人综合另类久久久 | 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| 成年av动漫网址| 亚洲国产高清在线一区二区三| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 两个人的视频大全免费| 成人漫画全彩无遮挡| 亚洲人成网站在线播| 身体一侧抽搐| 丰满乱子伦码专区| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影| 色吧在线观看| 能在线免费观看的黄片| 日韩国内少妇激情av| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 国产探花极品一区二区| 久久久久久伊人网av| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 国产成人91sexporn| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产探花在线观看一区二区| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 人人妻人人澡欧美一区二区| videossex国产| 看片在线看免费视频| av中文乱码字幕在线| 六月丁香七月| 欧美潮喷喷水| 国产一区二区三区av在线 | 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 俺也久久电影网| 午夜久久久久精精品| 亚洲精品在线观看二区| 夜夜爽天天搞| 久久精品国产鲁丝片午夜精品| 日韩,欧美,国产一区二区三区 | 午夜亚洲福利在线播放| 午夜福利18| 亚洲精品粉嫩美女一区| 99热全是精品| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 日本免费a在线| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 99精品在免费线老司机午夜| 国产成人精品久久久久久| 中文资源天堂在线| 国产女主播在线喷水免费视频网站 | 久久久久久久午夜电影| 国产精华一区二区三区| 日韩成人伦理影院| 欧美+日韩+精品| 免费看a级黄色片| 国产黄a三级三级三级人| 国产精品一二三区在线看| 伦精品一区二区三区| 国产精品人妻久久久影院| 99久国产av精品国产电影| 色av中文字幕| 国产高潮美女av| 国产黄a三级三级三级人| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 97碰自拍视频| 少妇猛男粗大的猛烈进出视频 | 午夜福利视频1000在线观看| 色av中文字幕| 精品不卡国产一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 麻豆国产av国片精品| 观看免费一级毛片| 亚洲经典国产精华液单| 麻豆国产97在线/欧美| 美女高潮的动态| 22中文网久久字幕| 午夜影院日韩av| 少妇被粗大猛烈的视频| 69人妻影院| 91在线观看av| 亚洲丝袜综合中文字幕| 国产精品99久久久久久久久| 蜜臀久久99精品久久宅男| 久久久久久大精品| 免费黄网站久久成人精品| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| av卡一久久| 欧美高清性xxxxhd video| 日本成人三级电影网站| 亚洲精品色激情综合| 插阴视频在线观看视频| 人妻丰满熟妇av一区二区三区| 五月伊人婷婷丁香| 欧美性感艳星| 黄色欧美视频在线观看| 日日啪夜夜撸| 男人和女人高潮做爰伦理| 日韩大尺度精品在线看网址| 国产一级毛片七仙女欲春2| 日日摸夜夜添夜夜爱| av黄色大香蕉| 全区人妻精品视频| 亚洲熟妇熟女久久| 精品一区二区三区视频在线| 变态另类成人亚洲欧美熟女| 久久精品影院6| 国产大屁股一区二区在线视频| 1000部很黄的大片| 99riav亚洲国产免费| 免费一级毛片在线播放高清视频| 国产成人91sexporn| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 久久九九热精品免费| 成年版毛片免费区| 亚洲美女黄片视频| 亚洲五月天丁香| 国产亚洲精品av在线| av中文乱码字幕在线| 久久久国产成人免费| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 亚洲欧美成人综合另类久久久 | 中文字幕熟女人妻在线| 97热精品久久久久久| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 午夜a级毛片| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 99国产极品粉嫩在线观看| 俺也久久电影网| 成人一区二区视频在线观看| 蜜臀久久99精品久久宅男| 1024手机看黄色片| 中文资源天堂在线| 精品久久久久久久久av| 又爽又黄无遮挡网站| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 国产美女午夜福利| 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线观看播放| 91av网一区二区| 日韩欧美精品免费久久| 色综合色国产| 欧美丝袜亚洲另类| 日韩,欧美,国产一区二区三区 | 国产亚洲91精品色在线| 尤物成人国产欧美一区二区三区| 国产乱人视频| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 色哟哟·www| 如何舔出高潮| 你懂的网址亚洲精品在线观看 | 亚州av有码| 九九爱精品视频在线观看| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久com| 麻豆一二三区av精品| 美女大奶头视频| a级毛色黄片| 熟女电影av网| 亚洲五月天丁香| 成人精品一区二区免费| 十八禁网站免费在线| 亚洲精品456在线播放app| 欧美又色又爽又黄视频| 久久6这里有精品| 观看免费一级毛片| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 成年版毛片免费区| 免费av毛片视频| 男人和女人高潮做爰伦理| 91狼人影院| 久久久久久久久久黄片| 国产久久久一区二区三区| 久久热精品热| 午夜亚洲福利在线播放| 97超级碰碰碰精品色视频在线观看| 久久精品人妻少妇| 成人午夜高清在线视频| 成人一区二区视频在线观看| 久久精品国产清高在天天线| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 亚洲久久久久久中文字幕| 97碰自拍视频| 超碰av人人做人人爽久久| 日韩欧美在线乱码| 在线免费观看的www视频| 尤物成人国产欧美一区二区三区| 亚洲av.av天堂| 性欧美人与动物交配| 亚洲av中文av极速乱| 欧美在线一区亚洲| 不卡视频在线观看欧美| 日韩欧美三级三区| 大又大粗又爽又黄少妇毛片口| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 国产91av在线免费观看| 国产极品精品免费视频能看的| 一区二区三区免费毛片| 成人综合一区亚洲| 国产成人福利小说| 成人亚洲精品av一区二区| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 性欧美人与动物交配| 欧美区成人在线视频| 男女之事视频高清在线观看| 黄色一级大片看看| 听说在线观看完整版免费高清| 国产精品永久免费网站| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 国产单亲对白刺激| 色哟哟哟哟哟哟|