• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring dielectric phenomena in sulflowerlike nanostructures via Monte Carlo technique

    2024-05-09 05:20:04SaberFadilHusseinSabbahMhirechKabouchiBahmadChaitanyJayprakashRaoraneSivaSankarSanaHassanFouadandMohamedHashem
    Communications in Theoretical Physics 2024年4期

    N Saber ,Z Fadil,? ,Hussein Sabbah ,A Mhirech ,B Kabouchi ,L Bahmad ,Chaitany Jayprakash Raorane,Siva Sankar Sana,Hassan Fouad and Mohamed Hashem

    1 Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI).Research Unit Labelled CNRST,URL-CNRST-17.Faculty of Sciences.PO Box 1014,Mohammed V University in Rabat,Morocco

    2 College of Engineering and Technology,American University of the Middle East,Egaila 54200,Kuwait

    3 School of Chemical Engineering,Yeungnam University,Gyeongsan,38541,Republic of Korea

    4 Applied Medical Science Department,Community College,King Saud University,PO Box 11433,Riyadh Saudi Arabia

    5 Department of Dental Health,College of Applied Medical Sciences,King Saud University,PO Box 12372,Riyadh,Saudi Arabia

    Abstract This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin -1atoms and a shell with spin -5/ 2atoms.The Blume–Capel model and the Monte Carlo technique (MCt) with the Metropolis algorithm are employed.Diagrams are established for absolute zero,investigating stable spin configurations correlated with various physical parameters.The MCt method explores phase transition behavior and electric hysteresis cycles under different physical parameters.

    Keywords: sulflower-like nanostructure,dielectric characteristics,Monte Carlo technique,phase transition,phase diagrams,electric hysteresis

    1.Introduction

    Efflorescence in science and nanotechnology have allowed for the successful synthesis of nanomaterials with diverse sizes and structures as well.In particular,carbon-sulfur compounds have gained colossal attention due to the possibility of using them in a myriad of organic electronic devices,including organic field-effect transistors,light modulators,light-emitting diodes,photovoltaic cells and hydrogen-storage devices [1–4].One of the recently discovered carbon-sulfur compounds that have attracted attention is sulflower [5–7].This compound has a unique molecular symmetry resulting from anti-aromaticity and orbital degeneracy,combined with its intermolecular packing due to exposed sulfur atoms,making it a promising material for organic electronics[8–10].Sulflower is chemically stable [11],making it an archetypal candidate for electronic devices.Studies have shown that thin-film OFETs made with a sulflower exhibit promising characteristics,containing a gateway threshold voltage of 45 V and a hole mobility of 9.10-3cm2Vs-1[12].Additionally,researchers have investigated the potential of sulflower systems decorated with Be2+and Mg2+to adsorb molecular hydrogen using density-functional theory (DFT)calculations [13].The decorated systems consist of cyclic polythiophene rings.In addition,DFT and time-dependent density functional theory (TD-DFT) computations have proclaimed by Shakerzadeh’s research [14] that the interaction among C16S8sulflower and a lithium atoms exhibited nonlinear optical feedback,indicating the compound’s potential as a novel nonlinear optical material.However,Donget al[15] have presented a novel method of synthesizing the first-ever fully sulfur-substituted polycyclic aromatic hydrocarbon,or‘sulflower.’This unique compound has a coronene core and represents an innovative carbon-sulfur hybrid with promising potential for various applications.

    Figure 1. Schematic illustration of a sulflower-like structure,highlighting spins labeled as S (red balls) and σ (yellow balls),alongside different exchange linkages (depicted using blue and black).

    In recent research,investigations of the magnetic,magnetocaloric,and dielectric characteristics of diverse structures have been done via the Monte Carlo technique (MCt),including nano-islands [16],nanowires [17],Borophene Superlattices and core–shell [18,19],graphene-like nanoribbons [20],copper fluorides [21],a nano-graphene bilayer[22],a diluted graphdiyne monolayer with defects [23],a trilayer graphene-like structure[24],a polyhedral chain[25],the Kagome Ferromagnet [26].Ising models have also been utilized to investigate the mixed systems,like the TbMnO3multiferroic system [27],the Gd2O3nanowire [28],the graphyne[29]and the core–shell Nanotube[30]systems and the Ising thin-film [31].These models have been useful in predicting magnetic phenomena in a variety of structures,from nanoscale to bulk materials.

    Moreover,according to what we know,no theoretical investigations have been conducted to analyze the dielectric properties of a sulflower-like structure with a mixed spin configuration consisting of-1 and-5/2.We employ the MCt with the Metropolis algorithm to examine the dielectric characteristics of a sulflower-like structure.It is worth noting that in our previous research,we effectively utilized the MCt to inspect the magnetic and dielectric characteristics of various types of nanostructures [32–37].Furthermore,the application of an external electric field in the study of dielectric properties is crucial for understanding the response of materials to electric fields,characterizing dielectric behavior,determining polarization,dielectric susceptibility,electric hysteresis cycles,studying phase transitions,and manipulating material properties[17,18,35,36,38,39].Indeed,the study of ferroelectric or ferrielectric materials can contribute to progress in the multiferroic field [27],promising diverse applications such as magnetoelectric sensors and data storage.

    This article is set out as follows: in section 2,we explain the formalism and examples of how the MCt was utilized to explore the physical properties during the simulations.In section 3,we discuss the dielectric characteristics and hysteresis demeanors,and provide our findings.First,we show the major configuration of spin in the phase diagrams in subsection 3.1.Finally,we sum up our findings in section 4.

    2.Model and method

    Our study focuses on studying the dielectric behavior of the sulflower-like structure inside the Blume–Capel model under free frontier circumstances.For this investigation,we utilized the MCt with the Metropolis algorithm [40–46].The nanosystem contains a total of 24 atoms,including 16 atoms with values of=±1 and 0,as well as 8 atoms with values of=±5/2,±3/2,and±1/2(figure 1).Our results involved implementing 106steps through Monte Carlo computations for every spin while neglecting the first 105steps to ensure thermal stabilization.

    The Hamiltonian pertaining to the sulflower-like structure takes the form:

    The terms 〈i,j〉 and 〈k,l〉 denote neighboring site pairs,specifically (iandj) and (kandl).The exchange linkages between adjacent atoms possessing spinsS-SandS—σ are represented byJSSandJSσ,respectively.The parameter μ stands for the dipole moment,and we simplify by assuming μ=1 [38,39].An external longitudinal electric field is introduced asEZ.Additionally,there are crystal fieldsDSandDσinfluencing spinsSiand σj,respectively.Our investigation is confined to cases whereDis equal toDSand toDσ.

    The energy content per individual site is:

    whereNT=NS+Nσ=16+8=24 defining the overall number of atoms in the studied nanosystem.

    The polarizations,both partial and total,exhibited by the sulflower-like structure are as follows:

    The dielectric susceptibilities,both partial and total,exhibited by the sulflower-like structure are as follows:

    whereβ=,the Boltzmann’s constant,kBis utilized in this instance.To make calculations simpler,kBis set to 1.The absolute temperature is symbolized byT.

    3.Results and analysis through numerical methods

    The focus of this section lies in the utilization of the MCt to establish the configuration of spin in the phase diagrams in subsection 3.1.Additionally,subsection 3.2 delves into the analysis of polarizations and dielectric susceptibilities,considering their dependencies on different physical parameters.

    3.1.Configuration of spin in the phase diagrams

    The configuration of spin in the phase diagrams of the mixed sulflower-like structure with spins-1 and-5/2 in several physical parameters (EZ,D,JSS,and JSσ) planes are shown in this subsection.For the ground state investigation,we simulate the energy spins,we found that (2S+1)×(2σ+1)=3×6=18 possible configurations using the Hamiltonian of equation (1).These diagrams provide comprehensive information about spin configurations of the system during the adjustment of different variables.

    Plotting figure 2(a) in the (EZ,D) plane for the constant values of exchange coupling interactions asJSS=1 andJσS=-0.01,it becomes evident that out of the 18 potential configurations,only 6 remained stable.Within this plane,a flawless symmetry is observable among the configurations with respect to theEZ=0 axis.Particularly,the stable configurations corresponding toEZ>0 are: (-1,+1/2);(-1,+3/2);and (-1,+5/2).Whereas the stable configurations obtained to EZ<0 are: (+1,-1/2);(+1,-3/2) and(+1,-5/2).

    Figure 2(b) portrays the phase diagram within the (Jss,Ez) plane in the absence of a crystal field (D=0),while maintaining a constant exchange coupling parameter ofJsσ=-1.In this plane,only two configurations,specifically(+1,-5/2) and (-1,+5/2),remained stable,aligning with the highest spin values.

    Figure 2. Configuration of spins in the phase diagrams plotted for:(a)Jss set to 1 and Jsσ to-1,followed by(b)Jsσ at-1 and D at 0,(c)Jss at 1 and D at 0,(d)Jsσ at-1 and Ez at 0,(e)Jss at 1 and Ez at 0,and finally (f) D at 0 and Ez at 0.

    Figure 2.(Continued.)

    Figure 3. (a) The total of polarization,and (b) the total dielectric susceptibility relative to temperature.The depicted figures were generated using constant parameters: JSS=1,JSσ=-0.01,Ez=0.5,and D=0.

    Figure 4. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSS parameter.These figures were plotted while adhering to consistent parameters D=0,JSσ=-0.01 and Ez=0.5.

    Figure 5. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSσ parameter.These figures were plotted while adhering to consistent parameters D=0,JSS=1 and Ez=0.5.

    Figure 6. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the Ez parameter.These figures were plotted while adhering to consistent parameters D=0, JSS=1 and JSσ=-0.01.

    Figure 7. Hysteresis cycles of the sulflower-like structure,for different values of T for: Jss=1,JSσ=-0.01 and D=0.

    Figure 8. Hysteresis cycles of the sulflower-like structure,for different values of JSS for: JSσ=-0.01,T=0.1 and D=0.

    Figure 9. Hysteresis cycles of the sulflower-like structure,for different values of JSσ when Jss=1,T=0.1 and D=0.

    Figure 10. Hysteresis cycles of the sulflower-like structure,for different values of D for: Jss=1,JSσ=-0.01 and T=0.1.

    Figure 2(c) delves into the exploration of the impacts stemming from the ferrielectric parameter (Jsσ) and the external longitudinal electric field (Ez) within the (Jsσ,Ez)plane,all while refraining from applying the external longitudinal electric field (Ez=0),and keeping the exchange coupling interaction fixed atJss=1.In this plane,stability is observed across four phases,namely(-1,-5/2),(+1,+5/2),(+1,-5/2),and (-1,+5/2).

    Additionally,in figure 2(d),without applying the external longitudinal electric field(Ez=0)and with a constant value set for the ferrielectric parameterJsσ=-1,we observed that only six stable configurations exist,namely(-1,+1/2),(+1,-1/2),(+1,-3/2),(-1,+3/2),(-1,+5/2),and (+1,-5/2).The spin configurations were displayed in the (Jss,D) plane.

    In order to examine how the configurations that remain stable are affected by the ferrielectric parameterJsσand the crystal fieldD,a graph was generated on the (Jsσ,D)plane withJss=1 andEz=0,as shown in figure 2(e).This graphical representation showcases six stable phases,namely:(-1,-1/2),(-1,-3/2),(-1,-5/2),(-1,+1/2),(-1,+3/2),and (-1,+5/2).

    Ultimately,the impact of the ferrielectric parameterJsσand the exchange coupling parameterJsswas investigated.Figure 2(f)illustrates this exploration within the(Jss,Jsσ)plane,with fixed parametersEz=0 andD=0.In this visual representation,merely four stable configurations are evident,namely(-1,+5/2),(+1,-5/2),(-1,-5/2),and (+1,+5/2).

    3.2.Monte Carlo technique (MCt)

    Within this segment,the dielectric attributes of the Sulflowerlike structure are scrutinized using the MCt with the Metropolis algorithm.

    The temperature-evolving tendencies of polarizations(PS,Pσ,andPtot) are presented in figure 3(a),withJss=1,Jsσ=-0.01,Ez=0.1,andD=0.At exceedingly low temperatures,partial polarizationsPS=1 andPσ=5/2 yieldPtot==1.5.The intricate relationship between spin polarization and dielectric reliability holds substantial importance,given that dielectric reliability serves as the precise indicator of the transition point where spin polarization undergoes a shift from order to disorder.This critical juncture is identified as the ‘blocking temperature,’ and it signifies a transformative phase within the system.During this phase,the system experiences a notable transition from a state of orderliness to a state of disorder,marking a significant change in its overall behavior and characteristics.As the temperature nears the transition temperature (Ttr),polarizations decrease.Interestingly,polarizations decrease as the system transitions into the superparaelectric phase around the transition temperature.For accurate determination of the transition temperature,we scrutinize the partial and total dielectric susceptibilities against temperature,employing the same parameter values featured in figures 3(a) and (b).The dielectric susceptibility peaks related to polarization transition temperatures for σ andSspins were approximatelyTtr(σ)≈2.83 andTtr(S)≈4.5,respectively.The total susceptibility also showed a peak,which occurs atTtr(tot)≈4.

    Results obtained for the JSSinteraction on the total polarization and the dielectric susceptibility were summarized in figures 4(a)–(c).The results were presented for:D=0,Jss=1,JSσ=-0.01 andEz=0.5.As indicated in figure 4(a),an augmentation of theJSSparameter leads to the noticeable shifting of the transition temperature towards high temperatures.Similarly,for the purpose of identifying the precise transition temperature that distinguishes between the ferrielectric and superparaelectric phases,figure 4(b) was generated alongside the total dielectric susceptibility,with varyingJssvalues and using the same set of fixed parameter values as presented in figure 4(a).The outcome showcases that the displacement of the peaks in total dielectric susceptibility gravitates towards higher temperature values asJssvalues increase,confirming the behavior observed in the total polarization.The determined transition temperatures forJssvalues of 1,2,3,and 4 are approximatelyTtr≈2.3,2.7,3.4 and 4,respectively.Drawing upon figures 4(a) and (b),we created figure 4(c)to enhance our comprehension of how the transition temperature relates to theJSSparameter.This visual representation reaffirms the nearly linear increase in the transition temperature when increasingJSS.

    To delve into the impact of the ferrielectric parameterJSσon the thermal total polarization and total dielectric susceptibility,we illustrate the behavior of this parameter in figures 5(a)—(c).These visualizations were derived across varying ferrielectric parameter values:JSσ=-1,-2,-3,and-4,all while adhering to fixed parameters:D=0,Jss=1,Ez=0.5.From the insight provided by figure 5(a),it’s evident that with an increase in the absolute value of the ferrielectric parameter |JSσ|,there is a corresponding decrease in the total polarizationPtot.Furthermore,it’s observable that the curve of the total polarization closely resembles the pattern of the total polarizationPtot(figure 4(a)).To accurately determine the transition temperature values,we mapped out the total dielectric susceptibility as illustrated in figure 5(b).The shift of the peaks of the total dielectric susceptibility towards lower temperature values becomes pronounced with an increase in the ferrielectric parameter |JSσ|.The transition temperatures identified for the ferrielectric parameters |JSσ|=1,2,3,and 4 are approximatelyTtr≈4.2,4.6,5,and 5.2,respectively.To emphasize the outcomes of figures 5(a) and(b),we delineate the trend of the transition temperature with respect to the parameterJSσin figure 5(c).This graphical representation clearly demonstrates that the transition temperature rises almost linearly as the ferrielectric parameter|JSσ|increases.

    Pursuing a similar rationale,we investigated the influence of the electric field parameterEzon the thermal tendencies of total polarizations and total dielectric susceptibility across variousEzvalues (Ez=0.5,1,1.5,and 2).The outcomes are presented in figures 6(a)and(b),assumingD=0,Jss=1,andJSσ=-0.01.As depicted in figure 6(a),we observed that the total polarization diminishes towards an earlier transition temperatureTtrfor lower external longitudinal electric field values compared to higher ones.This effect arises due to the interplay between the promoting influence of the external longitudinal electric field on order within the system and the temperature’s role in promoting disorder.Additionally,figure 6(b)showcases the thermal total dielectric susceptibility.The transition temperature values align with the peaks of the total dielectric susceptibility,withTtrvalues approximately ≈4,4.5,5.5,and 6.5 forEzvalues of 0.5,1,1.5,and 2 respectively.To synthesize the findings from figures 6(a) and (b),we present a graphical representation in figure 6(c),illustrating the correlation between the transition temperature and theEzparameter.In order to consolidate the results depicted in figures 6(a) and (b),we have included a graphical representation in figure 6(c) that illustrates the correlation between the transition temperature and the parameterEz.The figure effectively demonstrates that there was an almost linear increase in the transition temperature as the ferrielectric parameterEzis progressively elevated.

    To complete the study,our focus is on scrutinizing the effect of temperature (T) on hysteresis loops,visualized in figure 7 with fixed parametersD=0,Jss=1,andJSσ=-0.01.As the temperature rises,the hysteresis loop maintains its singular nature,though its area contracts.Upon reaching a threshold temperature of 2,the loop vanishes,denoting the system’s transition from the ferrielectric to the paraelectric phases.This occurrence underscores the gradual evolution of the system into a paraelectric state with increasing temperature.

    Furthermore,figure 8 portrays the influence of the exchange coupling parameterJSSon the hysteresis loop,with constantsJSσ=-0.01,T=0.1,andD=0.The system retains a singular loop structure.Yet,in contrast to the effect ofJSS,the loops change in area,coercivity,and saturation field asJSSvalues rise.This transformation arises due to the enhanced exchange coupling,imparting greater stability to the system.

    In figure 9,we also examined the effect of the ferrielectric parameterJSσon the hysteresis cycles,plotted withD=0,Jss=1 andT=0.1 and by decreasing the parameterJSσ,the hysteresis cycles show multiple loops.The saturation also increases when decreasing the parameterJSσ.

    To wrap up,we analyze the effect of the crystal field D on hysteresis loops,illustrated in figure 10 while maintaining constantsJss=1,JSσ=-0.01,andT=0.1.A reduction in theDparameter correlates with a reduction in the hysteresis loop’s size.Upon reaching a crystal field value of -7,the loop’s presence vanishes.This shift signifies the transition of the system from the ferrielectric to the paraelectric phases.

    4.Conclusion

    In this study,we utilized the MCt to explore the dielectric characteristics of a sulflower-like structure.The structure considered in our investigation consists of mixed spins(1,5/2).One of the main objectives was to determine and analyze the configuration of spin in the phase diagrams.Moreover,we examined dielectric characteristics of the system considering their dependencies on different physical parameters.Specifically,we investigated the impact of temperature,as well as external longitudinal electric on polarization,dielectric susceptibility,and hysteresis cycles.In summary,the findings demonstrate a linear decrease in transition temperature asJSSincreases,a corresponding increase in transition temperature with |JSσ|,and a clear linear rise in transition temperature with increasingEz.As temperature rises,the solitary hysteresis loop contracts and vanishes at 2,signifying the transition from ferrielectric to paraelectric phases.Maintaining a uniform loop structure,the system exhibits altered traits asJSSvalues increase,influenced by enhanced exchange coupling.Besides,decreasingJSσyields multiple loops and elevated saturation.Moreover,loweringDfurther contracts hysteresis loops,and a crystal field of -7 erases the loop,marking the ferrielectric to paraelectric transformation.

    Acknowledgments

    This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2020R1I1A3052258).This work is funded by Researcher Supporting Project number (RSP2024R117),King Saud University,Riyadh,Saudi Arabia.

    Conflicts of interest or competing interests

    The authors confirm that there are no known conflicts of interest associated with this publication.

    Author contributions

    Not Applicable

    Data and code availability

    This investigation was made using Monte Carlo simulations under the Metropolis algorithm by a Fortran code.

    ORCID iDs

    最近手机中文字幕大全| 国产三级在线视频| 欧美97在线视频| 午夜福利在线观看吧| 亚洲熟妇中文字幕五十中出| 成年版毛片免费区| 日本一本二区三区精品| 六月丁香七月| 欧美一区二区亚洲| 我要看日韩黄色一级片| 麻豆国产97在线/欧美| 爱豆传媒免费全集在线观看| 少妇人妻一区二区三区视频| 日本-黄色视频高清免费观看| 免费看不卡的av| 久久久久久久国产电影| 欧美3d第一页| 男人和女人高潮做爰伦理| 青青草视频在线视频观看| 国产男人的电影天堂91| 少妇被粗大猛烈的视频| 一区二区三区高清视频在线| 岛国毛片在线播放| 18+在线观看网站| 久久精品熟女亚洲av麻豆精品 | 中文在线观看免费www的网站| 九九爱精品视频在线观看| 99热全是精品| 禁无遮挡网站| 少妇猛男粗大的猛烈进出视频 | 一级a做视频免费观看| 高清av免费在线| 99久久精品热视频| 国产不卡一卡二| 亚洲自拍偷在线| 国产黄频视频在线观看| 久久99精品国语久久久| 国产黄色免费在线视频| 男的添女的下面高潮视频| 免费观看av网站的网址| 国产成人精品福利久久| 国产午夜精品论理片| 国产又色又爽无遮挡免| 免费人成在线观看视频色| 真实男女啪啪啪动态图| 久久久久久久久久久丰满| 九九爱精品视频在线观看| 女的被弄到高潮叫床怎么办| 久久精品久久久久久久性| 免费黄色在线免费观看| 精品人妻熟女av久视频| 成人性生交大片免费视频hd| 亚洲国产精品成人久久小说| 97热精品久久久久久| 欧美日韩国产mv在线观看视频 | 岛国毛片在线播放| 欧美+日韩+精品| 岛国毛片在线播放| 女人久久www免费人成看片| 夫妻性生交免费视频一级片| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| 欧美最新免费一区二区三区| 国产毛片a区久久久久| 国产精品1区2区在线观看.| 亚洲成人av在线免费| 插逼视频在线观看| 亚洲av二区三区四区| 白带黄色成豆腐渣| 九九在线视频观看精品| 亚洲在线观看片| 国语对白做爰xxxⅹ性视频网站| 青春草亚洲视频在线观看| av一本久久久久| 我要看日韩黄色一级片| 国产黄片视频在线免费观看| 91精品伊人久久大香线蕉| 一个人观看的视频www高清免费观看| 国产亚洲av嫩草精品影院| 久久国内精品自在自线图片| 久久久久精品性色| 97精品久久久久久久久久精品| 51国产日韩欧美| 日本黄色片子视频| 嘟嘟电影网在线观看| 中文字幕制服av| 久久久久久久国产电影| 日韩欧美国产在线观看| 日日啪夜夜爽| 久久久久久久亚洲中文字幕| 一级毛片aaaaaa免费看小| 午夜免费观看性视频| 午夜免费男女啪啪视频观看| 国产亚洲精品av在线| 精品酒店卫生间| 国产精品一区二区在线观看99 | 街头女战士在线观看网站| 久久国产乱子免费精品| 精品久久久久久久久亚洲| 久久久久久伊人网av| 2018国产大陆天天弄谢| 深爱激情五月婷婷| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 成人二区视频| 欧美极品一区二区三区四区| 午夜久久久久精精品| 午夜免费观看性视频| 日韩成人伦理影院| 三级男女做爰猛烈吃奶摸视频| 国产女主播在线喷水免费视频网站 | 欧美激情久久久久久爽电影| 天天一区二区日本电影三级| 中文资源天堂在线| 国产精品一区二区三区四区免费观看| 一个人看的www免费观看视频| 亚洲经典国产精华液单| 国产午夜福利久久久久久| 中文欧美无线码| 日韩不卡一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 亚洲av电影在线观看一区二区三区 | 你懂的网址亚洲精品在线观看| 午夜福利网站1000一区二区三区| 成人毛片a级毛片在线播放| 久久99精品国语久久久| 亚洲伊人久久精品综合| 激情五月婷婷亚洲| 夫妻午夜视频| 日日干狠狠操夜夜爽| 成人无遮挡网站| 日本欧美国产在线视频| 免费看av在线观看网站| 久久久a久久爽久久v久久| 国产成人精品一,二区| 不卡视频在线观看欧美| 在线播放无遮挡| 夫妻性生交免费视频一级片| 两个人的视频大全免费| 日日啪夜夜撸| 精品国产三级普通话版| 欧美zozozo另类| 国产精品一二三区在线看| 成人一区二区视频在线观看| 亚洲无线观看免费| 欧美最新免费一区二区三区| 日韩一本色道免费dvd| 美女大奶头视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久精品电影| 婷婷色综合大香蕉| 亚洲国产欧美人成| 国产亚洲av片在线观看秒播厂 | 在线播放无遮挡| 国产一区二区三区综合在线观看 | 大陆偷拍与自拍| 国内少妇人妻偷人精品xxx网站| 国内揄拍国产精品人妻在线| 色哟哟·www| 日韩欧美精品免费久久| 99热这里只有是精品在线观看| 日韩欧美国产在线观看| 日日摸夜夜添夜夜添av毛片| 美女脱内裤让男人舔精品视频| 国产精品福利在线免费观看| 最近最新中文字幕免费大全7| 搡老乐熟女国产| 高清欧美精品videossex| 久久精品久久久久久久性| 一级爰片在线观看| 网址你懂的国产日韩在线| 国产永久视频网站| 久久久久精品久久久久真实原创| 国产一区亚洲一区在线观看| 综合色丁香网| 精品一区二区三区视频在线| 嘟嘟电影网在线观看| 久久这里有精品视频免费| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 激情五月婷婷亚洲| 好男人视频免费观看在线| 日本欧美国产在线视频| 91精品国产九色| 99久久精品一区二区三区| 全区人妻精品视频| 在线观看av片永久免费下载| 久久这里只有精品中国| 国产精品女同一区二区软件| 成人av在线播放网站| av黄色大香蕉| 搞女人的毛片| 国产av码专区亚洲av| 国产 一区精品| 九色成人免费人妻av| 久久午夜福利片| 久热久热在线精品观看| 中文字幕久久专区| 国产黄片美女视频| 中文欧美无线码| 国产一区二区亚洲精品在线观看| 免费观看无遮挡的男女| 国产麻豆成人av免费视频| 国产高清三级在线| 在线a可以看的网站| 久久久午夜欧美精品| 日韩欧美三级三区| 免费观看无遮挡的男女| 最近的中文字幕免费完整| 国产免费又黄又爽又色| 女人久久www免费人成看片| av在线观看视频网站免费| 777米奇影视久久| 春色校园在线视频观看| 久久久久久久国产电影| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版 | 美女内射精品一级片tv| 免费看日本二区| 成人一区二区视频在线观看| 插逼视频在线观看| 3wmmmm亚洲av在线观看| 成人特级av手机在线观看| 在线 av 中文字幕| 色尼玛亚洲综合影院| 久久鲁丝午夜福利片| 只有这里有精品99| 精品久久国产蜜桃| 亚洲最大成人手机在线| 精品人妻一区二区三区麻豆| 黄色一级大片看看| 中文欧美无线码| 国产黄a三级三级三级人| 大片免费播放器 马上看| 成人鲁丝片一二三区免费| 国产伦理片在线播放av一区| 日韩一本色道免费dvd| 色哟哟·www| 男人爽女人下面视频在线观看| av黄色大香蕉| 白带黄色成豆腐渣| 日本午夜av视频| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 免费少妇av软件| 免费观看av网站的网址| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频 | 91精品国产九色| 日本熟妇午夜| 只有这里有精品99| 乱人视频在线观看| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 国产高清不卡午夜福利| 欧美日韩精品成人综合77777| 超碰av人人做人人爽久久| 麻豆精品久久久久久蜜桃| 波多野结衣巨乳人妻| 边亲边吃奶的免费视频| 国产精品国产三级国产av玫瑰| 久久97久久精品| 亚洲精品第二区| 秋霞伦理黄片| 国产高潮美女av| 亚洲av男天堂| 六月丁香七月| 久久久久久久国产电影| 国产成人freesex在线| 日韩欧美精品v在线| 午夜日本视频在线| 欧美性猛交╳xxx乱大交人| 国产精品国产三级国产专区5o| 免费av观看视频| 2021天堂中文幕一二区在线观| 免费不卡的大黄色大毛片视频在线观看 | 美女cb高潮喷水在线观看| 久久久久久久久久久丰满| 免费av不卡在线播放| 又大又黄又爽视频免费| 日日干狠狠操夜夜爽| 国产单亲对白刺激| av在线亚洲专区| 亚洲真实伦在线观看| 久久久精品94久久精品| 一本一本综合久久| videos熟女内射| 精品不卡国产一区二区三区| 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 女的被弄到高潮叫床怎么办| 欧美高清成人免费视频www| 91久久精品电影网| 中文精品一卡2卡3卡4更新| 老司机影院成人| 免费观看精品视频网站| 国产爱豆传媒在线观看| 一级a做视频免费观看| 国产美女午夜福利| 久久久欧美国产精品| 国产黄频视频在线观看| 国产综合精华液| 国产精品蜜桃在线观看| 99re6热这里在线精品视频| 免费观看a级毛片全部| 亚洲精品影视一区二区三区av| 丝瓜视频免费看黄片| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 欧美激情在线99| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| www.色视频.com| av国产久精品久网站免费入址| 国产乱人偷精品视频| av福利片在线观看| xxx大片免费视频| 亚洲欧美中文字幕日韩二区| 成人欧美大片| 亚洲精品视频女| 深爱激情五月婷婷| 中文字幕亚洲精品专区| 国产精品.久久久| 色吧在线观看| 久99久视频精品免费| 免费看不卡的av| 日韩欧美精品v在线| av卡一久久| 免费少妇av软件| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 一区二区三区乱码不卡18| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 成年女人看的毛片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本免费a在线| 国产精品嫩草影院av在线观看| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 男女边吃奶边做爰视频| 免费看日本二区| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 国产v大片淫在线免费观看| 波野结衣二区三区在线| 夫妻午夜视频| 人妻系列 视频| 免费看光身美女| 国产成年人精品一区二区| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 久久综合国产亚洲精品| 久久精品国产亚洲av天美| 永久免费av网站大全| 欧美一区二区亚洲| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| 欧美精品一区二区大全| 搡老妇女老女人老熟妇| 伊人久久国产一区二区| 22中文网久久字幕| 国产高清有码在线观看视频| 青春草视频在线免费观看| 亚洲成人精品中文字幕电影| 一区二区三区乱码不卡18| 中国美白少妇内射xxxbb| 亚洲av.av天堂| 人妻系列 视频| 国产有黄有色有爽视频| 国产精品爽爽va在线观看网站| 熟妇人妻不卡中文字幕| 国产永久视频网站| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 91av网一区二区| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 爱豆传媒免费全集在线观看| 久久久久性生活片| 在线a可以看的网站| 欧美一区二区亚洲| 亚洲人成网站高清观看| 免费看a级黄色片| videossex国产| 国产精品人妻久久久久久| 亚洲国产精品专区欧美| 日韩一区二区三区影片| 国产有黄有色有爽视频| 成人漫画全彩无遮挡| 国产91av在线免费观看| 成人亚洲精品一区在线观看 | 91在线精品国自产拍蜜月| 别揉我奶头 嗯啊视频| 日韩精品青青久久久久久| 最后的刺客免费高清国语| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| 麻豆av噜噜一区二区三区| 日本免费在线观看一区| 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 熟女人妻精品中文字幕| 免费无遮挡裸体视频| 精品一区在线观看国产| 丝袜喷水一区| 久久精品国产自在天天线| 国产黄色视频一区二区在线观看| 成年版毛片免费区| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 亚洲自拍偷在线| 国内精品宾馆在线| 久久久久国产网址| 有码 亚洲区| 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 亚洲精品国产av成人精品| 国产探花极品一区二区| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人精品中文字幕电影| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜 | 好男人在线观看高清免费视频| 51国产日韩欧美| 国产黄片美女视频| 深爱激情五月婷婷| 日韩一区二区视频免费看| 国产 亚洲一区二区三区 | 国产精品一区www在线观看| 黄色一级大片看看| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 美女主播在线视频| 免费在线观看成人毛片| 国产精品一区二区性色av| 一区二区三区免费毛片| 亚洲,欧美,日韩| 国产精品日韩av在线免费观看| 免费黄频网站在线观看国产| 欧美bdsm另类| 免费在线观看成人毛片| 国产免费福利视频在线观看| 天天躁日日操中文字幕| 十八禁网站网址无遮挡 | 亚洲精品影视一区二区三区av| 色5月婷婷丁香| 久久精品综合一区二区三区| 日本一本二区三区精品| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 国产一级毛片七仙女欲春2| 一区二区三区乱码不卡18| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 男女那种视频在线观看| 亚洲怡红院男人天堂| 国产精品蜜桃在线观看| 国产精品福利在线免费观看| 国产中年淑女户外野战色| 永久免费av网站大全| 18禁裸乳无遮挡免费网站照片| 精品酒店卫生间| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 精品久久久久久久久av| 男女那种视频在线观看| 精品久久久久久电影网| 99热这里只有精品一区| 亚洲成人中文字幕在线播放| 日韩一区二区三区影片| 久久精品人妻少妇| 国产精品久久久久久精品电影小说 | 草草在线视频免费看| 亚洲成人一二三区av| 免费看a级黄色片| 韩国av在线不卡| ponron亚洲| 国产精品一区www在线观看| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 好男人视频免费观看在线| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 18+在线观看网站| 一级毛片电影观看| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 久久久久久久大尺度免费视频| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 久久久午夜欧美精品| 久99久视频精品免费| 永久免费av网站大全| av女优亚洲男人天堂| ponron亚洲| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版 | 亚洲在线自拍视频| 精品一区二区免费观看| 国产久久久一区二区三区| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 婷婷六月久久综合丁香| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 99热这里只有是精品在线观看| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 亚洲欧美一区二区三区国产| 边亲边吃奶的免费视频| av免费在线看不卡| 又爽又黄a免费视频| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| 久久99蜜桃精品久久| 青春草国产在线视频| 久久久午夜欧美精品| 久久人人爽人人片av| 亚洲精品视频女| 久久精品夜色国产| 亚洲精品视频女| 韩国高清视频一区二区三区| 亚洲自拍偷在线| 嘟嘟电影网在线观看| 精华霜和精华液先用哪个| 成人二区视频| 91av网一区二区| 99热这里只有精品一区| 国产伦精品一区二区三区视频9| 国产乱人偷精品视频| 日日撸夜夜添| 日本一本二区三区精品| 久久久久久久久久黄片| 精品久久久噜噜| 久久久久久国产a免费观看| kizo精华| 一级毛片久久久久久久久女| 免费看光身美女| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 最后的刺客免费高清国语| 日本免费在线观看一区| 老司机影院成人| 日韩人妻高清精品专区| 三级国产精品片| 美女大奶头视频| 高清毛片免费看| 丰满人妻一区二区三区视频av| 免费少妇av软件| 亚洲国产欧美人成| 在线播放无遮挡| 日日干狠狠操夜夜爽| 三级经典国产精品| 国产精品久久视频播放| 永久网站在线| 午夜爱爱视频在线播放| 在线观看av片永久免费下载| 最近的中文字幕免费完整| 街头女战士在线观看网站| 99久国产av精品| 国产精品久久久久久精品电影| 亚洲在线观看片| 色综合站精品国产| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 国产精品1区2区在线观看.| 婷婷色综合www| 国内少妇人妻偷人精品xxx网站| 久久精品夜色国产| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 99久久中文字幕三级久久日本| 大又大粗又爽又黄少妇毛片口| 嫩草影院精品99| 久久久久久久久久成人| 大片免费播放器 马上看| 欧美三级亚洲精品| 亚洲成人久久爱视频| 亚洲乱码一区二区免费版| 极品教师在线视频| 亚洲综合色惰| 日韩一区二区视频免费看| 青青草视频在线视频观看| 少妇熟女aⅴ在线视频| 成人无遮挡网站|