• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of the nonlinear forceloading control in single-molecule stretching experiments

    2024-05-09 05:19:58XingyuQiZilongGuoShiminLeandHuChen
    Communications in Theoretical Physics 2024年4期

    Xingyu Qi ,Zilong Guo ,Shimin Le and Hu Chen

    1 Research Institute for Biomimetics and Soft Matter,Fujian Provincial Key Lab for Soft Functional Materials Research,Department of Physics,Xiamen University,Xiamen 361005,China

    2 Center of Biomedical Physics,Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325000,China

    Abstract Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates can be obtained from the transition force distribution,but it is limited to the force range with non-zero force distribution.Although constant loading rate control can be realized with magnetic tweezers,the loading rate range is limited due to the slow movement of permanent magnets.Non-linear exponential and exponential squared force loading functions are more feasible in magnetic tweezers,while there is no theoretical result available for these two kinds of non-linear force loading functions.In this study,we solved the unfolding process of a protein following Bell’s model under nonlinear exponential and exponential squared force loading functions,which offer a broader range of unfolding force distribution compared to the traditional constant loading rate experiments.Furthermore,we derived two force loading functions,which can produce uniform unfolding force distribution.This research contributes fundamental equations for the analysis of experimental data obtained through single-molecule manipulation under nonlinear force loading controls,paving the way for the use of nonlinear force control in magnetic tweezer experiments.

    Keywords: single-molecule manipulation,magnetic tweezers,force loading,transition rates,force distribution

    1.Introduction

    The relationship between mechanical force and the structural transitions of biomolecules has always been a focus in biophysical and mechanobiology researches.Over the years,single-molecule manipulation experiments have emerged as an important technique to measure the mechanical stability and force response of biomolecules[1–9].In single-molecule manipulation experiments,the force-dependent conformation transition rates of biomolecules are the most important data to be measured [10].The force range is always desired to be as wide as possible since it is important to reveal the detailed information of the underlying free-energy landscape,which determines the dynamic properties of biomolecules [11].

    Constant loading rates and constant pulling speeds are usually applied in magnetic tweezers (MT) and atomic force microscopy (AFM)/optical tweezers (OT) experiments,respectively [1–9].These measurements have provided kinetic parameters of various molecular systems [3–6].In the case of constant loading rate in MT experiments,the unfolding force of proteins can be derived as an analytical equation for biomolecules following Bell’s model.The equation can be used to fit the experimental data to obtain kinetic parameters such as unfolding distance and zeroforce unfolding rate [12,13].On the other hand,constant pulling speed experiments using AFM and OT can generate an average loading rate within a certain range.Although not very strict,the same analysis method can be used to obtain the kinetic properties [1].

    Figure 1. Schematic diagram of magnetic tweezers setup.(a)The force exerted on a protein molecule by a magnetic bead within the magnetic field of the double magnets.(b)The relationship between the force F and the distance d between the magnets and the paramagnetic bead is assumed to be F(d)=200 exp (-3d)pN,where d is in units of millimeters.

    However,a significant limitation with the constant loading rate method is that the extracted force-dependent transition rates are confined to limited force range with nonzero force distribution.To obtain transition rates over a large force range,different loading rates with orders of magnitude difference usually need to be applied [14].Force is approximately an exponential function of the distance between permanent magnets and the sample in MT [figure 1].Therefore,the magnets need to move nonlinearly to obtain a constant loading rate with an initial fast speed,which makes the mechanical control complex and limits the range of loading rate feasible in MT [15].

    Another experimental strategy is to measure the waiting time of transitions at a series of constant forces.At forces with slow transitions,the stability of the equipment is crucial for the measurement.MT has the advantage of stability for longtime measurements over AFM and OT [3,7].On the other hand,if the transition is very fast,the process of the force jumping will give a dead time of measurement,which limits the fastest measurable transition rate [16].

    In this study,we venture beyond the traditional realm of constant loading rate or constant force measurements and study the consequence of nonlinear force-loading controls.First,we derived the unfolding force distribution under exponential or exponential squared force-loading functions for Bell’s model.Second,a theoretical force versus time function was derived to render a uniform unfolding force distribution.By integrating traditional methods with innovative nonlinear force control,accurate unfolding rates can be achieved over a broader force range to enhance the efficiency of single-molecule manipulation experiments.

    2.Model and methods

    2.1.Force-dependent unfolding rate ku(F)

    We conventionally conceptualize the unfolding of a protein as a process of overcoming a free-energy barrier[17,18].As the barrier height is affected by the stretching force,the unfolding ratekuis dependent on stretching forceF.In this study,we suppose that the unfolding transition of a protein follows Bell’s model,whose force-dependent unfolding rate is given by [12],

    wherek0denotes the zero-force unfolding rate,xuthe unfolding distance,i.e.the distance between the native state and transition state,β=1/kBT,kBthe Boltzmann constant andTthe absolute temperature.In this study,unless otherwise specified,we set parametersk0=0.005 s-1andxu=2 nm.

    2.2.Force-loading function F(t)

    The force-loading function,F(t),defines the forceFas a function of timet.The linear force-loading function:

    whereF0denotes the initial force andrthe loading rate.Two kinds of nonlinear force-loading functions under scrutiny are the exponential function:

    and the exponential squared function:

    wherev0anda0are parameters determining how fast the force increases.

    The double exponential function has been used to fit the force as a function of distancedbetween the magnets and the sample[15].In this study,for simplicity,we suppose that the force in magnetic tweezers is an exponential functionF(d)=200 exp (-3d)pN,withdin units of millimeters[figure 1].

    2.3.Simulation to obtain unfolding force distribution P(F)

    Given the known force-dependent unfolding rateku(F) of a protein and the force-loading functionF(t),the unfolding process can be simulated using a Monte Carlo simulator[19].The initial state of the protein is its native state N.The entire simulation process is coarse-grained into a random event chain with a time interval of Δtper frame.The probability of the protein unfolding in each frame isku(F)Δt.When the protein molecule unfolds,the simulation stops,and the unfolding force is recorded.The unfolding force distributionP(F)can be obtained by the statistical histogram of unfolding forces from multiple repeated simulations.

    2.4.Relationship between F(t),ku(F) and P(F)

    From the knownku(F) andF(t),P(F) can also be derived analytically or numerically.Since the initial state is native state N,the survival probability of N stateS(t) obeys the differential equation:

    with initial conditionS(0)=1,and

    Therefore,P(F) is given by equation:

    In single-molecule manipulation experiments,we controlF(t) and measureP(F),and analyze the data to obtainku(F)with equation [23]:

    The unfolding force distribution is usually obtained as discrete values from a statistical histogram.The Dudko–Hummer–Szabo equation elucidates the relationship between the histogram of the unfolding force andku(F) [20]:

    In this study,derivations were performed usingWolfram Mathematica12.1 software for complex analytical calculations.

    3.Results

    3.1.Comparison of force distributions under linear and nonlinear force-loading

    First,we study the force distributions of two kinds of nonlinear force-loading,exponential function and exponential squared function,in comparison with that of linear forceloading with a constant loading rate.We set the force-loading curves of the exponential function with parametersF0=1 pN andv0=0.7 s-1,exponential squared function with parametersF0=1 pN anda0=0.06 s-2,and linear function with parametersF0=1 pN andr=8 pN·s-1[figure 2(c)].The parameters are set to have unfolding forces at similar values,under Bell’s model with default parameters.It was observed that,compared to the linear force-loading,the exponential and exponential squared functions spend more time at lower forces and reach a faster instantaneous loading rate at higher forces.

    We calculated the velocity profile of magnetsvmag(t)[figure 2(a)],and the trajectory of magnetsdmag(t)[figure 2(b)] in the MT setup for these three types ofF(t).Under linear force-loading,the magnets move with drastically changing velocity,especially with high velocity and high acceleration at lower forces.The motion of the magnets under the exponential force-loading is slower with constant velocity.Under the exponential squared force-loading,the magnets move with constant acceleration.Therefore,the exponential force-loading offers a more user-friendly control,requiring only motion with uniform velocity.

    Furthermore,we examined the unfolding force distributionsP(F) under these three types of force-loading.We derived the formula forP(F) and performed numerical calculations [figures 3(a)–(c)].Based on equation (5),the unfolding force distribution for the linear force-loading function (2) is given by,

    The unfolding force distribution for the exponential force function (3) is given by,

    where Ei(x) represents the exponential integral function:

    For the exponential squared force function,we cannot derive the analytical formula of unfolding force distribution,while the numerical solution can be obtained.

    Figure 2. Linear force-loading and two nonlinear force-loading schemes.The plots illustrate the linear force-loading Flinear(t)=1+8t (in black)with a constant loading rate of 8 pN·s-1,the exponential force-loading function Fexp(t)=exp (0.7t)pN(in red)and the exponential squared force-loading function Fexp2(t)=exp (0.06t2)pN (in blue).The velocity of magnets (a),the distance between the magnets and the sample (b),and force (c) are shown as functions of time for three types of force-loading schemes.

    We conducted numerical calculations of the probability density of unfolding force for different parameters.For each of the three force functions,three sets of parameters were used to calculate unfolding force distributionsP(F)[figures 3(a)–(c)].The parameters for the red curve are the same as in figure 2.

    Under linear force-loading,it was observed that the shape ofP(F) remains essentially the same across different loading rates,with the most probable unfolding forceincreasing with the loading rate [figure 3(a)].Similarly,for both exponential and exponential squared force functions,the most probable unfolding forcesincrease with the parametersv0ora0[figures 3(b) and (c)].

    For the linear force-loading,the Bell–Evans formula provides the relationship between the most probable unfolding forceand the loading rater[13]:

    which gives:

    We computed the relationship between the most probable unfolding forceand the force-loading parameterv0under Bell’s model for the exponential force function:

    whose solution is expressed with a LambertWfunctionWk(z)[24]:

    Figure 3. The unfolding force distribution for linear force-loading and two nonlinear force-loading schemes following Bell’s model.(a)The unfolding force distributions under linear force-loading with constant loading rates r=0.8 (black),8 (red) and 80 (blue) pN·s-1.(b) The unfolding force distributions for the exponential force-loading function with parameters v0=0.07(black),0.7(red)and 7(blue)s-1.(c)The unfolding force distributions for the exponential squared force-loading function with parameters a0=0.006(black),0.06(red)and 0.6(blue)s-2.(d) The relationship between the most probable force and loading rate r under linear force-loading.The square dots are derived from the numerical data in figure(a),and the black line represents the theoretical relationship.(e)The relationship between the most probable force and parameter v0 for the exponential force-loading.The square dots are derived from numerical data in (b),and the black line represents the theoretical relationship.(f) The relationship between the most probable force and parameter a0 for the exponential squared force-loading.The square dots are derived from numerical data in (c).

    When dealing exclusively with real numbers,it suffices to considerW-1andW0.Here,W-1corresponds to the maxima in the unfolding force distribution profile,whileW0corresponds to the minima.According to the probability distribution[figure 3(b)],the smaller solutionW0corresponds to a local minimum of the probability distribution function,consistent with the upward trend in probability at lower forces observed in the exponential force-loading.

    We plotted the analytical relationships [figures 3(d)–(f)]of the most probable forceF*with the force-loading parameters (equations (12) and (14)) and compared them with specific points of the most probable force derived from the numerical probability distributionP(F)[figures 3(a)–(c)].It is concluded thatF*derived numerically for the linear forceloading and exponential force-loading curves are consistent with the predictions of analytical equations (12) and (14)[figures 3(d)–(e)].

    For the case of an exponential squared force-loading,the unfolding probability distributionPexp2(F) resists simplification,and the most probable unfolding forceis challenging to calculate.Although no specific analytical expression has been derived,the scatter plot from the numerical method suggests thatis also approximately a linear function of the logarithm ofa0.

    Figure 4. Under Bell’s model,when the forces involved in protein unfolding events are approximately similar,we present a comparative graph of the theoretical probability density P(F)distributions for unfolding events under linear,exponential and exponential squared force-loading.The specific force functions are Flinear(t)=1+8t (in black), Fexp(t)=exp (0.7t)pN (in red) and Fexp2(t)=exp (0.06t2)pN (in blue).The three curves in the graph represent the numerical solutions for the theoretical probability density P(F),calculated using these three force curves F(t) and typical protein molecular properties,with 1000 equidistant numerical solutions for each curve.

    At lower forces,both the exponential and exponential squared force functions show more unfolding events,especially the exponential squared force-loading,which exhibits a pronounced upward trend at very low forces.This phenomenon is more evident when the force-loading parameters (v0ora0) are small,which is related to the longer duration these functions spend at lower forces.

    3.2.Practicality comparison of exponential force functions

    Our focus was directed towards the study of exponential force functions,due to their ease of implementation in magnetic tweezers setups.We compared the unfolding events obtained under constant loading rate,exponential loading and exponential squared loading conditions [figure 4].The force curves for these three conditions are as shown in figure 2(c).The peak distributions of unfolding events for all three forceloading functions are closely aligned (around 14 pN).At lower forces,the exponential and exponential squared functions exhibit more unfolding events,especially the exponential squared function,which shows a pronounced upward trend at very low forces.The upward trend observed in the probability density curves is not always present.Through analytical derivation,we found that under the exponential force-loading,the occurrence of a local minimum requires the exponential function parameterF0to be sufficiently small(preferably less than 1/βxu),andv0to satisfy the inequalityv0>k0e2.Moreover,the probability density curves for the exponential and exponential squared force-loading functions appear flatter.For example,the probability at 2.5 pN differs by approximately a factor of 10.Under the exponential function,the magnets in our setup required only a uniform motion and remained at low speeds over an extended period [figure 2(a)],offering mechanical stability far surpassing that under the constant loading rate.Thus,the exponential force-loading function not only facilitates easier implementation in experimental setups but also fully meets the requirements for standard measurements of protein unfolding events.

    3.3.Derivation of F(t) to generate uniform P(F)

    According to the Dudko–Hummer–Szabo equation,ku(F)can be obtained in the force range with a non-zero histogram,and the relative error depends on the counts of unfolding events in each bin.Therefore,we raise the question:what kind of forceloading function can generate a uniformly distributedF?With uniformly distributedF,the rate of change of survival probability is proportional to the rate of change ofF:

    whereC0is a proportionality constant,and

    Combining equations (1),(15) and (16),we derived the following relationship:

    wheret(F) is the inverse function ofF(t),andF0andt0are constants of integration that incorporate the constantC0and the force range with uniform distribution [Appendix].

    Directly deriving the expression forF(t) is challenging.Therefore,F(t) is obtained using the numerical method.The exponential integral Ei(x) diverges asx→0,and its inverse function has multiple-value regions.Consequently,F(t) theoretically possesses two distinct solutions satisfying the equation;one solution ofF1(t) increases with time,while the other solutionF2(t) decreases with time [figure 5(a)].

    Having obtainedF1(t) andF2(t) force curves that can uniformly distribute the unfolding force within the range of 1–21 pN through equation(17),we tested the unfolding force distributions of protein under this force-loading via Monte Carlo simulation [figures 5(b)–(c)],which are significantly flatter than the unfolding force distributions under linear force-loading[figure 5(d)].UnderF1(t)orF2(t)force-loading,the unfolding force distributions cover our range of interest(1–21 pN)and are nearly flat,fulfilling the initial assumption.

    InF1(t) orF2(t) force-loading curves,the absolute value of the slope is exceptionally high,specifically during the late phase of the monotonically increasing curveF1(t) and the early phases of the monotonically decreasing curveF2(t)[figure 5(a)].Insufficient density of sampling data points in single-molecule manipulation experiment setups can lead to significant precision loss.Under the monotonically decreasingF2(t)force-loading,there is a steeper slope at the beginning of the experiment and a more extended duration of low force at the end of the experiment.In addition,starting from a high force is not easy to control in magnetic tweezers experiments.Therefore,onlyF1(t) might be practical in real experiments.

    Figure 5. Visualization of the force curves for force-loading F1/2(t)that can uniformly distribute the unfolding force and linear force-loading.Histogram of simulated unfolding events with respect to force under these conditions.(a)The force curves observed in the range of 1–21 pN generated by proteins with typical attributes.The red and blue curves represent monotonically increasing and decreasing forces,respectively,generated using the inverse function of equation (17).Black curve represents the traditional constant force-loading of 8 pN·s-1.(b)Histogram of unfolding force under F1(t) force-loading,simulated with a Monte Carlo model based on Bell’s model for protein unfolding rates.Simulation,divided into ten groups of 500 force-application experiments each,presents the average (histogram height) and standard deviation (error bars) across these groups.(c) Similar to the above,but tested under the condition of F2(t) force-loading.(d) Similar to the above,but tested under the condition of a constant force-loading of 8 pN·s-1.

    4.Summary and discussion

    Theoretically,the force-loading functionF(t),forcedependent transition rateku(F) and unfolding force distributionP(F) are interdependent.With two of them known,the third can be obtained.In single-molecule manipulation experiments,we setF(t),measureP(F) and analyze the data to obtainku(F).

    In traditional single-molecule manipulation experiments,linear force-loading with a constant loading rate is the most popular approach.Constant force measurement can be considered as zero loading rate,which gives the transition rate at a specific force.In this study,we have explored several typical nonlinear force-loading methods.The force of magnetic tweezers is almost an exponential function of the distance between the magnets and the sample.Consequently,we analyzed the distribution of protein unfolding forces under exponential and exponential squared force-loading functions,corresponding to the movements of magnets with constant velocity and constant acceleration,respectively.We found that the obtained force distribution is broader compared to constant loading rate measurements,providing unfolding rates across a larger force range.

    We found that exponential force-loading provides an additional advantage when it is used in magnetic tweezers.Under similar forces,the motion of the magnet using exponential force-loading involves slower velocities and smaller accelerations compared to the constant loading rate.This offers greater mechanical stability for the experimental apparatus.On the other hand,with the same limitation of velocity and acceleration,exponential force-loading can cover a larger range of dynamic measurements,which is important since it reveals the more detailed free-energy landscape of biomolecules.

    In addition,we have conducted theoretical analyses with the premise of uniformly distributed unfolding force across a certain force range.We have derived the force functionF(t)under Bell’s model to meet this expectation.Surprisingly,we discovered a force curve that decreases monotonically over time and also meets our expectation of uniform force distribution.Although it might be not very practical in experiments since we do not knowku(F) in advance,as the first trial to derive force functionF(t) with knownku(F) andP(F),this demonstrates that there are two solutions ofF(t)that both satisfy the requirements.

    In magnetic tweezers experiments,the extension of molecule is obtained from the position of the magnetic bead.When the fluctuation of the extension is much smaller than the unfolding step size,the unfolding event can be identified accurately.Force is only determined by the distance between the permanent magnets and the sample.Therefore,the uncertainty of unfolding force is affected by the synchronization of the camera and the position reading of the motorized stage that moves magnets in the setup.Fortunately,the uncertainty of the unfolding force for each unfolding event is usually much smaller than the distribution range of the unfolding forces.Therefore,noise of both force and extension will not affect the application of our theoretical results in magnetic tweezers experiments.

    Acknowledgments

    This research project was supported by the National Natural Science Foundation of China (Grant Nos.12174322 to HC,12204124 to ZG,32271367 and 12204389 to SL),the 111 project (Grant No.B16029) and the Research Fund of Wenzhou Institute.

    Appendix: Derivation of nonlinear F(t) for uniform P(F) under Bell’s model

    This section gives the derivation procedures of equation(17).With uniformP(F),equation (15) and the following two equations:

    are equivalent,whereF0,C1andC2are constants of integration.These equations essentially state thatS(t)andF(t)are linearly related at any time.By inserting equation (A1) into Bell’s model (1),we get:

    whereC3is a constant of integration.After transformation,we obtain:

    Let us define:

    Substituting equation (A4) into equation (A3) yields:

    Moreover,considering the expression for Ei (equation (10)),we can determine that,

    Thus,it can be concluded that,

    Integrating both sides results in the following:

    whereC4is a constant of integration.After simplification,we have:

    whereC5is another constant of integration.Substituting with equation (A4),we obtain:

    After further simplification,we obtain equation (17).

    女人被狂操c到高潮| 亚洲av电影在线进入| 视频区欧美日本亚洲| 亚洲国产欧美一区二区综合| x7x7x7水蜜桃| 国产99久久九九免费精品| 麻豆成人av在线观看| 午夜福利18| av有码第一页| 欧美成狂野欧美在线观看| 多毛熟女@视频| 欧美绝顶高潮抽搐喷水| 无遮挡黄片免费观看| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 色综合欧美亚洲国产小说| 91在线观看av| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 日韩大码丰满熟妇| 久久热在线av| 精品一区二区三区视频在线观看免费| 国产又色又爽无遮挡免费看| 黄色视频,在线免费观看| 在线观看日韩欧美| 黑人欧美特级aaaaaa片| 在线观看66精品国产| 亚洲欧美日韩无卡精品| 男女下面插进去视频免费观看| 免费在线观看亚洲国产| 成人精品一区二区免费| 午夜影院日韩av| 90打野战视频偷拍视频| 成年人黄色毛片网站| 久久热在线av| 精品电影一区二区在线| 日韩三级视频一区二区三区| 精品无人区乱码1区二区| 看片在线看免费视频| 久久婷婷成人综合色麻豆| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 热re99久久国产66热| 国产精品综合久久久久久久免费 | а√天堂www在线а√下载| 99香蕉大伊视频| 国产又色又爽无遮挡免费看| 精品久久久久久,| 久久亚洲精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品男人的天堂亚洲| 露出奶头的视频| 欧美日本视频| 十分钟在线观看高清视频www| 久久久久久人人人人人| 亚洲欧美日韩另类电影网站| 九色亚洲精品在线播放| 亚洲五月色婷婷综合| 丝袜在线中文字幕| 黄片小视频在线播放| 叶爱在线成人免费视频播放| 99久久久亚洲精品蜜臀av| x7x7x7水蜜桃| 一级片免费观看大全| 精品国产一区二区三区四区第35| 夜夜看夜夜爽夜夜摸| 日韩欧美国产在线观看| 午夜久久久在线观看| 无人区码免费观看不卡| 丝袜美腿诱惑在线| 黑丝袜美女国产一区| АⅤ资源中文在线天堂| 欧美日韩中文字幕国产精品一区二区三区 | 少妇熟女aⅴ在线视频| 欧美绝顶高潮抽搐喷水| 久久精品亚洲精品国产色婷小说| 高清在线国产一区| 制服丝袜大香蕉在线| 亚洲第一青青草原| 亚洲国产精品999在线| 成人av一区二区三区在线看| 一区二区三区国产精品乱码| 18禁裸乳无遮挡免费网站照片 | 国产av在哪里看| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看 | 亚洲国产精品成人综合色| 日本一区二区免费在线视频| 日日夜夜操网爽| 成人av一区二区三区在线看| 亚洲av成人av| 99riav亚洲国产免费| 国产片内射在线| 免费在线观看视频国产中文字幕亚洲| 乱人伦中国视频| 深夜精品福利| 免费人成视频x8x8入口观看| 校园春色视频在线观看| 国语自产精品视频在线第100页| 纯流量卡能插随身wifi吗| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 久9热在线精品视频| 欧美国产日韩亚洲一区| 欧美日韩精品网址| 在线观看免费视频网站a站| 午夜福利免费观看在线| 国内精品久久久久久久电影| 国产精品乱码一区二三区的特点 | 桃红色精品国产亚洲av| 欧美成人免费av一区二区三区| 国内精品久久久久精免费| 日韩精品中文字幕看吧| 亚洲国产精品sss在线观看| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 午夜久久久久精精品| 国产成人精品久久二区二区91| 一区二区三区高清视频在线| 欧美亚洲日本最大视频资源| 亚洲欧美激情在线| 波多野结衣高清无吗| 涩涩av久久男人的天堂| 国产精品久久久人人做人人爽| 色综合亚洲欧美另类图片| 久久亚洲精品不卡| 两个人免费观看高清视频| 国产不卡一卡二| 国产av一区二区精品久久| 亚洲国产毛片av蜜桃av| 亚洲精品中文字幕在线视频| 女同久久另类99精品国产91| 一本大道久久a久久精品| 国产精品野战在线观看| 在线播放国产精品三级| 首页视频小说图片口味搜索| 夜夜爽天天搞| 久久精品91无色码中文字幕| а√天堂www在线а√下载| 黄色视频不卡| 黄片小视频在线播放| 久久精品国产亚洲av香蕉五月| 99re在线观看精品视频| 色综合亚洲欧美另类图片| 天堂动漫精品| 国产精品日韩av在线免费观看 | 亚洲精品中文字幕在线视频| 久久香蕉精品热| 变态另类成人亚洲欧美熟女 | 一二三四在线观看免费中文在| 日韩欧美国产在线观看| 日韩av在线大香蕉| 满18在线观看网站| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全免费视频| av视频免费观看在线观看| 激情视频va一区二区三区| 大码成人一级视频| av超薄肉色丝袜交足视频| 亚洲精品美女久久av网站| 久久人人精品亚洲av| 国产一区二区三区视频了| 亚洲国产日韩欧美精品在线观看 | 国产精品香港三级国产av潘金莲| 亚洲人成网站在线播放欧美日韩| 伦理电影免费视频| 波多野结衣一区麻豆| 色播亚洲综合网| 久久狼人影院| 亚洲成人免费电影在线观看| 久久青草综合色| 久久国产精品人妻蜜桃| 亚洲国产中文字幕在线视频| 狂野欧美激情性xxxx| x7x7x7水蜜桃| 色av中文字幕| 黄色片一级片一级黄色片| 久久久久九九精品影院| 日本 欧美在线| 国产午夜精品久久久久久| 9热在线视频观看99| 精品一区二区三区av网在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩中文字幕国产精品一区二区三区 | 久热爱精品视频在线9| bbb黄色大片| 午夜福利视频1000在线观看 | 日韩三级视频一区二区三区| 丝袜美足系列| 免费观看精品视频网站| www.精华液| 午夜久久久久精精品| 国产激情欧美一区二区| www.精华液| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 欧美日本视频| 亚洲五月色婷婷综合| 亚洲欧美精品综合一区二区三区| 不卡一级毛片| 久久欧美精品欧美久久欧美| 国产精品一区二区精品视频观看| 国产高清视频在线播放一区| 身体一侧抽搐| 成人三级黄色视频| 1024香蕉在线观看| 99精品欧美一区二区三区四区| 亚洲第一av免费看| 美女国产高潮福利片在线看| 99久久99久久久精品蜜桃| 制服诱惑二区| 亚洲五月天丁香| 久久亚洲真实| 最新在线观看一区二区三区| 色老头精品视频在线观看| 黄色女人牲交| 一级作爱视频免费观看| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 男人操女人黄网站| 怎么达到女性高潮| 亚洲国产精品合色在线| 又紧又爽又黄一区二区| 一级毛片女人18水好多| 高清毛片免费观看视频网站| 国产精品久久久人人做人人爽| 国产又色又爽无遮挡免费看| av在线播放免费不卡| 一区二区日韩欧美中文字幕| 日韩欧美一区视频在线观看| 999久久久精品免费观看国产| 日韩精品中文字幕看吧| 国产亚洲精品久久久久久毛片| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦免费观看视频1| 色综合亚洲欧美另类图片| 91av网站免费观看| 午夜福利一区二区在线看| 午夜a级毛片| 亚洲伊人色综图| 亚洲精品国产区一区二| 中文字幕久久专区| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区| 亚洲国产高清在线一区二区三 | 免费在线观看影片大全网站| 国产精品二区激情视频| 一进一出抽搐动态| 欧美乱码精品一区二区三区| 777久久人妻少妇嫩草av网站| 岛国在线观看网站| 亚洲男人天堂网一区| 可以在线观看的亚洲视频| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 国产精品九九99| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 18禁观看日本| 欧美激情久久久久久爽电影 | 亚洲片人在线观看| av超薄肉色丝袜交足视频| 国产亚洲精品av在线| 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 久久人人爽av亚洲精品天堂| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 国产成人免费无遮挡视频| 热re99久久国产66热| 国产精品免费一区二区三区在线| 国产精华一区二区三区| 色av中文字幕| 夜夜看夜夜爽夜夜摸| 日韩三级视频一区二区三区| 国内毛片毛片毛片毛片毛片| 69精品国产乱码久久久| 国产乱人伦免费视频| 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 亚洲男人的天堂狠狠| 亚洲熟女毛片儿| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| av中文乱码字幕在线| 最近最新免费中文字幕在线| 久久久久国产一级毛片高清牌| 午夜久久久久精精品| x7x7x7水蜜桃| 少妇的丰满在线观看| 久久人妻av系列| 国产精品免费视频内射| 久久亚洲精品不卡| АⅤ资源中文在线天堂| 18美女黄网站色大片免费观看| 黄色片一级片一级黄色片| 淫妇啪啪啪对白视频| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 国产精品亚洲美女久久久| 成人欧美大片| 亚洲精品中文字幕在线视频| 人人妻,人人澡人人爽秒播| 欧美国产精品va在线观看不卡| 91麻豆av在线| 后天国语完整版免费观看| 久久九九热精品免费| 久久亚洲真实| 欧美乱妇无乱码| 国产麻豆69| av福利片在线| 国产亚洲av嫩草精品影院| 精品无人区乱码1区二区| 午夜福利成人在线免费观看| 91老司机精品| 国产亚洲精品综合一区在线观看 | 18禁美女被吸乳视频| 免费人成视频x8x8入口观看| 午夜精品在线福利| 高清毛片免费观看视频网站| 欧美人与性动交α欧美精品济南到| 一级作爱视频免费观看| 欧美日韩一级在线毛片| 欧美丝袜亚洲另类 | 亚洲午夜理论影院| 最近最新中文字幕大全电影3 | 一本综合久久免费| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出| 欧美成人性av电影在线观看| 非洲黑人性xxxx精品又粗又长| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 中文字幕人妻丝袜一区二区| 一区二区三区精品91| 日韩欧美在线二视频| 熟妇人妻久久中文字幕3abv| 亚洲少妇的诱惑av| 亚洲久久久国产精品| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 这个男人来自地球电影免费观看| 久久草成人影院| 热re99久久国产66热| 国产视频一区二区在线看| 日韩精品免费视频一区二区三区| 一进一出好大好爽视频| 亚洲性夜色夜夜综合| 精品欧美国产一区二区三| 99久久综合精品五月天人人| 欧美 亚洲 国产 日韩一| 12—13女人毛片做爰片一| 国产一区二区在线av高清观看| 嫁个100分男人电影在线观看| 黄片播放在线免费| 久久精品aⅴ一区二区三区四区| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 亚洲精品国产精品久久久不卡| 欧美丝袜亚洲另类 | 欧美成人午夜精品| 级片在线观看| 亚洲国产精品久久男人天堂| 午夜精品久久久久久毛片777| 脱女人内裤的视频| 又大又爽又粗| 中出人妻视频一区二区| 亚洲欧洲精品一区二区精品久久久| 熟妇人妻久久中文字幕3abv| 久久精品aⅴ一区二区三区四区| 男人操女人黄网站| 禁无遮挡网站| 禁无遮挡网站| 精品国产美女av久久久久小说| 国产av一区二区精品久久| 欧美激情高清一区二区三区| 露出奶头的视频| tocl精华| 九色国产91popny在线| 欧美激情久久久久久爽电影 | 琪琪午夜伦伦电影理论片6080| 国产精品久久久人人做人人爽| av网站免费在线观看视频| 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看| 欧美乱码精品一区二区三区| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 一区二区三区精品91| 老司机福利观看| 熟妇人妻久久中文字幕3abv| 精品福利观看| 亚洲美女黄片视频| 久久亚洲真实| 日韩国内少妇激情av| 国产黄a三级三级三级人| 亚洲精品国产色婷婷电影| 人人妻人人澡欧美一区二区 | 久久青草综合色| 久久天堂一区二区三区四区| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 色综合婷婷激情| 免费av毛片视频| 麻豆av在线久日| 国产精品电影一区二区三区| 久久狼人影院| av片东京热男人的天堂| 国产精品1区2区在线观看.| 男女床上黄色一级片免费看| 性欧美人与动物交配| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 99香蕉大伊视频| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 韩国av一区二区三区四区| 黄色视频不卡| 啦啦啦观看免费观看视频高清 | 久久精品国产亚洲av高清一级| 日日夜夜操网爽| 亚洲激情在线av| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 给我免费播放毛片高清在线观看| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 曰老女人黄片| 90打野战视频偷拍视频| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| 精品国产乱码久久久久久男人| 色播在线永久视频| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 国产午夜精品久久久久久| 伦理电影免费视频| 国产av一区二区精品久久| 大码成人一级视频| 每晚都被弄得嗷嗷叫到高潮| 91成年电影在线观看| 亚洲精品av麻豆狂野| 国产主播在线观看一区二区| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 波多野结衣一区麻豆| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 国产精品久久电影中文字幕| 成人三级黄色视频| 久久精品成人免费网站| 一级黄色大片毛片| 一区二区三区精品91| 亚洲av五月六月丁香网| 亚洲av熟女| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 久久久久久久久中文| 国产三级黄色录像| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 黄色毛片三级朝国网站| 国产亚洲精品久久久久5区| 成人精品一区二区免费| 日韩av在线大香蕉| 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 亚洲欧美日韩另类电影网站| 日韩高清综合在线| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 波多野结衣高清无吗| 精品欧美国产一区二区三| 亚洲欧美激情在线| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 91成人精品电影| e午夜精品久久久久久久| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 国产黄a三级三级三级人| 多毛熟女@视频| 亚洲国产精品999在线| 色综合欧美亚洲国产小说| 国产一区在线观看成人免费| 色综合婷婷激情| 国产午夜精品久久久久久| 国产国语露脸激情在线看| 欧美+亚洲+日韩+国产| 制服诱惑二区| 精品电影一区二区在线| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| www.www免费av| 搡老熟女国产l中国老女人| 露出奶头的视频| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 多毛熟女@视频| av视频免费观看在线观看| 在线av久久热| 久久国产乱子伦精品免费另类| 国产97色在线日韩免费| 久久人人精品亚洲av| 十分钟在线观看高清视频www| 波多野结衣av一区二区av| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 一区在线观看完整版| 纯流量卡能插随身wifi吗| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 99riav亚洲国产免费| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 又紧又爽又黄一区二区| tocl精华| 国产激情欧美一区二区| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 黄色 视频免费看| 男人操女人黄网站| 此物有八面人人有两片| 无人区码免费观看不卡| 久久人人精品亚洲av| 亚洲男人的天堂狠狠| 99re在线观看精品视频| 成年人黄色毛片网站| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费| 别揉我奶头~嗯~啊~动态视频| www.自偷自拍.com| 18禁黄网站禁片午夜丰满| 欧美+亚洲+日韩+国产| av福利片在线| 国产精品1区2区在线观看.| 久久久久久大精品| 午夜福利影视在线免费观看| av网站免费在线观看视频| 欧美成人午夜精品| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 国产成人一区二区三区免费视频网站| 一进一出抽搐gif免费好疼| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 国产精华一区二区三区| 此物有八面人人有两片| 国产97色在线日韩免费| 一区二区三区高清视频在线| 亚洲成av人片免费观看| 一级毛片精品| 免费高清视频大片| 波多野结衣巨乳人妻| 久久精品国产清高在天天线| 国产成人av激情在线播放| 一级a爱片免费观看的视频| 中出人妻视频一区二区| av欧美777| 黄色a级毛片大全视频| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 涩涩av久久男人的天堂| 亚洲五月天丁香| 亚洲欧美精品综合一区二区三区| 午夜精品在线福利| 精品电影一区二区在线| 欧美成人性av电影在线观看| 两个人看的免费小视频| 午夜福利欧美成人| 国产成人啪精品午夜网站| 黄网站色视频无遮挡免费观看| 国产成人av教育| 亚洲 国产 在线| 国产97色在线日韩免费| 婷婷精品国产亚洲av在线| 中文字幕人妻熟女乱码| 在线观看免费视频日本深夜| 十八禁人妻一区二区| 老司机深夜福利视频在线观看| 黄片大片在线免费观看| 久热爱精品视频在线9| 51午夜福利影视在线观看| 亚洲五月色婷婷综合| 操出白浆在线播放| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区 | 日韩 欧美 亚洲 中文字幕| 91老司机精品| 亚洲成av片中文字幕在线观看| tocl精华| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区|