• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background

    2024-05-09 05:19:20XiaoHuiWangandZhaqilao
    Communications in Theoretical Physics 2024年4期

    Xiao-Hui Wang and Zhaqilao

    1 College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China

    2 Laboratory of Infinite-dimensional Hamiltonian System and Its algorithm Application,Hohhot 010022,China

    3 Center for Applied Mathematical Science,Inner Mongolia,Hohhot 010022,China

    Abstract In this paper,the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan(ML)-IV equation,which is described by five component nonlinear evolution equations,are studied on a periodic background.By using the Jacobian elliptic function expansion method,the Darboux transformation (DT) method and the nonlinearization of the Lax pair,two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn,are obtained.The relationship between these five kinds of potential is summarized systematically.Firstly,the periodic rogue wave solution of one potential is obtained,and then the periodic rogue wave solutions of the other four potentials are obtained directly.The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.

    Keywords: rogue waves on a periodic background,(2+1)-dimensional Myrzakulov–Lakshmanan-IV equation,Darboux transformation,Jacobian elliptic function

    1.Introduction

    A rogue wave is a strange wave with an extremely large amplitude.It usually occurs in the ocean,coming from nowhere and disappearing without a trace,which can lead to a deadly disaster[1,2].However,there is currently no effective method available to accurately forecast the rogue waves in advance.Therefore,the study of rogue waves is necessary and relevant [3,4].In recent years,more and more attention has been paid to rogue periodic waves generated on the background of Jacobian elliptic periodic waves.In 2018,Chen and Pelinovsky established a method for calculating such rogue periodic waves based on the precise description of the periodic and aperiodicial characteristic functions of the the Ablowitz–Kaup–Newell–Segur (AKNS) spectrum.They combined the method of the nonlinearization of the Lax pair with the Darboux transformation to obtain the rogue periodic wave of the focused nonlinear Schr?dinger (NLS) equation[5].Then,rogue wave on a periodic background of the modified Korteweg–de Vries (mKdV) equation [6,7],Ito equation [8],fourth-,fifth-,sixth-,seven-order NLS equation[9–12],the sine-Gordon equation [13],and the Hirota equation [14,15] has been studied similarly.In recent years,the same method has been used to study the (2+1) dimensional nonlinear evolution equation [16,17].

    As a model of nonlinear partial differential equations,integrable spin systems are important because of their applicability in many scientific fields.They give rise to important applications in applied magnetism [18] and nanophysics [19].The Landau–Lifshitz–Gilbert (LLG) equation[20] in ferromagnetism and Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation [19] in spin transfer nanomagnetic multilayers are some of the fundamental equations that play a crucial role in understanding various physical properties of magnetic materials and the development of new technological innovations,like microwave generation using the spin transfer effect [21].The continuum limit of the Heisenberg ferromagnetic spin system and its various generalizations give rise to some of the important integrable spin systems in (1+1)dimensions [22,23].They are also intimately related to the nonlinear Schr?dinger family of equations through geometrical (or Lakshmanan equivalence or L-equivalence) and gauge equivalence concepts and these systems often admit magnetic soliton solutions.Moreover,the system is closely related to the well-known NLS equation[24].R Myrzakulov,G K Mamyrbekova and others mainly presented convincing studies of the integral (2+1)-dimensional spin model with self-compatibility potential,namely the ML-II,III,and IV equations [25].In this paper,we study the (2+1)-dimensional ML-IV equation,which has the following form:

    whereZ=.

    The gauge equivalent counterpart of the ML-IV equation takes the form:

    where ‘*’ is the complex conjugate,q(x,y,t),p(x,y,t) are complex functions,v(x,y,t),w(x,y,t),η(x,y,t) are real functions,and ω,?1,?2are arbitrary constants.Here,τ=±1 represents two different cases of the ML-IV equation.To be precise,τ=1 and τ=–1 mean that the ML-IV equation has an attractive interaction and repulsive interaction respectively.

    In [26],the soliton,breather,rogue wave and DT of (2)were researched.Its modulational instability and mixed solution have also been studied [27].Based on (2),which has a variety of parameter selections,these parameters will produce abundant reduction results.When ?1=0,?2=1,p=0,η=0,(2) can reduce to the (2+1)-dimensional complex mKdV equation,in which multi-soliton and periodic solutions have been studied via DT[28,29].The rogue periodic waves of the (2+1)-dimensional complex mKdV equation have also been studied [30].If we choose ?1=1,?2=0,p=0,η=0,(2)can reduce to the(2+1)-dimensional NLS equation,its DT,soliton,breather,abundant rogue wave shapes,rational and semi-rational solutions and the dynamic process have been investigated[31–33].In[34],the author especially studied the lump and rogue wave solutions based on a periodic background in a Heisenberg ferromagnetic spin chain.As far as we know,there are few studies on the rogue periodic waves of (2+1)-dimensional ML-IV equation.Thus,this will become the main content of our next research.

    In this work,we mainly construct the rogue periodic wave solutions for the (2+1)-dimensional ML-IV equation.In section 2,we give the Lax pairs and classical Darboux transformation of (2).In section 3,we give the periodic traveling wave solutions.In section 4,we describe the eigenvalues based on the results of the nonlinearization of the Lax pair.In section 5,we obtain the periodic and non-periodic wave solutions of(2).In section 6,the expression and figures of the rogue periodic wave solutions are given.In section 7,we give some conclusions.

    2.The Lax pair and Darboux transformation

    (2) has the Lax pair in the form

    where λ is a complex spectral parameter.The zero curvature equationUt-Vx-(2?1λ+4?2λ2)Uy+[U,V]=0 gives rise to (2).According to [26],the elementary Darboux transformation of (2) can be redefined as

    3.Two families of periodic solutions

    In order to construct the periodic wave solutions of (2),we suppose the complex periodic wave solutions in the form

    where ξ=x-c1y-c2t,ζ=x-b1y-b2t,Q(ξ) is a real periodic function andc1,c2,b1,b2are real constants.It is also easy to find that |q|2=qq*=Q2.

    Substituting equations (6) into (2) yields a fifth-order nonlinear ordinary differential equation,in which it is difficult to obtain exact solutions.However,the fifth-order nonlinear ordinary differential equation can be simplified to a first-order nonlinear ordinary differential equation by means of the Jacobian elliptic function expansion approach[35].Then,we finally obtain two families of periodic solutions for(2),which are expressed by Jacobian elliptic functions dn and cn as

    where ξ=x-c1y-c2t,k?(0,1)is the elliptic modulus and equations (7)–(8) satisfy the following two elliptic equation:

    wherea0anda1are two real constants.As for the dn-function solution,we takea0=2-k2anda1=k2-1.As for the cnfunction solution,we takea0=2k2-1 anda1=k2(1-k2)on the other side.

    4.Squared periodic eigenfunctions of Lax pair

    In this section,we introduce the Bargmann constraint[36–38]to make the nonlinearization of the Lax pair (3)–(4).Considering the following Bargmann constraint

    whereφ=is a non-zero solution of the Lax pair(3)–(4) with λ=λ1.

    Substituting (10) into (3),we obtain a finite-dimensional Hamiltonian system as

    For the Hamiltonian system (11) and (12),there are two conserved integrals

    whereH0,H1is constant with respect toxandH=H1-.

    Considering equations (10) and (13) together,we have

    Some other constraints with λ1=α+iβ can be referred from [4]

    where α,β are the real and imaginary parts of λ1.Substituting(6)into(16),it is easy to notice that the left-hand side of(16)is 2iQ2,which yields

    Substituting (6) into (17)–(18)and comparing them with the two equations in (9),we have

    According to the second equation in (19),we have two cases asβ=orβ≠withH1=4β2-3β+.

    Case 1.Whenβ=,that isH0=0,then the expression ofa0,a1can be simplified as

    As a result ofa1=<0,we discuss the dn-periodic backgroundQ(ξ)=dn (ξ;k).Based on the above analysis,we haveH1=,α2=.TheH1and λ1=α+iβ are expressed by the elliptic modulusk.That is to say,the eigenvalues of the Lax pair have two pairs of complex values λ1±in the right half-plane and-λ1±in the left half-plane.

    Case 2.Whenβ≠,then the expression ofa0,a1will become

    As a result ofa1>0,we discussQ(ξ)=kcn (ξ;k).The eigenvalue for λ1in the first quadrant can be given as

    and there also exist some other eigenvalues with -λ1,in other quadrants.

    5.Periodic and non-periodic solutions of the Lax pair

    In this section,we firstly give the definitions of the squared periodic eigenfunctions of the Lax pair (3)–(4) and obtain various relationships between the solutions of the Lax pair(3)–(4)on the background of the Jacobian elliptic functions dn and cn respectively.Then,we introduce a function θ(x,y,t) to establish a connection between periodic solutions and nonperiodic solutions for the Lax pair(3)–(4).Therefore,the chief aim of this section is to find out the expression of θ(x,y,t).

    Based on (10),(13) and (15),we have

    Due toq(x,y,t)=Q(ξ)eiζ,we take

    Substituting (6) and (26) into (25) yields

    According to (28) with λ1=λ±,we findare real.Also,because=Q=dn (ξ;k)>0,we finally determine that Φ1and Φ2are real so that the first equation of(29) can be rewritten as

    As for the cn-function solutionQ(ξ)=kcn (ξ;k)in(20),we already know thatH0=2β-1,H1=4β2-3β+,H=β(2β-1) and.Therefore,equation (28) can be rewritten as

    Equations (12) and (14) yield (∣φ1∣2+∣φ2∣2)2=1-k2+∣q∣2.If we consider the positive square root,we have

    so we obtain

    We choose roots of the relation

    According to (32) and (35),we have

    According to (24) and (27),we have

    Here,we introduce a function θ(x,y,t).Let us make an assumption thatis the periodic solution of the Lax pair (3)–(4) with λ=λ1,andis the second linearly independent solution of the Lax pair (3)–(4) with the same λ=λ1,where ψ1and ψ2are non-periodic solutions and have the following forms

    where θ=θ(x,y,t) is a function to be determined.

    Using (38) and (3) yields

    Using (26),we rewrite (39) as

    Substituting (28) into (40) yields

    Integrating (41) yields

    where θ0(y,t) is an undetermined integral constant ofy,t.

    If we substitute(38)into(4),a rather complex expression for θtwill be derived,which is difficult to deal with.By using the Jacobian elliptic function expansion method to simplify,we get

    In order to determine the form of θ,we suppose that

    Based on the equations (43)–(46),the differential equation about χ becomes

    where χ can be rewritten as

    where

    We finally arrive at the expression of θ(x,y,t) as

    6.Rogue waves on the periodic background

    Proposition.The periodic rogue wave solutions ofw(x,y,t),v(x,y,t),p(x,y,t),η(x,y,t)are related to the periodic rogue wave solutions ofq(x,y,t) as follows

    6.1.Rogue waves on the dn-periodic background

    In order to construct the rogue waves of(2)on the dn-periodic background,we apply one-fold Darboux transformation (5)to the Jacobian elliptic function dn,take the seed solution asq=Q(ξ)eiζand choose the eigenvalueλ1=λ+=in (35).Substituting=defined by (22) and (38) into the one-fold DT formula,we construct the rogue wave solution of equation(2)on the dn-periodic background as

    Figure 1. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2, b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    where Δ0is defined in (44).

    According to the relation in the proposition,the rogue dn-periodic waves of the other four potentials can be obtained.

    It is evident from figure 1 that the periodic rogue waves of the (2+1) dimensional ML-IV equation are mainly linear rogue waves.Figures 1 and 3 illustrate the rogue dn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of rogue periodic waves reaches a maximum value at their origin.The corresponding two dimensional plots are presented in figures 2 and 4.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic waves also increases.Moreover,we can see from figures 2 and 4 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t)is the largest,q(x,y,t)is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t) are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t)periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t)periodic background wave shows an irregular periodic amplitude.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    6.2.Rogue waves on the cn-periodic background

    In order to construct the rogue waves of(2)on the cn-periodic background,we apply the one-fold Darboux transformation(5)to the Jacobian elliptic function cn,take the seed solution asq=Q(ξ)ei(ζ)and choose the complex eigenvalueλ1=λ±=in (24).Substituting=defined by (38) into (5) and using(41),(43) and (45),we obtain the rogue wave solution of (2)on the cn-periodic background as

    Figure 2. Transverse plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 3. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    Figure 4. Transverse plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 5. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    Figure 6. Transverse plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 7. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1,t=0.

    Figures 5 and 7 illustrate the rogue cn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of the rogue periodic waves reach a maximum value at their origin.The corresponding two dimensional plots are presented in figures 6 and 8.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic wave also increases.Moreover,we can see from figures 6 and 8 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t) is the largest,q(x,y,t) is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t)are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t) periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t) periodic background wave shows an irregular periodic amplitude.Different from the dn-background,whenkis equal to 0.5,the amplitude ofp(x,y,t),η(x,y,t)periodic background wave changes significantly.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    Figure 8. Transverse plot of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    7.Conclusion

    In this paper,we constructed rogue wave solutions of(2+1)-dimensional ML-IV equation on the elliptic dn-and cn-periodic background.Using the nonlinearization of Lax pair,we have determined the eigenvalues and squared eigenfunctions that correspond to the elliptic traveling wave solutions of(2+1)-dimensional ML-IV equation.After that,we gave the non-periodic solution of the Lax pair under the same eigenvalue.Compared with the existing research,the periodic rogue wave solutions studied in this paper mainly present the state of linear rogue waves.Firstly,under the premise of the same elliptic mode,the periodic rogue wave solution with different potential is analyzed.When the elliptic modulus changes,the linear solitons will also change.These results have considerable significance when exploring other highdimensional generalized integrable equations in the future.However,all the research results are still under the framework of AKNS system.In the future,we expect to apply the method in this paper to other spectral problems and expand the periodic background to other Jacobian elliptic functions.We hope that our research results can provide some implications for rogue wave phenomena in the field of nonlinear physics.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.12 361 052),the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant Nos.2020LH01010,2022ZD05),the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2414),the Fundamental Research Funds for the Inner Mongolia Normal University,China (Grant No.2022JBTD007),and the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University),and the Ministry of Education (Grant Nos.2023KFZR01,2023KFZR02).

    X H Wang:Methodology,writing—original draft,software,visualization,data curation.Zhaqilao:Conceptualization,formal analysis,writing—review and editing,supervision,project administration,funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    av电影中文网址| 激情五月婷婷亚洲| 午夜激情久久久久久久| 桃花免费在线播放| 久久精品久久久久久噜噜老黄| 操美女的视频在线观看| 成人黄色视频免费在线看| 欧美激情高清一区二区三区 | 国产免费又黄又爽又色| 欧美日韩国产mv在线观看视频| 国产一区二区三区av在线| 欧美老熟妇乱子伦牲交| 少妇 在线观看| 美女扒开内裤让男人捅视频| 中文天堂在线官网| 欧美精品高潮呻吟av久久| 99久国产av精品国产电影| 少妇的丰满在线观看| 久久人妻熟女aⅴ| 久久国产精品男人的天堂亚洲| 国产精品熟女久久久久浪| 国产男人的电影天堂91| 成人毛片60女人毛片免费| tube8黄色片| 国语对白做爰xxxⅹ性视频网站| 一级毛片 在线播放| 亚洲精品,欧美精品| 久久国产精品男人的天堂亚洲| 黄色视频在线播放观看不卡| 欧美日韩亚洲国产一区二区在线观看 | 男男h啪啪无遮挡| 日韩精品有码人妻一区| 久久久久久久久久久免费av| 国产乱人偷精品视频| 又黄又粗又硬又大视频| 可以免费在线观看a视频的电影网站 | 亚洲精品自拍成人| 久久毛片免费看一区二区三区| 婷婷成人精品国产| 日日爽夜夜爽网站| 精品一区二区三区四区五区乱码 | 曰老女人黄片| 精品一区在线观看国产| 街头女战士在线观看网站| 一区二区av电影网| 大香蕉久久网| 亚洲,欧美精品.| 少妇被粗大的猛进出69影院| 精品亚洲成国产av| av在线app专区| 婷婷成人精品国产| 国产在线一区二区三区精| 好男人视频免费观看在线| 欧美日韩亚洲国产一区二区在线观看 | 19禁男女啪啪无遮挡网站| 涩涩av久久男人的天堂| 国产亚洲一区二区精品| 国产片特级美女逼逼视频| 又黄又粗又硬又大视频| av电影中文网址| 中文字幕高清在线视频| 亚洲av福利一区| 一级片'在线观看视频| 搡老乐熟女国产| 国产精品一区二区在线不卡| www.熟女人妻精品国产| 国产精品 欧美亚洲| 观看美女的网站| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| 99久国产av精品国产电影| av天堂久久9| 欧美日韩福利视频一区二区| 欧美日本中文国产一区发布| 精品亚洲成国产av| 免费黄网站久久成人精品| 99九九在线精品视频| 亚洲欧洲日产国产| 别揉我奶头~嗯~啊~动态视频 | 69精品国产乱码久久久| 亚洲成人av在线免费| 国产精品香港三级国产av潘金莲 | 国产xxxxx性猛交| 一区二区三区激情视频| 亚洲欧美一区二区三区久久| 多毛熟女@视频| 精品国产乱码久久久久久小说| 精品久久蜜臀av无| 成人手机av| 免费观看人在逋| a级片在线免费高清观看视频| av线在线观看网站| 国产爽快片一区二区三区| 亚洲一区中文字幕在线| 日本av手机在线免费观看| 亚洲av男天堂| 国产精品国产三级专区第一集| 午夜日本视频在线| 国产精品一区二区在线观看99| avwww免费| 伊人久久大香线蕉亚洲五| 水蜜桃什么品种好| 2021少妇久久久久久久久久久| 亚洲国产精品一区三区| 免费不卡黄色视频| 只有这里有精品99| 色网站视频免费| 美女脱内裤让男人舔精品视频| 亚洲精品美女久久久久99蜜臀 | 久久久久久人妻| 最近2019中文字幕mv第一页| 色播在线永久视频| 人人妻人人添人人爽欧美一区卜| 少妇的丰满在线观看| 久久精品亚洲av国产电影网| 丝袜美腿诱惑在线| 男女床上黄色一级片免费看| 赤兔流量卡办理| 伊人久久国产一区二区| 黄网站色视频无遮挡免费观看| 老司机深夜福利视频在线观看 | 国产成人午夜福利电影在线观看| 晚上一个人看的免费电影| 久久久久网色| 毛片一级片免费看久久久久| 高清不卡的av网站| 国产高清国产精品国产三级| 亚洲精品乱久久久久久| 别揉我奶头~嗯~啊~动态视频 | 9热在线视频观看99| 啦啦啦在线免费观看视频4| 多毛熟女@视频| 最近最新中文字幕免费大全7| 国产黄频视频在线观看| 国产精品无大码| 色94色欧美一区二区| 午夜福利,免费看| 日韩精品免费视频一区二区三区| www.自偷自拍.com| 亚洲av成人不卡在线观看播放网 | 熟妇人妻不卡中文字幕| 欧美国产精品va在线观看不卡| 国产成人91sexporn| 只有这里有精品99| 老司机影院毛片| 欧美黑人欧美精品刺激| 国产淫语在线视频| 99久久人妻综合| 丰满饥渴人妻一区二区三| 久久久精品区二区三区| 下体分泌物呈黄色| 女人爽到高潮嗷嗷叫在线视频| 国产成人av激情在线播放| 欧美中文综合在线视频| 亚洲欧美一区二区三区久久| 国精品久久久久久国模美| 久久久精品94久久精品| 十分钟在线观看高清视频www| 操出白浆在线播放| 青草久久国产| 午夜av观看不卡| 亚洲激情五月婷婷啪啪| 免费观看人在逋| 亚洲人成77777在线视频| 精品少妇黑人巨大在线播放| 欧美精品人与动牲交sv欧美| 国产高清不卡午夜福利| 午夜免费男女啪啪视频观看| 欧美在线黄色| 少妇精品久久久久久久| 亚洲图色成人| 新久久久久国产一级毛片| 欧美 日韩 精品 国产| 一边摸一边做爽爽视频免费| 男人爽女人下面视频在线观看| 亚洲婷婷狠狠爱综合网| 青春草国产在线视频| 亚洲欧美中文字幕日韩二区| 午夜福利影视在线免费观看| av卡一久久| 国产成人免费无遮挡视频| 在线观看国产h片| 精品第一国产精品| 国产人伦9x9x在线观看| 亚洲欧洲日产国产| 亚洲综合色网址| 国产精品人妻久久久影院| 91精品国产国语对白视频| 久久综合国产亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 久久国产精品大桥未久av| 国产成人精品福利久久| 90打野战视频偷拍视频| 女性生殖器流出的白浆| 国产探花极品一区二区| 亚洲久久久国产精品| 黄片小视频在线播放| av.在线天堂| 国产伦人伦偷精品视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲人成77777在线视频| 欧美最新免费一区二区三区| 国产一区二区激情短视频 | 精品一区二区三区av网在线观看 | 亚洲av日韩在线播放| 亚洲一级一片aⅴ在线观看| 少妇人妻 视频| 午夜老司机福利片| 午夜老司机福利片| 免费不卡黄色视频| 国产成人免费观看mmmm| 美女福利国产在线| 国精品久久久久久国模美| 久久 成人 亚洲| 国产成人a∨麻豆精品| 最近中文字幕高清免费大全6| 大片电影免费在线观看免费| 日韩av在线免费看完整版不卡| 久久久亚洲精品成人影院| 一级,二级,三级黄色视频| 亚洲精品自拍成人| 18在线观看网站| 欧美国产精品一级二级三级| 免费久久久久久久精品成人欧美视频| 美女扒开内裤让男人捅视频| 欧美中文综合在线视频| 欧美精品av麻豆av| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 欧美成人午夜精品| 久久久久国产精品人妻一区二区| 亚洲欧美日韩另类电影网站| 韩国高清视频一区二区三区| 蜜桃国产av成人99| 18禁国产床啪视频网站| 人人妻人人爽人人添夜夜欢视频| 不卡视频在线观看欧美| 精品酒店卫生间| 免费高清在线观看日韩| 国产有黄有色有爽视频| 少妇人妻 视频| 极品人妻少妇av视频| 爱豆传媒免费全集在线观看| 日本猛色少妇xxxxx猛交久久| 国产亚洲最大av| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 精品少妇一区二区三区视频日本电影 | 国产成人免费无遮挡视频| 欧美乱码精品一区二区三区| 最近手机中文字幕大全| 国产亚洲精品第一综合不卡| 日韩电影二区| 亚洲国产精品999| 国产一区二区激情短视频 | 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 国产精品久久久久成人av| 老司机在亚洲福利影院| 国产乱来视频区| 熟妇人妻不卡中文字幕| 日本欧美视频一区| 在线天堂中文资源库| 成人亚洲欧美一区二区av| 天天操日日干夜夜撸| 婷婷色麻豆天堂久久| 日本色播在线视频| 亚洲av男天堂| 男女边吃奶边做爰视频| 久久99热这里只频精品6学生| av国产久精品久网站免费入址| 久久久久精品性色| 国产精品久久久久久精品古装| 亚洲图色成人| 中文字幕人妻丝袜制服| 母亲3免费完整高清在线观看| 国产 一区精品| 最近最新中文字幕免费大全7| www.精华液| 免费观看性生交大片5| 国产精品熟女久久久久浪| 国产成人欧美| 国产精品麻豆人妻色哟哟久久| 少妇被粗大的猛进出69影院| 国产成人精品福利久久| 亚洲欧美一区二区三区黑人| av在线观看视频网站免费| 亚洲精品国产一区二区精华液| 国产日韩一区二区三区精品不卡| 卡戴珊不雅视频在线播放| 中文字幕精品免费在线观看视频| 夜夜骑夜夜射夜夜干| 色婷婷久久久亚洲欧美| 亚洲三区欧美一区| av在线app专区| 国产午夜精品一二区理论片| 国产欧美亚洲国产| 黄频高清免费视频| 成人手机av| 欧美精品av麻豆av| 老司机深夜福利视频在线观看 | 亚洲成人av在线免费| 国产精品 国内视频| 99香蕉大伊视频| 王馨瑶露胸无遮挡在线观看| 日韩 亚洲 欧美在线| 婷婷成人精品国产| 精品国产一区二区三区四区第35| 一本一本久久a久久精品综合妖精| 在线天堂最新版资源| 成人手机av| 久久久久人妻精品一区果冻| 午夜福利影视在线免费观看| 亚洲精品在线美女| 伊人久久国产一区二区| 久久av网站| 国产成人精品无人区| 亚洲精品国产一区二区精华液| 午夜日韩欧美国产| 国产亚洲一区二区精品| 亚洲成人免费av在线播放| 久久天堂一区二区三区四区| 国产av精品麻豆| 日本av免费视频播放| 国产精品欧美亚洲77777| 亚洲一区中文字幕在线| 自线自在国产av| 久久亚洲国产成人精品v| 中文字幕另类日韩欧美亚洲嫩草| 两性夫妻黄色片| 免费久久久久久久精品成人欧美视频| 一本久久精品| 亚洲国产精品国产精品| 久久av网站| 母亲3免费完整高清在线观看| 亚洲av男天堂| 啦啦啦中文免费视频观看日本| 少妇 在线观看| avwww免费| 国产成人精品久久久久久| bbb黄色大片| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| 亚洲av成人不卡在线观看播放网 | 国产 一区精品| 中国三级夫妇交换| 久久久久精品国产欧美久久久 | 久久久精品94久久精品| 亚洲国产欧美网| 悠悠久久av| kizo精华| 国产精品久久久久久人妻精品电影 | 男女无遮挡免费网站观看| 天堂中文最新版在线下载| 精品国产乱码久久久久久小说| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| 97在线人人人人妻| 啦啦啦 在线观看视频| 中文欧美无线码| 精品少妇久久久久久888优播| 欧美日韩精品网址| 男女午夜视频在线观看| 看免费成人av毛片| 伊人亚洲综合成人网| 国产成人欧美在线观看 | 人人妻人人爽人人添夜夜欢视频| 成人毛片60女人毛片免费| 日韩一卡2卡3卡4卡2021年| 国精品久久久久久国模美| 九九爱精品视频在线观看| 国产精品av久久久久免费| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 久久久精品区二区三区| 国产又色又爽无遮挡免| 纵有疾风起免费观看全集完整版| 少妇的丰满在线观看| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 午夜免费观看性视频| 电影成人av| 国产日韩一区二区三区精品不卡| 性色av一级| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃| 黑丝袜美女国产一区| 最近最新中文字幕免费大全7| 高清欧美精品videossex| 精品国产一区二区三区四区第35| av网站免费在线观看视频| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 看免费av毛片| 亚洲美女搞黄在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线观看三级黄色| 亚洲欧美精品综合一区二区三区| 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 精品一区二区三区av网在线观看 | 丰满乱子伦码专区| 日韩中文字幕欧美一区二区 | 午夜福利乱码中文字幕| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 久久久久视频综合| 日韩欧美精品免费久久| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 国产精品嫩草影院av在线观看| 巨乳人妻的诱惑在线观看| 中文天堂在线官网| 久久人人爽av亚洲精品天堂| 18禁观看日本| 51午夜福利影视在线观看| 多毛熟女@视频| 婷婷成人精品国产| 久久国产精品大桥未久av| 2018国产大陆天天弄谢| 亚洲精品在线美女| 久久久久久久久久久免费av| 免费不卡黄色视频| 国产黄色视频一区二区在线观看| 国产成人一区二区在线| 日韩伦理黄色片| 超碰成人久久| 老司机深夜福利视频在线观看 | 又大又爽又粗| 久久99热这里只频精品6学生| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 19禁男女啪啪无遮挡网站| 亚洲第一区二区三区不卡| 在线观看三级黄色| 一边摸一边做爽爽视频免费| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| 性色av一级| 最近中文字幕2019免费版| 国产精品欧美亚洲77777| 午夜精品国产一区二区电影| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 亚洲精品视频女| 亚洲成人手机| 成年动漫av网址| 久久久久精品久久久久真实原创| 在现免费观看毛片| 亚洲,欧美,日韩| 少妇人妻 视频| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 久久久久久久国产电影| 天天操日日干夜夜撸| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| 波多野结衣一区麻豆| 美国免费a级毛片| 黄片小视频在线播放| 日本wwww免费看| 久久人人爽人人片av| 国产精品一区二区在线观看99| 一级毛片电影观看| 老熟女久久久| 最新的欧美精品一区二区| av国产久精品久网站免费入址| 1024香蕉在线观看| 中国三级夫妇交换| 亚洲av综合色区一区| 制服丝袜香蕉在线| 午夜免费鲁丝| 青春草视频在线免费观看| 操出白浆在线播放| 亚洲精品第二区| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品一区三区| 无遮挡黄片免费观看| 男人操女人黄网站| 女性被躁到高潮视频| 黄色一级大片看看| svipshipincom国产片| 久久精品国产a三级三级三级| a级毛片在线看网站| 9191精品国产免费久久| kizo精华| 久久久久视频综合| 999久久久国产精品视频| 国产成人精品在线电影| 青春草亚洲视频在线观看| 午夜影院在线不卡| 看非洲黑人一级黄片| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 国产精品av久久久久免费| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 免费观看人在逋| 日日摸夜夜添夜夜爱| 国产精品久久久人人做人人爽| 最新在线观看一区二区三区 | 亚洲中文av在线| 欧美另类一区| 无遮挡黄片免费观看| 亚洲美女视频黄频| 亚洲欧美激情在线| 久久99一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 国产在线视频一区二区| 一二三四中文在线观看免费高清| 91精品三级在线观看| 中国国产av一级| 欧美变态另类bdsm刘玥| 在线观看三级黄色| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 巨乳人妻的诱惑在线观看| 色综合欧美亚洲国产小说| 久久狼人影院| 亚洲欧洲日产国产| 成年动漫av网址| 熟女少妇亚洲综合色aaa.| 在线观看人妻少妇| 免费不卡黄色视频| 国产又爽黄色视频| 日韩av免费高清视频| 国产精品99久久99久久久不卡 | 搡老乐熟女国产| 成人午夜精彩视频在线观看| 日韩中文字幕视频在线看片| 嫩草影视91久久| av免费观看日本| 日韩中文字幕欧美一区二区 | 日韩av不卡免费在线播放| 我要看黄色一级片免费的| 美女高潮到喷水免费观看| 日本爱情动作片www.在线观看| 两个人免费观看高清视频| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 欧美日韩国产mv在线观看视频| 国产熟女欧美一区二区| 在现免费观看毛片| 黄频高清免费视频| 咕卡用的链子| 成年人免费黄色播放视频| 成人漫画全彩无遮挡| 精品人妻在线不人妻| 午夜激情久久久久久久| 波多野结衣av一区二区av| 色婷婷av一区二区三区视频| 在线观看人妻少妇| 日本vs欧美在线观看视频| 伊人久久国产一区二区| 亚洲av中文av极速乱| 丰满饥渴人妻一区二区三| 午夜av观看不卡| 激情视频va一区二区三区| 99热国产这里只有精品6| 国产野战对白在线观看| 免费久久久久久久精品成人欧美视频| 午夜福利一区二区在线看| 最近中文字幕高清免费大全6| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 亚洲av中文av极速乱| 蜜桃国产av成人99| 亚洲av成人精品一二三区| 高清在线视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 日韩 欧美 亚洲 中文字幕| 国产精品三级大全| 亚洲精品一二三| 中国国产av一级| 国产毛片在线视频| 天堂8中文在线网| 男女床上黄色一级片免费看| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 最近手机中文字幕大全| 亚洲七黄色美女视频| 9191精品国产免费久久| 亚洲成人av在线免费| 天天躁日日躁夜夜躁夜夜| 欧美日韩亚洲综合一区二区三区_| 精品久久久精品久久久| 精品国产露脸久久av麻豆| 中文字幕精品免费在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产av成人精品| 黄频高清免费视频| 亚洲精品日本国产第一区| 精品福利永久在线观看| 777久久人妻少妇嫩草av网站| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 欧美日韩成人在线一区二区|