摘 要:槲蕨為喀斯特地區(qū)典型的附生蕨類植物,主要通過其根莖附生于巖石的表面或縫隙中。槲蕨以干燥的根莖入藥,具有重要的藥用價值。為探究鈣離子(Ca2+)脅迫下槲蕨根莖中代謝物的變化,該研究采用超高效液相色譜聯(lián)用四極桿飛行時間質(zhì)譜(UPLC-QTOF/MS)技術(shù)對不同濃度(0、600、1 200 mmol·L1)Ca2+脅迫下槲蕨根莖進行非靶向代謝組學(xué)分析。結(jié)果表明:(1)共鑒定到64種差異表達代謝物。(2)在0、600 mmol·L1比較組中有48個差異表達代謝物,在0、1 200 mmol·L1比較組中有45個差異表達代謝物,在600、1 200 mmol·L1比較組中有44個差異表達代謝物。(3)鑒定到的差異表達代謝物根據(jù)其化學(xué)分類歸屬信息進行歸類,分為5類。綜上認(rèn)為,Ca2+脅迫影響槲蕨根莖的氨基酸代謝、黃酮類化合物生物合成、木質(zhì)素生物合成、脂肪酸代謝及其他途徑;該研究通過非靶向代謝組學(xué)分析,初步揭示了參與槲蕨根莖應(yīng)答Ca2+脅迫的關(guān)鍵代謝物,為進一步研究槲蕨適應(yīng)Ca2+脅迫的調(diào)控機制奠定了基礎(chǔ),也為槲蕨根莖藥材的品質(zhì)改善提供了新思路。
關(guān)鍵詞:非靶向代謝組學(xué)," 高濃度Ca2+, 代謝通路, 適應(yīng)機制, 苗藥
中圖分類號:Q945.34" "文獻標(biāo)識碼:A" "文章編號:1000-3142(2024)03-0531-10
Analysis of differentially expressed metabolites in Drynaria roosii rhizome in response" to calcium stress
WU Yilin, LI Hui, MA Hongna, LI Weizhong, TAN Longyan*
( School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China )
Abstract: "Drynaria roosii is a typical epiphytic pteridophyte in karst area, which lives on the surface or crevice of rocks mainly through its rhizome. The dried rhizome of" D. roosii is used as medicine and has important medicinal value. In order to study the changes of metabolites in D. roosii rhizome under Ca2+ stress, the D. roosii rhizome under different concentrations (0, 600, 1 200 mmol·L1) of Ca2+ stress was analyzed by using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The results were as follows: (1) A total of 64 differentially expressed metabolites were identified. (2) Forty-eight differentially expressed metabolites were identified between the 0 mmol·L1and 600 mmol·L1 comparison group, 45 differentially expressed metabolites were identified between the 0 mmol·L1 and 1 200 mmol·L1 comparison group, and 44 differentially expressed metabolites were identified between the 600 and 1 200 mmol·L1 comparison group. (3) The identified differentially expressed metabolites were classified into five categories according to their chemical classification information. In summary, Ca2+ stress affects the amino acid metabolism, flavonoids biosynthesis, lignin biosynthesis, fatty acid metabolism and other pathways of D. roosii rhizome. Through non-targeted metabolomics analysis, the key metabolites that response to Ca2+ stress in D. roosii rhizome are revealed. These results lay a foundation for further study on the regulatory mechanism of D. roosii adaptation to Ca2+ stress, and also provide a new idea for the quality improvement of medicinal materials of D. roosii rhizome.
Key words: non-targeted metabolomics, high concentration of Ca2+, metabolic pathway, adaptive mechanism, Miao medicine
喀斯特面積占世界陸地面積的12%,而中國喀斯特面積占世界喀斯特面積的15.6%(Jiang et al., 2014; Wei et al., 2018)??λ固厣炒嗳?,其淺層土壤Ca2+濃度高,對貴州普定、花江、荔波和羅甸等典型喀斯特土壤進行檢測發(fā)現(xiàn),平均交換性鈣可達3.61 g·kg1,是中國其他非喀斯特土壤含量的數(shù)倍(姬飛騰等, 2009; Wei et al., 2018)。Ca2+在植物生長、發(fā)育(如信號轉(zhuǎn)導(dǎo)、膜透性和細胞壁重塑等)過程中發(fā)揮著重要作用(Bothwell amp; Ng, 2005; Hepler, 2005),但高濃度Ca2+影響土壤性質(zhì)和植物對其他礦質(zhì)元素的吸收(郭柯等, 2011)。在高濃度Ca2+下,植物細胞對Ca2+的吸收是有限度的,超過這個限度葉綠體會直接受損,光合作用會受到影響,葉片衰老會加速(倪隆康等, 2019)。因此,植物細胞中Ca2+的濃度應(yīng)保持在較低的水平,以保證植物的正常生理活動(Borer et al., 2012)。目前,檀龍顏和馬洪娜(2017)研究發(fā)現(xiàn)植物主要通過富集Ca2+、排出Ca2+、合成滲透調(diào)節(jié)物質(zhì)、合成抗氧化酶、調(diào)節(jié)固醇甲基轉(zhuǎn)移酶活性等方式適應(yīng)喀斯特高濃度Ca2+環(huán)境。這些信息對于了解喀斯特地區(qū)植物的適應(yīng)策略具有重要意義。Ca2+脅迫研究結(jié)果將有助于喀斯特地區(qū)植物適應(yīng)機制的認(rèn)識,同時為喀斯特地區(qū)石漠化治理和植被重建奠定基礎(chǔ)。
槲蕨為水龍骨科植物,是喀斯特地區(qū)典型附生植物(張憲春和姚正明, 2017)。槲蕨在貴州為廣布種,為喀斯特地區(qū)優(yōu)勢植物。槲蕨以干燥根莖入藥,稱骨碎補,苗藥稱相豆炸、大界扁、機煙等,始載于《雷公炮灸論》,具有強筋骨、活血止痛的功效,主治五勞七傷、傷風(fēng)感冒、筋骨疼痛和骨折等(國家中醫(yī)藥管理局《中華本草》編委會, 2005)。目前,槲蕨人工栽培尚未形成規(guī)模,對于槲蕨適應(yīng)非生物脅迫環(huán)境的研究也較少。Wu等(2023)對槲蕨葉片響應(yīng)鈣脅迫的研究發(fā)現(xiàn),高濃度的Ca2+主要通過滲透脅迫抑制槲蕨葉片的生長;同時蛋白質(zhì)組學(xué)分析表明,差異表達的蛋白質(zhì)主要參與蛋白質(zhì)代謝、氨基酸代謝、糖和能量代謝、光合作用、抗氧化防御途徑。吳依琳等(2023)對槲蕨根莖響應(yīng)鈣脅迫生理學(xué)的研究發(fā)現(xiàn),高濃度Ca2+因?qū)е陆M織含水量下降而誘發(fā)滲透脅迫,進而在細胞內(nèi)產(chǎn)生大量活性氧自由基,細胞通過合成多種抗氧化酶來清除活性氧自由基而保護細胞免受氧化性損傷。
代謝組學(xué)能夠揭示不同物種間、同一物種不同組織間以及同一物種同一組織在不同逆境脅迫下代謝圖譜的差異(張鳳和陳偉, 2021)。代謝組學(xué)分析顯示,鈣脅迫下槲蕨葉片中差異代謝物主要涉及氨基酸代謝、木質(zhì)素生物合成和類黃酮生物合成等途徑(Wu et al., 2023);李偉忠等(2022)研究發(fā)現(xiàn),Ca2+脅迫下越南槐種子萌發(fā)過程中差異代謝物主要為黃酮類代謝物和脂肪酸代謝物。這表明不同代謝物在不同植物器官適應(yīng)Ca2+脅迫方面發(fā)揮著不同作用。目前,代謝組學(xué)已成為深入了解非生物脅迫下植物適應(yīng)性代謝反應(yīng)調(diào)控的重要系統(tǒng)生物學(xué)工具(李偉忠等, 2022)。本研究依托貴州中醫(yī)藥大學(xué)國家苗藥工程技術(shù)研究中心,采用UPLC-QTOF-MS技術(shù)對含Ca2+濃度分別為0、600、1 200 mmol·L-1的Hoagland營養(yǎng)液處理苗齡2 a的槲蕨植株根莖進行非靶向代謝組學(xué)分析。擬探討以下問題:(1)差異代謝物主要涉及哪些通路;(2)高濃度Ca2+對藥材品質(zhì)是否有影響。
1 材料與方法
1.1 材料
槲蕨(Drynaria roosii)在孢子體形成后于溫室中種植2 a。在人工氣候室中,24 ℃、75%濕度,50 μmol·m2·s1(光照12 h /暗12 h)培養(yǎng)條件下,將槲蕨植株移栽于花盆中,以蛭石為基質(zhì),Hoagland溶液澆施7 d。之后用改良的Hoagland溶液(將Ca2+濃度調(diào)整為0、600、1 200 mmol·L1)處理14 d,處理濃度選擇依據(jù)Wu等 (2023)的方法。每天更換Hoagland溶液以保持穩(wěn)定的Ca2+濃度。處理14 d后,采收新鮮根莖進行試驗或在液氮中迅速冷凍,并于-80 ℃冰箱保存?zhèn)溆?。每個處理6個生物學(xué)重復(fù)。
1.2 非靶向代謝組學(xué)分析
參考李偉忠等(2022)的方法,差異表達代謝物以倍數(shù)變化≥1.5或≤0.67標(biāo)準(zhǔn)進行篩選,Plt;0.05。
2 結(jié)果與分析
2.1 質(zhì)控分析
采用非靶向代謝組學(xué)方法測定Ca2+脅迫下槲蕨根莖差異表達代謝物的變化。主成分分析(principal component analysis, PCA)顯示,正離子模式和負(fù)離子模式下的每組樣本緊密聚在一起,質(zhì)控(quality control, QC)樣本和不同處理樣本間分離明顯,表明實驗具有良好的重復(fù)性(圖1)。
2.2 差異表達代謝物分析
2.2.1 表達上調(diào)的差異代謝物[HTSS] 如表1所示,與對照相比,氨基酸代謝途徑中涉及6種代謝物,在600 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的為N-甲基-L-苯丙氨酸,在1 200 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的有反式-2-羥基肉桂酸、N-甲基-L-苯丙氨酸、D-天冬氨酸和L-組氨酸;黃酮類生物合成途徑涉及25種代謝物,在600 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的有牡荊素-4″-O-葡萄糖苷、野漆樹苷、異野漆樹苷、異葒草苷、槲皮素 3-蕓香糖苷、槲皮素3-半乳糖苷、楊梅酮 3-O-半乳糖苷、草棉黃素-3,8-二吡喃葡萄糖苷、洋槐苷、山柰酚-3-葡萄糖苷-3″-鼠李糖苷、山奈酚3-葡萄糖苷7-鼠李糖苷和矢車菊素-3-O-葡萄糖苷,在1 200 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的有牡荊素-4″-O-葡萄糖苷、異葒草苷、槲皮素3-葡萄糖苷、槲皮素3-半乳糖苷、草棉黃素-3,8-二吡喃葡萄糖苷、洋槐苷、山奈酚3-葡萄糖苷7-鼠李糖苷、根皮苷和芒柄花素;木質(zhì)素生物合成途徑涉及4種代謝物,在600 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的有綠原酸和新綠原酸,在1 200 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的為綠原酸;脂肪酸代謝途徑涉及7種代謝物,在600 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的為12S-羥基-5Z,8Z,10E,14Z-二十碳四烯酸,在1 200 mmol·L1 Ca2+處理下上調(diào)差異倍數(shù)較大的為1-油?;?sn-甘油-3-磷酸乙醇胺、(10E,15Z)-9,12,13-三羥基十八碳-10,15-二烯酸、12S-羥基-5Z,8Z,10E,14Z-二十碳四烯酸、9(R)-羥基-(10E,12Z)-十八碳二烯酸。此外,其他類代謝物有8種。
2.2.2 表達下調(diào)的差異代謝物 如表2所示,與對照相比,氨基酸類代謝物有1種。黃酮類化合物有6種,其中山奈酚3-O-阿拉伯糖苷、二氫山奈酚和柚皮素在600 mmol·L1 Ca2+處理下下調(diào)差異倍數(shù)較大(表2)。木質(zhì)素合成途徑中涉及2種代謝物(表2)。此外,其他類代謝物有5種。
3 討論
3.1 Ca2+脅迫對木質(zhì)素合成的影響
木質(zhì)素不僅為植物生長的機械支撐所需,還是水和營養(yǎng)物質(zhì)的長距離運輸所必需,此外還有助于植物應(yīng)對非生物和生物脅迫(Nakabayashi amp; Saito, 2015; Zhao, 2016)。外源施加對香豆酸能夠顯著增加芡歐鼠尾草(Salvia hispanica)中脯氨酸的含量(Nkomo et al., 2019)。同時,鹽脅迫能夠?qū)е虑{(Amaranthus tricolor) 中對香豆酸含量的增加(Sarker amp; Oba, 2018)。本研究結(jié)果也顯示在600 mmol·L1 Ca2+處理下槲蕨根莖中對香豆酸含量有所增加。因此,在脅迫環(huán)境下,植物可能通過促進對香豆酸的合成并進一步誘導(dǎo)脯氨酸含量的增加以保護生物膜免受損傷(Nkomo et al., 2019)。對香豆酸和對香豆油??鼘幩崾蔷G原酸合成途徑上游的中間產(chǎn)物(Soviguidi et al., 2022)。Chen等(2021)對鹽脅迫和干旱脅迫下茶(Camellia sinensis var. sinensis cv. Shuchazao) 進行轉(zhuǎn)錄組分析發(fā)現(xiàn),羥基肉桂酰轉(zhuǎn)移酶 (催化對香豆油酰奎寧酸的生成)基因HCT表達量顯著上調(diào)。本研究結(jié)果也顯示槲蕨根莖中對香豆油酰奎寧酸在1 200 mmol·L1 Ca2+處理下含量增加。外源施加綠原酸能夠有效減少氧化脅迫下蘋果(Malus pumila)葉細胞膜損傷和脂質(zhì)氧化,并刺激抗氧化酶和多酚氧化酶活性(Mei et al., 2020)。同時,內(nèi)源性的綠原酸能夠顯著增強菊花(Chrysanthemum morifolium)的抗氧化能力(Hodaei et al., 2018)。此外,鹽脅迫下金銀花(Lonicera japonica)葉片中(Yan et al., 2016)和干旱脅迫下刺苞菜薊(Cynara cardunculus var. scolymus)中(Nouraei et al., 2018)的綠原酸含量顯著增加。本研究結(jié)果顯示綠原酸含量在鈣脅迫下也是顯著增加的,表明綠原酸可能作為抗氧化劑,通過增強抗氧化能力來保護植物免受氧化脅迫(Mei et al., 2020)。此外,本研究結(jié)果顯示新綠原酸在600 mmol·L1 Ca2+處理下含量增加。Cai等(2021)也發(fā)現(xiàn)鹽脅迫下金銀花中的新綠原酸含量增加,表明新綠原酸對適應(yīng)鹽脅迫具有一定作用。以上分析表明,木質(zhì)素合成途徑在植物適應(yīng)逆境脅迫過程中發(fā)揮著重要作用。同時,Dong和Lin(2021)研究認(rèn)為木質(zhì)素沉積能促進細胞壁增厚,有助于植物對抗干旱脅迫、鹽脅迫和冷脅迫。因此,槲蕨根莖可能通過以上途徑適應(yīng)鈣脅迫。
3.2 Ca2+脅迫對黃酮類化合物合成的影響
鹽、干旱和極端溫度等非生物脅迫會導(dǎo)致活性氧自由基(ROS)的積累,從而對植物細胞造成氧化損傷,而黃酮類化合物作為抗氧化劑可以減少氧化損傷(Nakabayashi et al., 2014; Jiang et al., 2016)。有研究表明,黃酮類化合物處理可以減輕鹽脅迫和干旱脅迫對水稻、豆類和煙草的氧化損傷(Chen et al., 2019; Zhan et al., 2019; Yildiztugay et al., 2020)。地面蘆筍(Asparagus aethiopicus)中洋槐苷、蘆丁和芹菜素的含量在鹽脅迫下顯著增加(Al-Ghamdi amp; Elansary, 2018)。同時,菊花中花青素、木犀草素、芹菜素和槲皮素的含量在干旱脅迫下顯著增加(Hodaei et al., 2018)。此外,桃(Prunus persica)中兒茶素、槲皮素-3-蘆丁苷、槲皮素-3-葡萄糖苷和山奈酚-3-蘆丁苷的含量在冷脅迫下增加(Wang et al., 2019)。本研究結(jié)果顯示,與對照相比,在600 mmol·L1 Ca2+處理下,槲蕨根莖中有21種黃酮類化合物含量增加;在1 200 mmol·L1 Ca2+處理下,槲蕨根莖中有12種黃酮類化合物含量增加。這些結(jié)果表明,Ca2+脅迫促進了槲蕨根莖中黃酮類化合物的生物合成,并且槲蕨可以通過黃酮類化合物清除ROS來減輕氧化損傷,從而增強對Ca2+脅迫的抗性。
3.3 Ca2+脅迫對氨基酸代謝的影響
有研究表明,氨基酸代謝在植物生長、發(fā)育和對非生物脅迫的響應(yīng)中發(fā)揮著重要作用(Yu amp; Wang, 2016; Peng et al., 2019)。本研究結(jié)果顯示,與對照組相比,反式-2-羥基肉桂酸在1 200 mmol·L1 Ca2+處理下含量增加。反式-2-羥基肉桂酸是苯丙氨酸代謝的中間產(chǎn)物,具有一定的抗氧化活性,可能在清除ROS中發(fā)揮作用(Sharma amp; Singh, 2012)。與對照相比,N-甲基-L-苯丙氨酸在600、1 200 mmol·L1 Ca2+處理下含量增加。這些結(jié)果表明苯丙氨酸代謝在槲蕨根莖應(yīng)對Ca2+脅迫中可能發(fā)揮著重要作用。本研究結(jié)果還顯示,L-組氨酸和L-色氨酸在1 200 mmol·L1 Ca2+處理下含量增加,同時DL-精氨酸和D-天冬氨酸在600、1 200 mmol·L1 Ca2+處理下含量增加。張翠利等(2022)發(fā)現(xiàn)L-色氨酸是華石斛(Dendrobium sinense)氨基酸代謝中響應(yīng)干旱脅迫的關(guān)鍵物質(zhì),同時認(rèn)為多種氨基酸在干旱脅迫下含量增加可能在調(diào)節(jié)滲透平衡中發(fā)揮著重要作用。此外,高龍飛等(2022)在觀察鹽脅迫下藍莓(Vaccinium spp.)葉片代謝組學(xué)變化時發(fā)現(xiàn),有5條氨基酸類代謝途徑受到影響。因此,在鈣離子脅迫下,槲蕨根莖中以上幾種氨基酸的含量增加可能在滲透調(diào)節(jié)方面發(fā)揮重要作用以增強對Ca2+脅迫的耐性。
3.4 Ca2+脅迫對脂肪酸代謝的影響
脂肪酸及其衍生物除了儲存能量之外,在植物應(yīng)對非生物脅迫的抗性中發(fā)揮著重要作用,作為重要的細胞膜成分,多不飽和脂肪酸對維持和調(diào)節(jié)正常細胞的生物學(xué)功能起著重要作用(Wang et al., 2022)。ω-6和ω-3去飽和酶是重要的脂肪酸去飽和酶,在亞油酸(18∶2和18∶3)生物合成中具有關(guān)鍵作用,后者是植物膜的重要組成部分。脂肪酸去飽和酶2 (FAD2)和脂肪酸去飽和酶6(FAD6)屬于ω-6去飽和酶,可以在內(nèi)質(zhì)網(wǎng)(ER)和質(zhì)體中合成二烯脂肪酸(Sui et al., 2018)。鹽脅迫下,F(xiàn)AD2和FAD6在擬南芥(Arabidopsis thaliana)幼苗中表達上調(diào)(Feng et al., 2017)。同時,鹽脅迫下亞油酸含量在歐洲油菜(Brassica napus)根中顯著增加(Wang et al., 2022)。與野生型植物相比,轉(zhuǎn)基因煙草中過表達FAD3或FAD8均表現(xiàn)出對干旱和滲透脅迫的耐受性增強(Zhang et al., 2005)。本研究結(jié)果顯示,在600 mmol·L1 Ca2+處理下,槲蕨根莖中有3種不飽和脂肪酸含量增加;在1 200 mmol·L1 Ca2+處理下,槲蕨根莖中有4種不飽和脂肪酸含量增加;同時,1種磷酸膽堿和1種磷酸乙醇胺在600、1 200 mmol·L1 Ca2+處理下含量均增加。膽堿是植物合成磷脂酰膽堿的重要代謝物(Lin et al., 2015)。磷酸乙醇胺可轉(zhuǎn)化為磷脂酰乙醇胺,也可甲基化生成磷酸膽堿,磷酸膽堿又可轉(zhuǎn)化為膽堿(Niu et al., 2018)。此外,膽堿經(jīng)兩步氧化后可生成甜菜堿(Rathinasabapathi et al., 1997),而甜菜堿具有較強的抗?jié)B性能(Rhodes amp; Hanson, 1993)。這些結(jié)果表明,在Ca2+脅迫下,不飽和脂肪酸含量的增加有助于膜的穩(wěn)定,同時磷酸乙醇胺和磷酸膽堿的增加可能在滲透調(diào)節(jié)方面發(fā)揮著重要作用。
3.5 Ca2+脅迫對槲蕨根莖有效成分含量的影響
國家藥典委員會(2020)以有效成分柚皮苷含量評價槲蕨藥材的質(zhì)量。黃春江等(2020)在評價樹生和石生槲蕨藥材質(zhì)量時,有效成分方面也采用柚皮苷含量比較的方式。黨友超等(2022)測定了樹生和石生兩種生境80批槲蕨藥材原兒茶酸、表兒茶素、新北美圣草苷、木犀草素、柚皮苷的含量并進行藥材質(zhì)量評價,認(rèn)為以上幾種黃酮類化合物作為藥材化學(xué)成分的功效與槲蕨藥材(骨碎補)的傳統(tǒng)功效相符??梢姡无幉闹械狞S酮類化合物多為有效成分,因而以黃酮化合物含量評價藥材的質(zhì)量具有一定的可操作性。Zafari等(2016)研究表明,異牧豆樹(Prosopis farcta)中柚皮素和木犀草素的含量在鉛(Pb)脅迫下顯著增加。同時,葡萄(Vitis vinifera)中表兒茶素含量在干旱脅迫下顯著增加(Griesser et al., 2015)。此外,兵豆(Lens culinaris)中柚皮素含量在熱脅迫下增加(S[HT9.][HT]'wieca, 2015)。本研究中,鈣脅迫下槲蕨根莖中有25種黃酮化合物的含量有不同程度的增加,表明藥材質(zhì)量在一定范圍內(nèi)的鈣離子含量土壤中可能隨著鈣含量的增加而有所提升。當(dāng)然,對于藥材質(zhì)量影響,還有待進一步深入研究。
4 結(jié)論
槲蕨根莖可能通過合成木質(zhì)素促進細胞壁增厚和合成黃酮類代謝物清除ROS來減輕氧化損傷、通過合成氨基酸調(diào)節(jié)滲透平衡和合成不飽和脂肪酸維持生物膜的穩(wěn)定等方式來適應(yīng)喀斯特土壤高鈣環(huán)境。高濃度Ca2+能夠促進槲蕨根莖中多種黃酮類代謝物的合成,而黃酮類代謝物含量作為評價槲蕨藥材(骨碎補)質(zhì)量的指標(biāo)成分,因此在人工栽培槲蕨過程中適當(dāng)增加土壤Ca2+含量可能有助于改善藥材質(zhì)量。
參考文獻:
AL-GHAMDI AA, ELANSARY HO, 2018. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation" [J]. Plant Physiol Biochem, 129: 273-284.
BORER CH, HAMBY MN, HUTCHINSON LH, 2012. Plant tolerance of a high calcium environment via foliar partitioning and sequestration" [J]. J Arid Environ, 85: 128-131.
BOTHWELL JHF, NG CKY, 2005. The evolution of Ca2+ signaling in photosynthetic eukaryotes" [J]. New Phytol, 166(1):" 21-38.
CAI ZC, LIU XH, CHEN H, et al., 2021. Variations in morphology, physiology, and multiple bioactive constituents of "Lonicerae japonicae Flos under salt stress" [J]. Sci Rep, 11(1): 3939.
CHEN S, WU FY, LI YT, et al., 2019. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness" [J]. Front Plant Sci, 10: 178.
CHEN Y, YI N, YAO SB, et al., 2021. CsHCT-mediated lignin synthesis pathway involved in the response of tea plants to biotic and abiotic stresses" [J]. J Agric Food Chem, 69(35):" 10069-10081.
DANG YC, XU WF, SUN QW, et al., 2022.Quality characteristics of Drynariae Rhizoma from different origins based on multi-index component quantitative analysis "[J]. Chin J New Drugs, 31(17):" 1736-1746." [黨友超, 徐文芬, 孫慶文, 等, 2022. 基于多指標(biāo)成分定量分析的不同產(chǎn)地骨碎補質(zhì)量特征研究 [J]. 中國新藥雜志, 31(17):" 1736-1746.]
DONG NQ, LIN HX, 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions" [J]. J Integr Plant Biol, 63(1):" 180-209.
Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, 2005. Chinese materia medica: Miao medicine volume" [M]. Guiyang: Guizhou Science and Technology Press: 418-420." [國家中醫(yī)藥管理局《中華本草》編委會, 2005. 中華本草: 苗藥卷 [M]. 貴陽: 貴州科技出版社: 418-420.]
FENG JY, DONG YT, LIU W, et al., 2017. Genome-wide identifification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress" [J]. Sci Rep, 7: 45711.
GAO LF, JIA B, ZHANG WH, et al., 2022. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress" [J]. Plant Physiol J, 58(1):" 155-164." [高龍飛, 賈斌, 張衛(wèi)華, 等, 2022. 鹽脅迫下藍莓葉片生理特性與代謝組學(xué)分析 [J]. 植物生理學(xué)報, 58(1): "155-164.]
GRIESSER M, WEINGART G, SCHOEDL-HUMMEL K, et al., 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir)" [J]. Plant Physiol Biochem, 88: 17-26.
GUO K, LIU CC, DONG M, 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China" [J]. Chin J Plant Ecol, 35(10):" 991-999." [郭柯, 劉長成, 董鳴, 2011. 我國西南喀斯特植物生態(tài)適應(yīng)性與石漠化治理 [J]. 植物生態(tài)學(xué)報, 35 (10):" 991-999.]
HEPLER PK, 2005. Calcium: a central regulator of plant growth and development" [J]. Plant Cell, 17(8):" 2142-2155.
HODAEI M, RAHIMMALEK M, ARZANI A, et al., 2018. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L." [J]. Ind Crops Prod, 120: 295-304.
HUANG CJ, MO YG, SUN QW, et al., 2020. Comparative study on the quality of Drynariae Rhizoma from two different habitats" [J]. Guizhou Sci, 38(1):" 25-30." [黃春江, 莫元貴, 孫慶文, 等, 2020. 兩種不同生境骨碎補質(zhì)量比較研究 [J]. 貴州科學(xué), 38(1):" 25-30.]
JI FT, LI N, DENG X, 2009. Calcium contents and high calcium adaptation of plants in karst areas of China" [J]. Chin J Plant Ecol, 33(5):" 926-935." [姬飛騰, 李楠, 鄧馨, 2009. 喀斯特地區(qū)植物鈣含量特征與高鈣適應(yīng)方式分析 [J]. 植物生態(tài)學(xué)報, 33(5):" 926-935.]
JIANG N, DOSEFF AI, GROTEWOLD E, 2016. Flavones: from biosynthesis to health benefits" [J]. Plants, 5(2):" 27.
JIANG ZC, LIAN YQ, QIN XQ, 2014. Rocky desertification in Southwest China: impacts, causes, and restoration" [J]. Earth-Sci Rev, 132: 1-12.
LI WZ, MA HN, WU YL, et al., 2022.Research on comparative metabolome of Sophora tonkinensis seed germination in response to Ca2+ stress" [J]. Seed, 41(8):" 17-26." [李偉忠, 馬洪娜, 吳依琳, 等, 2022. Ca2+脅迫下越南槐種子萌發(fā)響應(yīng)的比較代謝組學(xué)研究 [J]. 種子, 41(8):" 17-26.]
LIN YC, LIU YC, NAKAMURA Y, 2015. The choline/ethanolamine kinase family in Arabidopsis: essential role of CEK4 in phospholipid biosynthesis and embryo development [J]. Plant Cell, 27 (5):" 1497-1511.
MEI YM, SUN HL, DU GD, et al., 2020. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity" [J]. Sci Hortic, 274: 109676.
NAKABAYASHI R, SAITO K, 2015. Integrated metabolomics for abiotic stress responses in plants" [J]. Curr Opin Plant Biol, 24: 10-16.
NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al., 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids" [J]. Plant J, 77 (3):" 367-379.
National Pharmacopoeia Commission, 2020. Pharmacopoeia of the Peoples Republic of China: Part I" [M]. Beijing: China Pharmaceutical Science and Technology Press: 267-268. [國家藥典委員會, 2020. 中華人民共和國藥典: 一部 [M]. 北京: 中國醫(yī)藥科技出版社: 267-268.]
NI LK, GU DX, HE W, et al., 2019. Research advances in plant ecological adaptability in karst area" [J]. Chin J Ecol, 38(7):" 2210-2217." [倪隆康, 顧大形, 何文, 等, 2019. 巖溶區(qū)植物生態(tài)適應(yīng)性研究進展 [J]. 生態(tài)學(xué)雜志, 38(7):" 2210-2217.]
NIU GL, GOU W, HAN XL,et al., 2018. Cloning and functional analysis of phosphoethanolamine methyltransferase promoter from maize (Zea mays L.)" [J]. Int J Mol Sci, 19(1):" 191.
NKOMO M, GOKUL A, KEYSTER M, et al., 2019. Exogenous p-coumaric acid improves Salvia hispanica L. seedling shoot growth" [J]. Plants, 8(12):" 546.
NOURAEI S, RAHIMMALEK M, SAEIDI G, 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress" [J]. Sci Hortic, 233: 378-385.
PENG XY, YU DF, YAN JX, et al., 2019. Physiological and proteomic analyses reveal adaptive mechanisms of ryegrass (annual vs. perennial) seedlings to salt stress" [J]. Agronomy, 9(12):" 843. DOI: 10.3390/agronomy9120843.
RATHINASABAPATHI B, BURNET M, RUSSELL BL, et al., 1997. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning" [J]. Proc Natl Acad Sci USA, 94 (7):" 3454-3458.
RHODES D, HANSON AD, 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants" [J]. Ann Rev Plant Physiol Plant Mol Biol, 44: 357-384.
SARKER U, OBA S, 2018. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress" [J]. Sci Rep, 8: 12349.
SHARMA P, SINGH R, 2012. Efficacy of trans-2-hydroxycinnamic acid against trichlorfon-induced oxidative stress in wistar rats" [J]. Toxicol Int, 19 (3):" 295-300.
SOVIGUIDI DRJ, PAN R, LIU Y, et al., 2022. Chlorogenic acid metabolism: the evolution and roles in plant response to abiotic stress" [J]. Phyton-Int J Exp Bot, 91(2):" 239-255.
SUI N, WANG Y, LIU SS, et al., 2018. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut" [J]. Front Plant Sci, 9: 7. DOI: 10.3389/fpls.2018.00007.
S'WIECA M, 2015. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts" [J]. Saudi J Biol Sci, 22(4):" 409-416.
TAN LY, MA HN, 2017. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol J," 53(7):" 1150-1158." [檀龍顏, 馬洪娜, 2017. 植物響應(yīng)鈣離子脅迫的研究進展 [J]. 植物生理學(xué)報, 53(7):" 1150-1158.]
WANG L, SHAN TM, XIE B, et al., 2019. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms" [J]. Food Chem, 272: 530-538.
WANG WC, PANG JY, ZHANG FH, et al., 2022. Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus" [J]. Plant Growth Regul, 97: 127-141.
WEI XC, DENG XW, XIANG WH, et al., 2018. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China" [J]. Biogeosciences, 15(9):" 2991-3002.
WU YL, MA HN, MA SS, et al., 2023. Physiological, proteomic and metabolomic analysis provide insights into Ca2+ tolerance in Drynaria roosii leaves" [J]. Plant Stress 7: 100132.
WU YL, MA HN, TAN LY, 2023. Effects of calcium ion stress on the rhizomes of Drynaria fortune" [J]. Shandong Chem Ind, 51(22):" 12-15." [吳依琳, 馬洪娜, 檀龍顏, 2023. 鈣離子脅迫對槲蕨根莖的影響 [J]. 山東化工, 51(22):" 12-15.]
YAN K, CUI MX, ZHAO SJ, et al., 2016. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb.)" [J]. Front Plant Sci, 7: 1563. DOI: 10.3389/fpls.2016.01563.
YILDIZTUGAY E, OZFIDAN-KONAKCI C, KUCUKODUK M, et al., 2020. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris "[J]. Front Plant Sci, 11(682): 1-18.
YU HT, WANG T, 2016. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms" [J]. Front Plant Sci, 1(7): 707. DOI: 10.3389/fpls.2016.00707.
ZAFARI S, SHARIFI M, CHASHMI NA, et al., 2016. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids" [J]. Plant Physiol Biochem, 99: 11-20.
ZHAN XQ, SHEN QW, CHEN J, et al., 2019. Rice sulfoquinovosyltransferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress" [J]. Plant Cell Environ, 42 (7):" 2215-2230.
ZHANG CL, CHEN ZH, SONG XQ, et al., 2022. Dynamic changes of amino acids in pseudobulbs of Dendrobium sinense (Orchidaecea) under drought stress" [J]. Mol Plant Breed, 20(22):" 7604-7612." [張翠利, 陳枳衡, 宋希強, 等, 2022. 干旱脅迫下通過代謝組探討華石斛假鱗莖氨基酸的動態(tài)變化 [J]. 分子植物育種, 20(22):" 7604-7612.]
ZHANG F, CHEN W, 2021. Research progress of metabolomics in plant stress biology" [J]. Biotechnol Bull, 37(8):" 1-11." [張鳳, 陳偉, 2021. 代謝組學(xué)在植物逆境生物學(xué)中的研究進展 [J]. 生物技術(shù)通報, 37(8):" 1-11.]
ZHANG M, BARG R, YIN M, et al., 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases deferentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants" [J]. Plant J, 44(3):" 361-371.
ZHANG XC, YAO ZM, 2017. Lycophytes and ferns of Maolan, China" [M]. Beijing: Science Press: 217. [張憲春, 姚正明, 2017. 中國茂蘭石松類和蕨類植物 [M]. 北京: 科學(xué)出版社: 217.]
ZHAO Q, 2016. Lignification: flexibility, biosynthesis and regulation" [J]. Trends Plant Sci, 21(8):" 713-721.
(責(zé)任編輯 鄧斯麗)
基金項目: "國家自然科學(xué)基金(31860056)。
第一作者: 吳依琳(1997—),碩士研究生,研究方向為藥用植物逆境生理學(xué),(E-mail)1097735027@qq.com。
*通信作者: "檀龍顏,博士,教授,研究方向為藥用植物逆境生理學(xué),(E-mail)lytan1982@126.com。