摘 要:有毒金屬離子在植物組織中的分布和亞細(xì)胞水平的定位與植物對(duì)金屬離子的耐受性密切相關(guān)。為探究鋁進(jìn)入馬尾松體內(nèi)后在亞細(xì)胞水平下的分布情況,該研究分別設(shè)置0、0.5、1.0、2.0 mmol·L -1 4個(gè)鋁濃度,通過(guò)盆栽試驗(yàn)研究不同鋁濃度下馬尾松的生長(zhǎng)狀況及亞細(xì)胞水平下鋁的分配特征。結(jié)果表明:(1) 低濃度鋁 (0.5 mmol·L -1 )顯著促進(jìn)馬尾松的生長(zhǎng)(Plt;0.05),隨鋁濃度的升高 (≥1.0 mmol·L -1 ),馬尾松根系生長(zhǎng)和根尖細(xì)胞活力均受到抑制。(2) 相較于莖葉,進(jìn)入馬尾松體內(nèi)的鋁主要沉積在根系中(Plt;0.05 ),但隨著鋁濃度的增加,莖葉中的鋁含量也開(kāi)始增加。(3)亞細(xì)胞水平下,不同鋁濃度影響了鋁在細(xì)胞壁和液泡中的分配比例。當(dāng)鋁濃度為1.0 mmol·L -1 及以下時(shí),鋁在根系和莖葉的細(xì)胞壁和液泡中的比例均較高,兩者間鋁含量差異不顯著;而高鋁濃度下 (2.0 mmol·L -1 ),鋁則主要沉積在細(xì)胞壁上,根系、莖葉的細(xì)胞壁鋁含量分別占比55%和70%。相較而言,各鋁濃度處理下細(xì)胞器和細(xì)胞質(zhì)中的鋁含量均維持在較低水平,這降低了鋁對(duì)細(xì)胞功能的影響。綜上認(rèn)為,馬尾松可以通過(guò)調(diào)整體內(nèi)鋁的分配來(lái)適應(yīng)鋁脅迫,這為后續(xù)從細(xì)胞及分子層面進(jìn)一步闡明馬尾松對(duì)鋁環(huán)境的適應(yīng)機(jī)制奠定了理論基礎(chǔ)。
關(guān)鍵詞:馬尾松, 鋁, 亞細(xì)胞組分, 細(xì)胞壁, 分配特征
中圖分類(lèi)號(hào):Q945" "文獻(xiàn)標(biāo)識(shí)碼:A" "文章編號(hào):1000-3142(2024)03-0521-10
Distribution characteristics of aluminum in Pinus massoniana "under different concentrations of aluminum treatments
REN Heqin 1,2 , SUN Xueguang 1,2*, YUAN Guiyun 1,2 , FENG Wanyan 1,2
( 1. Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, "Guizhou University, Guiyang 550025," China; 2. College of Forestry, Guizhou University, Guiyang 550025, China )
Abstract: "The distribution and subcellular localization of toxic metal ions in plant tissues are of great significance for plants to cope with metal stresses, which could provide valuable insights into the mechanisms underlying plant metal tolerance. To explore the distribution of aluminum (Al) at the subcellular level after entering Pinus massoniana, four aluminum concentrations of 0, 0.5, 1.0, 2.0 mmol·L -1 "were set up in this study. The growth status of P. massoniana and the distribution characteristics of aluminum at the subcellular level under different Al concentrations were studied by pot experiment. The results were as follows: (1) P. massoniana exhibited significant growth enhancement under 0.5 mmol·L -1 "Al treatment, and the biomass, seedling height, root length, as well as the number of lateral roots were all significantly promoted. However, higher Al concentrations (≥1 mmol·L -1 ) led to diminished growth promotion effects and inhibited root growth and cell viability in P. massoniana root tips. (2) Translocation of Al from roots to shoots in P. massoniana was limited. The absorbed Al was mainly deposited in the roots (Plt;0.05), although the accumulation of Al in the shoots increased along with the Al concentration increased. (3) At the subcellular level, different" Al concentrations affected the proportions of absorbed Al deposited in cell walls and vacuoles. Under both 0.5 and 1.0 mmol·L -1 Al treatments, the proportions of Al in both the cell walls and vacuoles of roots or shoots were all at higher levels compared with other cell components, and there was no significant difference between the Al contents of cell walls and vacuoles. However, at high Al concentration (2.0 mmol·L -1 ), a majority of deposited Al was found on the cell walls, accounting for 55% and 70% in root and shoot cells, respectively. In contrast, the Al contents in the organelles and cytoplasm maintained low levels of Al concentration treatments, which mitigated the adverse effects of Al on cellular functions. In summary, the presented results suggest that P. massoniana effectively adapted to Al stress through coordinated distribution and subcellular localization mechanisms for absorbed Al. This evokes the needs of further investigation of the adaptation mechanisms of P. massoniana to Al stress from both the cellular and molecular levels.
Key words: Pinus massoniana, aluminum (Al), subcellular components, cell wall, distribution characteristics
土壤中的鋁多以硅酸鹽態(tài)或氧化態(tài)等非水溶態(tài)存在,在近中性土壤中,鋁不會(huì)對(duì)植物造成傷害,但在酸性條件下(pHlt;5.5) Al 3+ 會(huì)大量溶出,并對(duì)植物產(chǎn)生毒害(肖厚軍和王正銀,2006)。在酸性土中,Al 3+ 主要通過(guò)破壞植物細(xì)胞壁和質(zhì)膜,干擾細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、鈣穩(wěn)態(tài)和氧化還原穩(wěn)態(tài)等途徑(陸明英,2014;Schmitt et al., 2016)影響根系的發(fā)育和功能,最終抑制植物生長(zhǎng)(趙天龍等,2013;馮英明等,2022)。
植物主要通過(guò)根尖有機(jī)酸的分泌、細(xì)胞壁的固定、細(xì)胞質(zhì)內(nèi)的螯合和液泡區(qū)隔化等方式來(lái)應(yīng)對(duì)鋁毒害(Kochian et al., 2015;Guo et al., 2018)。根系是最先與Al3+接觸的器官,在受到鋁毒害時(shí)其會(huì)釋放有機(jī)酸、酚類(lèi)物質(zhì)等成分螯合Al 3+ (Chen et al., 2011;Yao et al., 2020)。同時(shí),根系內(nèi)的細(xì)胞成分也會(huì)發(fā)揮作用降低Al3+對(duì)植物的傷害,如細(xì)胞壁作為Al3+進(jìn)入原生質(zhì)體的第一道屏障,其主要成分中的果膠具有帶負(fù)電的羧基、半纖維素具有高度的支鏈結(jié)構(gòu),都可以與Al3+相互作用,阻止Al3+進(jìn)入細(xì)胞(Sun et al., 2016;Zhang et al., 2019)。同時(shí),細(xì)胞質(zhì)以及液泡內(nèi)由于含有有機(jī)酸、酚類(lèi)物質(zhì)(Kidd et al., 2001;Chen et al., 2011)等成分,可以與Al3+形成無(wú)毒螯合物儲(chǔ)存于其中(Inostroza-Blancheteau et al., 2012),從而降低Al3+ 對(duì)植物的傷害。有研究表明,鋁進(jìn)入植物體內(nèi)后,其在根系和莖葉中的分配比例,以及在亞細(xì)胞水平的分配情況可以反映植物對(duì)鋁毒害的適應(yīng)性(C [HT9.]ˇ[HT][KG-1mm]iamporová, 2002;Zhang et al., 2019)。然而,目前有關(guān)亞細(xì)胞水平下鋁分配特征的研究還非常有限,主要集中在油茶(Camellia oleifera)(黃麗媛,2017)、山茶(C. japonica)(劉元嬌,2020)和桉樹(shù)(Eucalyptus robusta)(陸明英,2014)等少數(shù)幾種植物上,而且關(guān)于鋁處理下植物根系和莖葉的亞細(xì)胞組分中鋁分配特征的比較,以及對(duì)不同鋁濃度的響應(yīng)鮮見(jiàn)報(bào)道。
馬尾松(Pinus massoniana)作為我國(guó)本土主要的造林和工業(yè)原料樹(shù)種之一,主要分布于南方亞熱帶地區(qū)的酸性土壤中,對(duì)酸鋁環(huán)境有著很好的適應(yīng)能力(周政賢,2001;王水良等,2010;劉玉民,2018)。目前,馬尾松通過(guò)根系分泌有機(jī)酸(王水良等,2010;姚虹宇等,2018;李峻安,2021;Wang et al., 2022)和與外生菌根真菌建立共生關(guān)系(Jaiswal et al., 2018;辜夕容等,2018;王小河,2020;Gu et al., 2023)來(lái)提高對(duì)鋁脅迫的耐受性已得到充分證實(shí)。然而,有關(guān)鋁脅迫下馬尾松的細(xì)胞壁、液泡等細(xì)胞成分對(duì)Al 3+ 的結(jié)合能力仍未知,亞細(xì)胞水平下的耐受機(jī)理有待揭示。因此,本研究以馬尾松幼苗為試驗(yàn)對(duì)象,選用不同鋁濃度處理,擬在解析不同鋁濃度處理對(duì)馬尾松生長(zhǎng)以及各細(xì)胞組分內(nèi)鋁含量的分布特征的影響。為進(jìn)一步從亞細(xì)胞水平研究馬尾松酸鋁耐受機(jī)制提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
馬尾松種子來(lái)自貴州省都勻市的馬鞍山國(guó)有林場(chǎng)馬尾松1.5代種子園半同胞良種基地。
1.2 試驗(yàn)處理
選取籽粒飽滿(mǎn)、大小均一的馬尾松種子,于室溫下在蒸餾水中浸泡24 h,用0.5%的 KMnO4 溶液浸泡消毒2 h后用無(wú)菌水清洗3~5次,將消毒后的種子置于已滅菌的濕潤(rùn)蛭石中24 ℃暗培養(yǎng),種子露白后轉(zhuǎn)為光照培養(yǎng)(光照160 μmol· m -2 ·s -1 "14 h,溫度25 ℃;黑暗10 h,溫度24 ℃)。
種子出芽30 d后,選取長(zhǎng)勢(shì)一致的幼苗置于裝有已滅菌的蛭石盆中,參照劉元嬌(2020)的方法設(shè)置0、0.5、1.0、2.0 mmol·L -1 "4個(gè)鋁濃度,以AlCl3 ·6H2 O形式添加。每個(gè)處理24棵幼苗,于人工氣候箱中培養(yǎng)2個(gè)月,每隔7 d施一次含不同鋁濃度的Hoagland營(yíng)養(yǎng)液50 mL,營(yíng)養(yǎng)液用2%的HCl溶液將pH調(diào)節(jié)至4.00±0.05。培養(yǎng)條件:光照160 μmol· m -2 ·s -1 "14 h,溫度25 ℃;黑暗10 h,溫度24 ℃。
1.3 測(cè)定指標(biāo)和方法
1.3.1 幼苗鮮重及根系形態(tài)的測(cè)定[HTSS] 各處理隨機(jī)選取15株幼苗進(jìn)行掃描(Epson Perfection V330Photo),統(tǒng)計(jì)根系分枝數(shù),使用ImageJ平臺(tái)的SmartRoot插件測(cè)定根系長(zhǎng)度;用電子天平分別稱(chēng)取根系、莖葉的鮮重;在熒光體視顯微鏡(M205FA,Leica)下觀察根毛形態(tài)。
1.3.2 根系細(xì)胞活力及鋁在根系沉積情況的測(cè)定[HTSS] 根系細(xì)胞活力和鋁在根系的沉積情況的觀測(cè)參照Xiao和Liang(2022)、李舟陽(yáng)等(2022)、Riaz等(2019)的方法。
根系細(xì)胞活力用二乙酰熒光素(fluorescein diacetate, FDA)-碘化丙啶(propidium iodide, PI) (FDA-PI)雙染色劑測(cè)定。截取1 cm幼苗根尖約15個(gè),用FDA-PI (50 μL FDA和15 μL PI)在黑暗條件下對(duì)其染色15 min后,在熒光體視顯微鏡(M205FA,Leica)下觀察根細(xì)胞活性(活細(xì)胞呈綠色,死細(xì)胞呈紅色)。
鋁在根系沉積情況用morin染色測(cè)定。截取1 cm的根段15個(gè),于100 μmol·L - "1 "morin染色液中浸泡20 min,在熒光體視顯微鏡(M205FA,Leica)下觀察染色情況。
1.3.3 亞細(xì)胞組分的分離及鋁含量的測(cè)定[HTSS] 為探究馬尾松幼苗地下部分和地上部分的鋁分配情況,分別稱(chēng)取0.5 g的根系和莖葉樣品,加入10 mL緩沖液[250 mmol·L -1 蔗糖,50 mmol·L -1 "Tris-HCl(pH=7.5),1 mmol·L -1 二硫赤蘚糖醇(C4 H10 S2 )]后在冰浴中研磨至勻漿,勻漿用尼龍布過(guò)濾,再用上述緩沖液洗滌殘?jiān)?次后作為細(xì)胞壁組分。將過(guò)濾的濾液在4 °C、2 000 ×g下離心 15 min,沉淀為液泡組分;再次將上清液在12 000×g、4 ℃下進(jìn)一步離心30 min后,最終所得上清液和沉淀分別[JP2]被鑒定為細(xì)胞質(zhì)和除液泡外的細(xì)胞器組分(Weigel amp; Jager, 1980;Zhu et al., 2017;蘇蕓蕓,2021)。參照Bloom等(1978)和鮑士旦(2000)的方法測(cè)定各組分的鋁含量,3次重復(fù)。
1.4 數(shù)據(jù)處理
采用 SPSS 22.0.0 軟件中的單因素ANVOA進(jìn)行方差分析和Duncan法進(jìn)行顯著性檢驗(yàn)。用Origin Pro 8.5軟件繪圖。
2 結(jié)果與分析
2.1 馬尾松幼苗生物量和根系形態(tài)
鋁處理對(duì)馬尾松生長(zhǎng)的影響表現(xiàn)為低濃度(0.5 mmol·L -1 )促進(jìn),高濃度(≥1.0 mmol·L -1 )抑制。與對(duì)照(CK)相比,0.5 mmol·L -1 的鋁濃度對(duì)馬尾松的根系、莖葉的鮮重,總根長(zhǎng),側(cè)根數(shù),苗高以及地徑均有一定程度的促進(jìn)作用,并顯著增加了根系鮮重、總根長(zhǎng)、側(cè)根數(shù)、苗高和地徑(Plt;0.05) (表1;圖1:A,B);當(dāng)鋁濃度為1.0 mmol·L -1 和2.0 mmol·L -1 時(shí)則顯著降低了馬尾松幼苗的鮮重、總根長(zhǎng)、側(cè)根數(shù)和苗高(Plt;0.05) ,地徑也逐漸降低,但與對(duì)照沒(méi)有顯著差異(表1;圖1: C,D)。同時(shí)在鋁濃度為1.0 mmol·L -1 及以下時(shí)根毛形態(tài)與對(duì)照相差不大(圖2:A-C),但濃度為2.0 mmol·L -1 時(shí)根毛形態(tài)變得彎曲、短?。▓D2:D)。
2.2 根系細(xì)胞活力及鋁在根系沉積情況
根系細(xì)胞活力染色結(jié)果表明,鋁處理影響了根尖細(xì)胞活性。與對(duì)照(CK)相比, 0.5 mmol·L -1鋁濃度下根尖的綠色熒光信號(hào)較強(qiáng);隨著鋁濃度的升高,綠色熒光信號(hào)逐漸減弱,而紅色熒光信號(hào)逐漸增強(qiáng),表明活性細(xì)胞數(shù)量逐漸減少,死細(xì)胞逐漸增多(圖3)。
morin染色結(jié)果表明,當(dāng)鋁濃度為0.5 mmol·L -1 時(shí),在根尖檢測(cè)到較弱的熒光信號(hào)(圖4:B),而隨著鋁濃度的升高,根尖的熒光染色信號(hào)逐漸增強(qiáng)(圖4:C,D),表明隨著鋁濃度的升高鋁在根尖的沉積增加。
2.3 幼苗及各細(xì)胞組分內(nèi)的鋁含量
鋁進(jìn)入馬尾松體內(nèi)后主要分布于根系。鋁濃度對(duì)根系中鋁沉積量的影響不大,各濃度下的鋁含量差異不明顯,0.5 mmol·L -1 濃度下根系的鋁含量相較于其他兩個(gè)濃度稍低;與根系不同,莖葉的鋁含量隨著鋁濃度的升高逐漸升高,當(dāng)濃度為2.0 mmol·L -1 時(shí),鋁含量達(dá)到37.45 mg·g -1 ,與其他兩個(gè)濃度相比差異顯著(Plt;0.05);同一濃度下根系的鋁含量顯著地比莖葉高(Plt;0.05),尤其是鋁濃度為0.5 mmol·L -1 時(shí),差異極顯著(Plt;0.01) (圖5)。
在亞細(xì)胞水平下,不同鋁濃度處理下根系及莖葉細(xì)胞中的鋁均主要分布在細(xì)胞壁和液泡中。其中,根系細(xì)胞壁的鋁含量隨著鋁濃度的升高而增加,液泡中則隨鋁濃度升高而降低(圖6:B)。莖葉細(xì)胞的細(xì)胞壁鋁含量在鋁濃度為1.0 mmol·L -1 及以下時(shí)差異不顯著,在濃度為2.0 mmol·L -1 時(shí)鋁含量為26.59 mg·g -1 ,差異顯著(Plt;0.05);而液泡內(nèi)的鋁含量在各鋁濃度間差異不顯著,在濃度為1.0 mmol·L -1 時(shí)的含量比另外兩個(gè)濃度較高(圖6:A);相較而言,各鋁濃度處理下細(xì)胞質(zhì)和細(xì)胞器中的鋁含量均無(wú)顯著性差異且維持在較低水平(圖6)。由圖7可知,從各細(xì)胞組分的鋁分配比例來(lái)看,當(dāng)鋁濃度為1.0 mmol·L -1 及以下時(shí),莖葉和根系細(xì)胞中的鋁在細(xì)胞壁和液泡中的比例均較高,如當(dāng)濃度為0.5 mmol·L -1 時(shí),根系細(xì)胞壁、液泡的鋁含量分別占比42%和40%;高鋁處理下,鋁主要分布在細(xì)胞壁中,根系、莖葉的細(xì)胞壁鋁含量分別占比55%和70%。細(xì)胞器和細(xì)胞質(zhì)中鋁分配比例較低,分別在20%和10%及以下??傮w來(lái)看,各細(xì)胞組分內(nèi)的鋁含量呈現(xiàn)細(xì)胞壁gt;液泡gt;細(xì)胞器gt;細(xì)胞質(zhì)的特征。
3 討論
鋁毒害是酸性土壤(pHlt;5.5)中限制植物生長(zhǎng)發(fā)育的主要土壤因子之一,影響許多作物的生長(zhǎng)和產(chǎn)量。但也有一些植物對(duì)酸鋁環(huán)境有極強(qiáng)的適應(yīng)性,如油茶(Sun et al., 2020)、繡球花(Hydrangea macrophylla) (Chen et al., 2022)等,一定濃度(0.15~1.0 mmol·L -1 )的鋁處理能夠促進(jìn)其根系的生長(zhǎng)。本研究發(fā)現(xiàn)低濃度鋁(0.5 mmol·L -1 )可以促進(jìn)馬尾松的生長(zhǎng),這與汪遠(yuǎn)秀等(2020)和張盛楠等(2016)的研究結(jié)果相似。鋁雖不是植物生長(zhǎng)的必需元素,但有研究表明,低濃度的鋁可以維持細(xì)胞膜的穩(wěn)定性,減少細(xì)胞的內(nèi)容物外滲,對(duì)植物生長(zhǎng)有利(Mukhopadyay et al., 2012;Wang et al., 2022)。只有當(dāng)鋁濃度超過(guò)一定閾值時(shí),才會(huì)對(duì)植物產(chǎn)生毒害。例如,本研究發(fā)現(xiàn)當(dāng)鋁濃度≥1.0 mmol·L -1 時(shí)顯著降低了馬尾松幼苗的鮮重、總根長(zhǎng)、側(cè)根數(shù)和苗高(Plt;0.05);同時(shí),根毛形態(tài)也變得彎曲短小,這可能與細(xì)胞壁內(nèi)積累的鋁含量有關(guān)。有研究表明,過(guò)多的鋁富集會(huì)減弱細(xì)胞壁的機(jī)械性能,降低根尖細(xì)胞的膨脹性和延展性,從而影響根的伸長(zhǎng)(Kopittke et al., 2017;Liu et al., 2018;Jiang et al., 2022)。FDA-PI染色結(jié)果顯示隨著鋁濃度的升高,紅色熒光信號(hào)增強(qiáng),尤其是鋁濃度為2 mmol·L -1 時(shí),紅色熒光信號(hào)極強(qiáng)。這與Xiao和Liang(2022)針對(duì)水稻(Oryza sativa)的研究有相似發(fā)現(xiàn),可能是由于根尖細(xì)胞是鋁毒害的主要目標(biāo),金屬鹽AlCl3 的解離改變了細(xì)胞的離子環(huán)境,干擾了細(xì)胞的分裂,導(dǎo)致染色體畸變,從而損害了根尖細(xì)胞的活性(Zhang et al., 2014)。
植物吸收金屬離子后會(huì)有選擇地在體內(nèi)分布,以避免過(guò)量的金屬在某個(gè)組織或細(xì)胞成分內(nèi)集中積累損傷細(xì)胞功能,進(jìn)而影響植物的正常代謝(Hou et al., 2013;代亞萍,2017)。本研究發(fā)現(xiàn)根系中的鋁含量顯著高于莖葉(Plt;0.05),尤其是濃度為0.5 mmol·L -1 時(shí),差異極顯著(Plt;0.01)。紀(jì)雨薇(2016)分別對(duì)馬尾松根莖葉的鋁含量進(jìn)行測(cè)定,發(fā)現(xiàn)當(dāng)鋁濃度為0.8 mmol·L -1 時(shí),根系的鋁含量比莖葉的高,同樣這一現(xiàn)象也出現(xiàn)在山茶(劉元嬌,2020)、柑橘(Citrus reticulata) (Guo et al., 2017a, b)、白檀(Symplocos paniculata) (Schmitt et al., 2016)等植物中。Klug等(2015)研究表明根系是與可溶性鋁直接接觸的器官;Mukhopadyay等(2012)研究發(fā)現(xiàn)根系能夠吸收并固定住有毒金屬離子,限制有毒金屬離子向地上部分的轉(zhuǎn)運(yùn),從而減輕有毒金屬離子對(duì)地上部分的傷害。同時(shí)本研究還發(fā)現(xiàn)不同鋁濃度下根系間的鋁含量幾乎保持不變,這可能是因?yàn)楦祵?duì)鋁的吸收已趨于飽和(黃麗媛,2017;Jiang et al., 2022)。而超過(guò)一定濃度(≥1.0 mmol·L -1 )后,莖葉的鋁含量開(kāi)始增加,馬尾松幼苗生長(zhǎng)受到抑制,相比根系,莖葉可能對(duì)鋁脅迫更敏感。Mukhopadyay等(2012)研究顯示,鋁毒通過(guò)降低氣孔開(kāi)放使得氣孔導(dǎo)度減小,導(dǎo)致CO2 的固定量減少,葉片內(nèi)部光合作用降低,植物生長(zhǎng)受到抑制。
細(xì)胞壁被認(rèn)為是金屬離子進(jìn)入細(xì)胞的第一個(gè)[JP+2]屏障, 其對(duì)金屬離子的積累量主要與富含羧基的多糖的量有關(guān)(Taylor et al., 2000);當(dāng)超過(guò)細(xì)胞壁的承受范圍時(shí),金屬離子以無(wú)毒螯合物的形式儲(chǔ)存在對(duì)其不敏感的液泡內(nèi),以保護(hù)細(xì)胞內(nèi)部免受金屬離子的毒害(Taylor et al., 2000;Wu et al., 2013)。因此,植物的細(xì)胞壁和液泡對(duì)緩解鋁等金屬離子的毒害有重要作用。Gao等(2014)探究茶樹(shù)中鋁的分布情況,發(fā)現(xiàn)鋁主要分布于細(xì)胞壁,其次是液泡,分別占比70%和20%左右,在油茶(黃麗媛,2017)、山茶(劉元嬌,2020)中也出現(xiàn)類(lèi)似結(jié)果。本研究同樣發(fā)現(xiàn)不同濃度下鋁均主要分布于細(xì)胞壁和液泡中,分別位于40%~70%和15%~40%范圍內(nèi);高鋁處理下的鋁主要分布于細(xì)胞壁,morin染色驗(yàn)證了這一結(jié)果,其可以與細(xì)胞壁內(nèi)的鋁形成熒光復(fù)合物指示鋁的富集程度(Ahn, 2002;Riaz et al., 2019)。相較于細(xì)胞壁和液泡,細(xì)胞質(zhì)和細(xì)胞器內(nèi)則維持較低的鋁含量,由于細(xì)胞器和細(xì)胞質(zhì)的功能對(duì)鋁敏感,較低的鋁濃度保證了其功能的正常運(yùn)轉(zhuǎn)。
4 結(jié)論
馬尾松可通過(guò)調(diào)整體內(nèi)鋁的分配適應(yīng)鋁脅迫,進(jìn)入馬尾松體內(nèi)的鋁優(yōu)先沉積于根系,而細(xì)胞水平下的鋁則主要分布在細(xì)胞壁和液泡中,這有利于使莖葉和細(xì)胞質(zhì)、液泡中的鋁維持在較低水平,保護(hù)莖葉和細(xì)胞功能。以上結(jié)果為后續(xù)從亞細(xì)胞水平進(jìn)一步闡明馬尾松對(duì)鋁環(huán)境的適應(yīng)機(jī)制提供了理論基礎(chǔ)。
參考文獻(xiàn):
AHN SJ, 2002.Aluminium-induced growth inhibition is associated with impaired efflux and influx of H + "across the plasma membrane in root apices of squash (Cucurbita pepo) [J]. J Exp Bot, 53(376): 1959-1966.
BAO SD, 2000. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Publishing House: 239-240." [鮑士旦, 2000. 土壤農(nóng)化分析[M]. 第3版. 北京: 中國(guó)農(nóng)業(yè)出版社: 239-240.]
BLOOM PR, WEAVER RM, MCBRIDE MB, 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction[J]. Soil Sci Soc Am J, 42(5): 713-716.
CHEN SS, QI XY, FENG J, et al., 2022. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals[J]. Plant Physiol Biochem, 185: 268- 278.
CHEN YM, TSAO TM, LIU CC, et al., 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)) [J]. J Sci Food Agric, 91(6): 1111-1117.
C ˇ[KG-0.2mm]IAMPOROV M, "2002. Morphological and structural responses[JP2]" of plant roots to aluminium at organ, tissue, and cellular levels [J]. Biol Plant, 45: 161-171.
DAI YP, 2017. Study on the characteristics of aluminum enrichment in ferns and its influencing factors[D]. Shanghai: East China Normal University. [代亞萍, 2017. 蕨類(lèi)植物鋁富集特征及影響因素研究[D]. 上海: 華東師范大學(xué).]
FENG YM, LUO GR, QU M, et al., 2022. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips[J]. Plant Nutr Fert Sci, 28(10): 1893-1900. [馮英明, 羅功榮, 曲梅, 等, 2022. 硼對(duì)豌豆根尖細(xì)胞壁組分對(duì)鋁吸附解吸的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 28(10): "1893-1900.]
GAO HJ, ZHAO Q, ZHANG XC, et al., 2014. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. J Agric Food Chem, 62(10): 2313-2319.
GU XR, JIA H, WANG XH, et al., 2023. Differential aluminum tolerance and absorption characteristics in Pinus massoniana seedlings colonized with ectomycorrhizal fungi of Lactarius deliciosus and Pisolithus tinctorius[J]. J For Res, 34: 1523- 1533.
GU XR, NI YL, JIANG YN, et al., 2018. Effects of Laccaria bicolor on growth, uptake and distribution of nutrients and aluminum of Pinus massoniana seedlings under acid aluminum exposure[J]. Sci Silv Sin, 54(2): 170-178. [辜夕容, 倪亞蘭, 江亞男, 等, 2018. 接種雙色蠟?zāi)?duì)酸性鋁脅迫下馬尾松幼苗生長(zhǎng)、養(yǎng)分和鋁吸收與分布的影響[J]. 林業(yè)科學(xué), 54(2): 170-178.]
GUO P, LI Q, QI YP, et al., 2017a. Sulfur-mediated-alleviation of aluminum-toxicity in citrus grandis seedlings[J]. Int J Mol Sci, 18(12): 2570.
GUO P, QI YP, CAI YT, et al., 2018. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance[J]. Tree Physiol, 38(10): 1548-1565.
GUO P, QI YP, YANG LT, et al., 2017b. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two citrus species with different aluminum-tolerance[J]. Front Plant Sci, 8: 330.
HOU M, HU CJ, XIONG L, et al., 2013. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis[J]. Microchem J, 110: 575-578.
HUANG LY, 2017. Mechanisms of aluminum uptake and tolerance in Camellia oleifera Abel.[D]. Changsha: Central South University of Forestry and Technology. [黃麗媛, 2017. 油茶對(duì)鋁的吸收積累及其耐性機(jī)理研究[D]. 長(zhǎng)沙: 中南林業(yè)科技大學(xué).]
INOSTROZA-BLANCHETEAU C, RENGEL Z, ALBERDI M, et al., 2012. Molecular and physiological strategies to increase aluminum resistance in plants[J]. Mol Biol Rep, 39(3): "2069-2079.
JAISWAL SK, NAAMALA J, DAKORA FD, 2018. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia[J]. Biol Fertil Soils, 54(3): "309-318.
JI YW, 2016. Study on physiological response mechanism of Pinus massoniana Lamb. to aluminum stress[D]. Chongqing: Southwest University. [紀(jì)雨薇, 2016. 馬尾松鋁脅迫生理響應(yīng)機(jī)制[D]. 重慶: 西南大學(xué).]
JIANG DX, WU HH, CAI H, et al., 2022. Silicon confers aluminium tolerance in rice via cell wall modification in the root transition zone[J]. Plant Cell Environ, 45(6): "1765- 1778.
KIDD PS, LLUGANY M, POSCHENRIEDER C, et al., 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.) [J]. J Exp Bot, 52(359): 1339-1352.
KLUG B, KIRCHNER T, HORST W, 2015. Differences in aluminium accumulation and resistance between genotypes of the genus Fagopyrum[J]. Agronomy, 5(3): 418-434.
KOCHIAN LV, PINEROS MA, LIU J, et al., 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 66: 571- 598.
KOPITTKE PM, GIANONCELLI A, KOUROUSIAS G, et al., 2017. Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum[J]. Front Plant Sci, 8: 2189.
LI JA, 2021. Alleviation and regulation of exogenous organic acids on aluminum toxicity of Pinus massoniana[D]. Chongqing: Southwest University. [李峻安, 2021. 酸鋁環(huán)境下外源有機(jī)酸對(duì)馬尾松鋁毒害的緩解作用及調(diào)控機(jī)制[D]. 重慶: 西南大學(xué).]
LI ZY, LU WL, QIAN W, et al., 2022. Biological characteristics and response to aluminum stress of root border cells in Cunninghamia lanceolata and their response to aluminum stress[J]. Sci Silv Sin, 58(7): 73-81. [李舟陽(yáng), 陸文玲, 錢(qián)旺, 等, 2022. 杉木根邊緣細(xì)胞生物學(xué)特性及其對(duì)鋁脅迫的響應(yīng)[J]. 林業(yè)科學(xué), 58(7): 73-81.]
LIU WJ, XU FJ, LV T, et al., 2018. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants[J]. Sci Total Environ, 627: 462-469.
LIU YJ, 2020. Physiological and biochemical changes in response to aluminum treatment and aluminum accumulation in the Camellia japonica[D]. Chengdu: Sichuan Agricultural University. [劉元嬌, 2020. 山茶對(duì)鋁的生理生化響應(yīng)及體內(nèi)鋁累積效應(yīng)研究[D]. 成都: 四川農(nóng)業(yè)大學(xué).]
LIU YM, 2018. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University. [劉玉民, 2018. 酸鋁環(huán)境馬尾松根系分泌物特性及其緩解鋁毒的根際效應(yīng)[D]. 重慶: 西南大學(xué).]
LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing eucalyptus clones[D]. Nanning: Guangxi University.[陸明英, 2014. 鋁誘導(dǎo)不同耐鋁型速生桉無(wú)性系的根尖細(xì)胞生物學(xué)響應(yīng)機(jī)制研究[D]. 南寧: 廣西大學(xué).]
MUKHOPADYAY M, BANTAWA P, DAS A, et al., 2012. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 25(6): 1141-1154.
RIAZ M, YAN L, WU XW, et al., 2019. Boron supply maintains efficient antioxidant system, cell wall components and reduces aluminum concentration in roots of trifoliate orange[J]. Plant Physiol Biochem, 137: 93-101.
SCHMITT M, WATANABE T, JANSEN S, 2016. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species[J]. AoB Plants, 8: plw065.
SU YY, 2021. The physiological response mechanism of acetylcholine regulatingcadmium stress in tobacco (Nicotiana benthamiana)[D]. Xianyang: Northwest A amp; F University. [蘇蕓蕓, 2021. 乙酰膽堿調(diào)節(jié)煙草鎘脅迫響應(yīng)的生理機(jī)制[D]. 咸陽(yáng): 西北農(nóng)林科技大學(xué).]
SUN CL, LU LL, YU Y, et al., 2016. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 67(3): 979-989.
SUN LL, ZHANG MS, LIU XM, et al., 2020.Aluminium is essential for root growth and development of tea plants (Camellia sinensis)[J]. J Integr Plant Biol, 62(7): "984- 997.
TAYLOR GJ, MCDONALD-STEPHENS JL, HUNTER DB, et al., 2000. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina[J]. Plant Physiol, 123(3): 987-996.
WANG P, ZHOU SJ, LI A, et al., 2022. Influence of aluminum at low pH on the rhizosphere processes of Masson pine (Pinus massoniana Lamb) [J]. Plant Growth Regul, 97(3): "499-510.
WANG SL, WANG P, WANG CY, 2010. Changes in rhizosphere pH and exudation of organic acids of masson pine (Pinus massoniana) seedlings under aluminum stress[J]. J" Ecol "Rural Environ, 26(1): 87-91. [王水良, 王平, 王趁義, 2010. 鋁脅迫下馬尾松幼苗有機(jī)酸分泌和根際pH值的變化[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 26(1): "87- 91.]
WANG XH, 2020. Fine root morphology, hormone synthesis and secretion characteristics of ectomycorrhizal Pinus massoniana seedlings under acid aluminum stress[D]. Chongqing: Southwest University. [王小河, 2020. 菌根化馬尾松幼苗在酸性鋁脅迫下的細(xì)根形態(tài)結(jié)構(gòu)、激素合成與分泌特征[D]. 重慶: 西南大學(xué).]
WANG YX, LI KF, DING GJ, et al., 2020. Effects of aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedlings[J]. J" For Environ, 40(2): 119-125. [汪遠(yuǎn)秀, 李快芬, 丁貴杰, 等, 2020. 鋁對(duì)馬尾松菌根苗生長(zhǎng)及營(yíng)養(yǎng)元素吸收的影響[J]. 森林與環(huán)境學(xué)報(bào), 40(2): 119-125.]
WEIGEL HJ, JAGER HJ, 1980. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiol, 65(3): 480-482.
WU Z, MCGROUTHER K, CHEN D, et al., 2013. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress[J]. J Agric Food Chem, 61(20): 4715-4722.
XIAO HJ, WANG ZY, 2006. Advance on study of aluminum toxicity and plant nutrition in acid soils[J]. SW Chin J Agric Sci, 19(6): "1180-1188. [肖厚軍, 王正銀, 2006. 酸性土壤鋁毒與植物營(yíng)養(yǎng)研究進(jìn)展[J]. 西南農(nóng)業(yè)學(xué)報(bào), 19(6): 1180-1188.]
XIAO ZX, LIANG YC, 2022. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiol Biochem, 175: 12-22.
YAO HY, LIU YM, ZHANG SN, et al., 2018. Effects of exogenous citric acid on physiological characteristics of Pinus massoniana under aluminum stress[J]. Sci Silv Sin, 54(7): 155-164. [姚虹宇, 劉亞敏, 張盛楠, 等, 2018. 外源檸檬酸對(duì)鋁脅迫下馬尾松生理特性的影響[J]. 林業(yè)科學(xué), 54(7): "155-164.]
YAO HY, ZHANG SN, ZHOU WY, et al., 2020. The effects of exogenous malic acid in relieving aluminum toxicity in Pinus massoniana[J]. Int J Phytorem, 22(6): 669-678.
ZHANG HH, JIANG Z, QIN R, et al., 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana[J]. BMC Plant Biol, 14: 264.
ZHANG SN, LIU YM, LIU YM, et al., 2016. Impacts of aluminum stress on the growth and physiological characteristics of Pinus massoniana seedlings[J]. Acta Bot Boreal-Occident Sin, 36(10): 2022-2029. [張盛楠, 劉亞敏, 劉玉民, 等, 2016. 馬尾松幼苗生長(zhǎng)及生理特性對(duì)鋁脅迫的響應(yīng)[J]. 西北植物學(xué)報(bào), 36(10): 2022-2029.]
ZHANG X, LONG Y, HUANG JJ, et al., 2019. Molecular mechanisms for coping with Al toxicity in plants[J]. Int J Mol Sci, 20(7): 1551.
ZHAO TL, XIE GN, ZHANG XX, et al., 2013. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chin J Appl Ecol, 24(10): 3003-3011. [趙天龍, 解光寧, 張曉霞, 等, 2013. 酸性土壤上植物應(yīng)對(duì)鋁脅迫的過(guò)程與機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 24(10): 3003-3011.]
ZHOU ZX, 2001. Pinus massoniana in China[M]. Beijing: China Forestry Press: 14-17. [周政賢, 2001. 中國(guó)馬尾松[M]. 北京: 中國(guó)林業(yè)出版社: 14-17.]
ZHU GX, XIAO HY, GUO QJ, et al., 2017. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area[J]. Huanjing Kexue, 38(7): 3054-3060.
(責(zé)任編輯 鄧斯麗)
基金項(xiàng)目: "國(guó)家自然科學(xué)基金(31971572,31500090); 貴州省科學(xué)技術(shù)基金(黔科合基礎(chǔ)-ZK[2022]一般101); 貴州大學(xué)培育項(xiàng)目([2020]47)。
第一作者: 任何琴(1998—),碩士研究生,研究方向?yàn)橹参飳?duì)非生物脅迫適應(yīng),(E-mail)RenHQ@aliyun.com。
*通信作者: "孫學(xué)廣,博士,教授,研究方向?yàn)榱帜九c微生物互作,(E-mail)sunxg0518@aliyun.com。