摘 要: "為了探究喀斯特地區(qū)植物根系分泌物酶活性對(duì)根際土酶活性和養(yǎng)分的影響,我們測(cè)定了灌草叢、灌木林、灌喬林和喬木林4個(gè)植被恢復(fù)階段群落水平根系分泌物和根際土的β1,4葡萄糖苷酶(βG)、βN乙酰葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)和酸性磷酸酶(ACP)的活性與土壤碳氮磷的含量,并分析了它們之間的關(guān)系。結(jié)果表明:(1)根際土以及根系分泌物的4種酶活性在植被恢復(fù)后期顯著高于植被恢復(fù)前期;喬木林的根系分泌物酶活性C∶P和N∶P比值顯著高于其他植被恢復(fù)階段,而根際土酶活性這2個(gè)比值則正好相反。(2)相關(guān)分析顯示,根系分泌物酶活性與對(duì)應(yīng)的土壤酶活性呈顯著正相關(guān);相對(duì)于根系分泌物酶活性,土壤酶活性與相關(guān)養(yǎng)分的相關(guān)系數(shù)值更高。另外,根際土以及根系分泌物βG、NAG和LAP酶活性與根際土有機(jī)碳(SOC)和全氮(TN)呈顯著正相關(guān),根際土以及根系分泌物ACP酶活性與根際土速效磷(AP)呈顯著正相關(guān)。上述結(jié)果表明,植被恢復(fù)對(duì)根系分泌物酶和土壤酶活性的提高具有正向的作用,根系分泌物酶是土壤酶的有利補(bǔ)充,在碳氮磷養(yǎng)分循環(huán)過程中起到積極的促進(jìn)作用。綜上所述,調(diào)控根系分泌物分泌及其酶活性可能為喀斯特生態(tài)系統(tǒng)的植被恢復(fù)提供新的視角。
關(guān)鍵詞: 喀斯特生態(tài)系統(tǒng), 植被恢復(fù), 根系分泌物酶活性, 土壤酶活性, 土壤養(yǎng)分
中圖分類號(hào):Q948.12" "文獻(xiàn)標(biāo)識(shí)碼:A" "文章編號(hào)"10003142(2024)03046512
Effects of plant root exudates enzyme activities on rhizosphere soil enzyme activities and nutrients in karst areas
QIN Menger1, LI Zhen4, DOU Li1, LIANG Yueming3, ZHANG Wei2,WANG Jing5, PAN Fujing1*
( 1. College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, Guangxi, China; 2. Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China; 3. Key Laboratory of Karst Dynamics, Ministry of Natural and Resources amp; Guangxi Zhuang Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541000, Guangxi, China; 4. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; 5. College of Earth Sciences, Guilin University of Technology, Guilin 541000, Guangxi, China )
Abstract: "In order to explore the effects of enzyme activities from plant root exudates on rhizosphere soil enzyme activities and nutrients in karst areas, the activities of β1,4glucosidase ( βG), βNacetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acidic phosphatase (ACP) of fine root exudates and rhizosphere soils in four vegetation restoration stages, which are shrubgrassland, shrubland, shrubarbor forest and arbor forest, were measured. And, their relationships with soil carbon (C), nitrogen (N), phosphorus (P) contents were analyzed. The results were as follows: (1) The four enzyme activities of rhizosphere soils and root exudates were significantly higher in the late stage of vegetation restoration than that in the early stage of vegetation restoration. The enzyme activities C∶P to N∶P ratios of root exudates in arbor forest were significantly higher than those of other three stages, while the two parameters of rhizosphere soils were opposite. (2) Correlation analysis showed that the enzyme activities of root exudates were positively correlated with the corresponding soil enzyme activity. Compared with the enzyme activities of root exudates, the correlation between soil enzyme activity and related nutrients" became significantly stronger. In addition, the enzyme activities of βG, NAG and LAP in rhizosphere soils and root exudates were positively correlated with soil organic carbon (SOC) and total nitrogen (TN) in rhizosphere soil, while the enzyme activities of ACP in rhizosphere soils and root exudates were positively correlated with available phosphorus (AP) in rhizosphere soil. The above results indicate that vegetation restoration has positive effects on increasing enzyme activities of root exudates and soils. The enzymes of root exudates are the indispensable supplements for soils, and play an important role in promoting carbon, nitrogen and phosphorus nutrient cycling. To sum up, it will be that the regulation of root exudates and its enzyme activities may provide a new perspective for vegetation restoration in karst ecosystem.
Key words: karst ecosystem, vegetation restoration, root exudates enzyme activity, soil enzyme activity, soil nutrients
根系分泌物是植物在生長(zhǎng)發(fā)育過程中通過根部向周圍介質(zhì)釋放的有機(jī)化合物的總稱(VivesPeris et al., 2020)。根系分泌物作為植物-土壤-微生物之間物質(zhì)和能量交流媒介,在緩解環(huán)境脅迫、改善土壤結(jié)構(gòu)和活化土壤養(yǎng)分等方面均具有不可替代的作用(蔡銀美等,2021)。根系分泌物通常分為低分子量和高分子量化合物,其中高分子量化合物主要有胞外酶等(Wen et al., 2022)。受根系的生理活動(dòng)及環(huán)境脅迫的影響,植物根系往往會(huì)向其外部生長(zhǎng)環(huán)境分泌大量的酶,如酸性磷酸酶(張錫洲等,2007;Ma et al., 2018)。有文獻(xiàn)指出,與無根土壤相比,根際更高的酶活性不僅取決于微生物活性,還來自于根系(Zhang et al., 2019)。因此,植物根系分泌的酶被認(rèn)為是土壤中細(xì)胞外酶的重要來源(Egamberdieva et al., 2010)。土壤酶是指土壤中具有生物催化能力的一類蛋白質(zhì)(Jing et al., 2018),是土壤中最活躍的組分之一。土壤中的酶(根系和微生物等分泌的酶)作為土壤有機(jī)質(zhì)分解和養(yǎng)分循環(huán)的主要因素(Peng amp; Wang, 2016;Zi et al., 2018),表征土壤代謝過程(Gianfreda, 2015)。土壤中的酶還能加速有機(jī)質(zhì)分解,釋放土壤有機(jī)質(zhì)所固定的養(yǎng)分,為微生物和植物提供可利用性氮磷(孫悅等,2014)。有研究表明,植物根表面以及根系周圍的磷酸酶活性的作用比根際以外、吸附在黏粒上以及有機(jī)質(zhì)上的磷酸酶活性大(劉璐,2017),磷酸酶引起有機(jī)磷的礦化,進(jìn)而促進(jìn)可利用性磷的釋放。因此,根系分泌物中蘊(yùn)含的酶是土壤酶重要的一部分,在維持陸地生態(tài)系統(tǒng)碳氮磷養(yǎng)分平衡具重要作用。
中國西南喀斯特地區(qū)是我國主要的生態(tài)脆弱區(qū)(王克林等,2019)。由于其獨(dú)特的地上地下二元結(jié)構(gòu),土壤容易在光滑巖石表面蠕動(dòng),因此容易造成養(yǎng)分流失和石漠化發(fā)生(袁道先,2008;Zhang et al., 2011;Wang et al., 2019)。此外,由于該地區(qū)的巖溶系統(tǒng)以碳酸鹽巖為主,富含鈣,而鈣容易與有機(jī)質(zhì)和磷結(jié)合形成穩(wěn)定化合物,從而使氮磷等養(yǎng)分釋放的難度加大,氮磷可利用性變低(Hu et al., 2012;Hu amp; Lan, 2020)。研究顯示,喀斯特地區(qū)植被恢復(fù)早期土壤氮素供給較低,而植被恢復(fù)后期土壤磷素供給缺乏(梁月明等,2017)。有研究表明,植被恢復(fù)對(duì)恢復(fù)土壤質(zhì)量有顯著效果,能明顯改善土壤物理、化學(xué)和生物特性(NadalRomero et al., 2016;Van Hall et al., 2017)。在喀斯特地區(qū),很多研究主要注重于土壤酶對(duì)土壤養(yǎng)分的影響。隨著植被恢復(fù)的進(jìn)行,其養(yǎng)分限制差異性很可能影響不同恢復(fù)階段的植物根系釋放的酶種類及其數(shù)量變化,并影響土壤的養(yǎng)分循環(huán)。但是,目前還不清楚喀斯特地區(qū)植被恢復(fù)不同階段的根系分泌物中酶活性的變化特征,也不明確其對(duì)土壤酶活性和土壤養(yǎng)分有效性的影響。因此,探討根系分泌物酶和土壤酶的相互關(guān)系以及對(duì)土壤養(yǎng)分循環(huán)的作用和對(duì)加深喀斯特地區(qū)植被根系-土壤生態(tài)過程的認(rèn)識(shí)具有重要意義。
本文以灌草叢、灌木林、灌喬林和喬木林4個(gè)植被恢復(fù)階段為研究對(duì)象,測(cè)定土壤以及根系分泌物中β1,4葡糖苷酶(β1,4glucosidase,βG)、βN乙酰葡糖胺糖苷酶(βNacetylglucosaminidase,NAG)、亮氨酸氨基肽酶(leucine aminopeptidase,LAP)、酸性磷酸酶(acidic phosphatase,ACP)的活性以及土壤有機(jī)碳、全氮、全磷和有效磷含量,分析這些指標(biāo)的關(guān)系,探討喀斯特地區(qū)植物根系分泌物酶活性對(duì)根際土酶活性和養(yǎng)分的影響。研究結(jié)果有助于完善喀斯特地區(qū)根際生態(tài)酶的理論研究體系,為該地區(qū)植被生態(tài)系統(tǒng)恢復(fù)提供科學(xué)依據(jù)。
1 研究地區(qū)與方法
1.1 研究區(qū)概況和樣地設(shè)置
研究區(qū)位于廣西壯族自治區(qū)桂林市漓江流域的喀斯特生態(tài)系統(tǒng),地處經(jīng)緯度范圍為[JP2]109°36′50″—111°29′30″ E、24°15′23″—26°23′30″ N。該區(qū)屬亞熱帶季風(fēng)氣候,常年平均氣溫18.8 ℃,降水量1 915.2 mm,雨季高溫多雨,旱季低溫少雨,4月至8月降雨量占據(jù)全年降雨量的70%,主要集中于 6 月中旬至 7 月中旬(Hui et al., 2015)。
在桂林市漓江流域典型喀斯特地區(qū)選擇灌草叢、灌木林、灌喬林和喬木林4個(gè)植被恢復(fù)階段作為研究對(duì)象。其中,灌草叢和灌喬林位于靈川縣潮田鄉(xiāng)毛村的巖溶試驗(yàn)場(chǎng),灌木林位于桂林市七星區(qū)朝陽鄉(xiāng)的丫吉試驗(yàn)場(chǎng),喬木林位于陽朔縣白沙鎮(zhèn)冬瓜寨。研究區(qū)的土壤類型主要是由碳酸鹽巖發(fā)育形成的石灰?guī)r土。灌草叢的恢復(fù)年限為15年,優(yōu)勢(shì)種包括類蘆(Neyraudia reynaudiana)和五節(jié)芒(Miscanthus floridulu)等;灌木林的恢復(fù)年限為30年,優(yōu)勢(shì)種包括檵木(Loropetalum chinense)、印度崖豆藤 (Millettia pulchra)和龍須藤 (Bauhinia championii)等;灌喬林的恢復(fù)年限為45年,優(yōu)勢(shì)種包括檵木、火棘(Pyracantha fortuneana)、皺葉雀梅藤(Sageretia rugosa)和銀合歡(Leucaena leucocephala)等;喬木林的恢復(fù)年限為60年,優(yōu)勢(shì)種包括青岡(Quercus glauca)、茜樹(Aidia cochinchinensis)、椴樹(Tilia tuan)和圓葉烏桕(Sapium rotundifolium)等。
在4個(gè)植被恢復(fù)階段樣地中,選擇相同坡向的山坡,在中坡和下坡位置設(shè)置采樣樣方。在灌草叢、灌木林和灌喬林,每個(gè)階段設(shè)計(jì)6個(gè)面積為10 m × 10 m的樣方,在喬木林階段設(shè)計(jì)6個(gè)面積為20 m × 20 m的樣方。
1.2 樣品采集和處理
在2020年5月采集根際土和根系分泌物樣品。在每個(gè)植被恢復(fù)階段按照不同樣方隨機(jī)選擇6棵樹采集分泌物和挖取根際土,分別共計(jì)4 × 6=24個(gè)樣品。先采集根際土,再收集根系分泌物。采集的土樣采用抖落法(梁月明等,2017),在每棵樹的3個(gè)方位挖取0~20 cm土層完整的根系,先輕輕抖動(dòng)根系,抖落不含根系的大塊土壤,再采集附著在距離根0~5 mm的土壤作為根際土,混合均勻后代表該小區(qū)的土樣品。去除土壤中的石頭、植物根系和動(dòng)物殘?bào)w后,分成兩部分,一部分放入4 ℃冰箱保存,用于土壤酶活性的測(cè)定;另一部分過10 目篩,風(fēng)干后分別過 20 目和 100 目篩,用于土壤理化性質(zhì)的測(cè)定。
根系分泌物參考Phillips等(2008)的采集方法。在每棵樹已經(jīng)挖取了3處完整根系后,用鑷子將附著于根系表面的土塊等雜物除去,并用提前配制好的無碳營養(yǎng)液(成分包括0.1 mmol·L1磷酸二氫鉀、0.5 mmol·L1硝酸銨、0.2 mmol·L1硫酸鎂、0.2 mmol·L1硫酸鉀和0.3 mmol·L1硫酸鈣)沖洗根系后,將洗凈的根系埋回土中24 h,其作用是為了讓樹根有更多的時(shí)間從挖取和沖洗過程中可能受到的傷害或壓力中恢復(fù)過來。24 h后將根系挖出,每處根系用無碳營養(yǎng)液沖洗干凈。將 100 mL無菌注射器的尖端連接處用封口膜封緊避免溶液流出,注入 100 mL 無碳營養(yǎng)液,將洗凈的根系小心放入注射器中,用封口膜封住注射器針筒口,防止溶液露出及土壤等雜物進(jìn)入注射器,埋回土壤中收集。24 h后將注射器挖出,將連接處的根系剪斷,把根系放入干凈的信封中帶回實(shí)驗(yàn)室烘干稱量干重。記錄注射器的溶液讀數(shù)后,將同一棵樹的3處根系分泌物樣品用0.22 μm濾膜過濾到300 mL塑料瓶中,立即放入保溫箱中帶回實(shí)驗(yàn)室,放入-20 ℃冰箱保存。
1.3 樣品指標(biāo)測(cè)定
1.3.1 酶活性測(cè)定 采用微孔板熒光光度法測(cè)定βG、NAG、LAP和ACP酶活性。其中,βG酶的底物為 4methylumbelliferylβDglucoside;NAG酶的底物為 4methylumbelliferylNacetylβDglucosaminide;LAP酶的底物為L(zhǎng)leucine7amido4methylcoumarin hydrochloride;ACP酶的底物為4methylumbelliferylphosphate;標(biāo)準(zhǔn)物為4methylumbelliferone。
(1)土壤酶活性: 稱量0.4 g鮮土于100 mL滅菌帶蓋玻璃瓶中,加入 50 mL 滅菌冷卻后的醋酸鈉或碳酸氫鈉緩沖液,用高速勻漿機(jī)土壤懸液攪拌均勻,再用渦旋儀將懸濁液處于均漿狀態(tài)。用移液槍取土壤懸浮物200 μL到 96 孔微孔板,再分別取50 μL加入緩沖液、標(biāo)準(zhǔn)物和底物。將 96 孔微孔板置于 20 ℃黑暗條件下培養(yǎng),其中βG、NAG和ACP酶需要培養(yǎng)4 h,LAP酶需要培養(yǎng)18 h,培養(yǎng)后在每個(gè)孔里加入10 μL NaOH(1 mol·L1)溶液使其反應(yīng)終止,上酶標(biāo)儀測(cè)定熒光值,激發(fā)波長(zhǎng)365 nm,發(fā)射波長(zhǎng)450 nm。經(jīng)過負(fù)控制和淬滅校正后,酶活性結(jié)果用單位nmol·h1·g1表示(Pan et al., 2016;Chen et al., 2018)。
(2)根系分泌物酶活性: 根系分泌物在進(jìn)行過濾之后,用移液槍取根系分泌物液體200 μL到 96 孔微孔板,測(cè)定步驟和土壤酶活性測(cè)定方法一樣。
1.3.2 土壤理化性質(zhì) 土壤有機(jī)碳(soil organic carbon,SOC)采用 KCr2O7 + H2SO4氧化法測(cè)定。土壤全氮(total nitrogen,TN)采用紅外消煮法并用流動(dòng)注射儀(FIAstar 5000, FOSS, Hillerd, Denmark)測(cè)定(張偉等,2013)。土壤全磷(total phosphorus,TP)采用紅外消煮后以鉬藍(lán)顯色液進(jìn)行顯色,用紫外分光光度計(jì)進(jìn)行測(cè)定。土壤有效磷(available phosphorus,AP)用 NaHCO3溶液浸提后以鉬藍(lán)顯色液進(jìn)行顯色,用紫外分光光度計(jì)進(jìn)行測(cè)定(Liang et al., 2021)。
1.4 數(shù)據(jù)處理
βG與碳循環(huán)相關(guān),NAG和LAP與氮循環(huán)相關(guān),ACP與磷循環(huán)相關(guān)(Sinsabaugh amp; Shan, 2012)。將lnβG∶ln (NAG+LAP)作為酶活性C∶N,lnβG∶ln(ACP)作為酶活性C∶P和ln (NAG+LAP)∶ln(ACP)作為酶活性 N∶P(Sinsabaugh et al., 2009)。酶活性的比值能夠反映碳氮磷養(yǎng)分在土壤中循環(huán)的相對(duì)速率(Xu et al., 2017),揭示土壤養(yǎng)分循環(huán)的重要指標(biāo)。所以,處理數(shù)據(jù)的時(shí)候,酶活性C∶N比值通過lnβG∶ln (NAG+LAP)計(jì)算,酶活性C∶P比值通過lnβG∶ln(ACP)計(jì)算,酶活性N∶P比值通過ln (NAG+LAP)∶ln(ACP)計(jì)算。
用 Excel 2021對(duì)原始數(shù)據(jù)進(jìn)行統(tǒng)計(jì)和分析,通過SPSS 26.0對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(oneway ANOVA),比較不同植被恢復(fù)階段根系分泌物酶活性和土壤酶活性及其比值的差異, 采用Origin 2021軟件作圖。利用Pearson相關(guān)分析方法分析不同植被恢復(fù)階段根系分泌物酶活性和土壤酶活性及其比值與土壤養(yǎng)分的相關(guān)性。采用 Canoco 5軟件進(jìn)行RDA分析,分析根系分泌物酶活性和土壤酶活性及其比值受土壤環(huán)境因子的影響情況。
2 結(jié)果與分析
2.1 不同植被恢復(fù)階段土壤養(yǎng)分特征
不同植被恢復(fù)階段的土壤SOC和TP含量具有顯著性差異,灌草叢和灌木林的土壤TN和AP含量無顯著性差異(表1)。喬木林的土壤TN、TP和AP含量最高,灌喬林的土壤SOC含量最高,灌草叢的土壤SOC和TP含量最低,灌草叢和灌木林的土壤TN和AP含量最低??傮w而言,除了土壤SOC含量,土壤TN、TP和AP含量隨著植被的演替呈增加趨勢(shì)。
2.2 不同植被恢復(fù)階段根系分泌物和土壤的酶活性及其比值的變化特征
在不同植被恢復(fù)階段的土壤酶活性中, 喬木林的土壤LAP和ACP酶活性均顯著高于其他植被恢復(fù)階段,灌草叢的最低;喬木林和灌喬林的βG和NAG酶活性顯著高于灌木林和灌草叢(圖1:A)。在不同植被恢復(fù)階段的根系分泌物酶活性中,喬木林的根系分泌物βG、NAG、LAP和ACP酶活性均顯著高于其他植被恢復(fù)階段,灌草叢的βG和ACP酶活性最低(圖1:B)??傮w上,土壤酶活性顯著高于根系分泌物酶活性,植被恢復(fù)后期的植物根系分泌物酶活性和土壤酶活性均大于植被恢復(fù)早期的酶活性。
由圖2可知,在不同植被恢復(fù)階段的土壤酶活性比值中,灌木林的土壤酶活性C∶N比值顯著高于灌草叢;灌草叢的土壤酶活性C∶P和N∶P比值最高,而喬木林的C∶P和N∶P比值最低。在不同植被恢復(fù)階段的根系分泌物酶比值中,灌木林的根系分泌物酶活性C∶N比值顯著高于灌草叢;喬木林的根系分泌物酶活性C∶P和N∶P比值最高,灌草叢的C∶P最低,灌木林的N∶P比值最低。除了灌草叢之外,其他植被恢復(fù)階段的根系分泌物酶C∶N比值高于土壤酶活性C∶N比值;而根系分泌物酶活性C∶P和N∶P比值均低于土壤酶活性C∶P和N∶P比值。
2.3 根系分泌物酶活性和比值、土壤酶活性與土壤養(yǎng)分之間的相關(guān)性
相關(guān)分析顯示,根系分泌物βG、NAG、LAP和ACP酶活性分別與對(duì)應(yīng)的土壤βG、NAG、LAP和ACP酶活性呈顯著正相關(guān)(圖3)。根系分泌物βG、NAG和LAP與土壤SOC、TN、TP和AP呈顯著正相關(guān)(Plt;0.01)。根系分泌物ACP酶活性與土壤AP呈顯著正相關(guān)(Plt;0.05)。土壤βG、NAG、LAP和ACP酶活性與土壤SOC、TN、TP和AP呈顯著正相關(guān)(Plt;0.01)。根系分泌物酶活性C∶P和N∶P比值與土壤SOC、TN、TP和AP呈顯著正相關(guān)(Plt;0.01),而土壤酶活性C∶P和N∶P比值與土壤SOC、TN、TP和AP呈顯著負(fù)相關(guān)(Plt;0.01)(表2)。
以根系分泌物酶活性和土壤酶活性及其比值為響應(yīng)變量,以土壤因子為解釋變量進(jìn)行冗余分析(RDA),結(jié)果表明,第一軸解釋了變量的56.50%,第二軸解釋了變量的6.32%, AP和TP是植被恢復(fù)過程中影響根系分泌物和土壤的酶活性及比值的關(guān)鍵環(huán)境因子(圖4)。
3 討論
3.1 不同植被恢復(fù)階段根系分泌物酶活性和根際土酶活性及其比值的變化
在不同植被恢復(fù)階段中,植被恢復(fù)后期的根系分泌物酶活性均大于早期。這可能是植物提高養(yǎng)分有效性和吸收的一種策略。Zhang等(2015)研究表明,喀斯特地區(qū)植被恢復(fù)前期生態(tài)系統(tǒng)受氮素和磷素共同或其他營養(yǎng)物質(zhì)的限制,植被恢復(fù)后期生態(tài)系統(tǒng)受磷素的限制。本研究中,喬木林的ACP酶活性顯著高于其他植被恢復(fù)階段的酶活性,在土壤磷養(yǎng)分缺乏的情況下,根系是植物代謝最活躍的部分(Bell et al., 2014),植物為了獲取更高的礦質(zhì)養(yǎng)分含量,利用提高根系釋放胞外酶加速養(yǎng)分循環(huán)。
土壤4種酶活性與根系分泌物酶活性的變化規(guī)律相同,其在植被恢復(fù)后期大于早期。這種現(xiàn)象與植被階段植物物種和養(yǎng)分釋放差異有關(guān)(潘復(fù)靜等,2020a)。一般來說,植物樹種可通過凋落物分解來調(diào)節(jié)根際土養(yǎng)分而影響土壤酶活性(Snajdr et al., 2013)。我們?cè)谶M(jìn)行植被調(diào)查后發(fā)現(xiàn),恢復(fù)早期灌草叢階段主要優(yōu)勢(shì)種為類蘆和五節(jié)芒等,植物物種相對(duì)單一,歸還和可供分解的凋落物少且植物生產(chǎn)力低,土壤養(yǎng)分恢復(fù)緩慢,導(dǎo)致土壤酶含量低于其他植被恢復(fù)階段;而在植被恢復(fù)后期,喬木林主要優(yōu)勢(shì)種為青岡、椴樹和圓葉烏桕等,樹種類型為落葉喬木居多。落葉樹種主要以提高資源利用效率為主(蔣婷等,2021)且植被覆蓋下植物生物量大,土壤中枯枝落葉等豐富的凋落物的養(yǎng)分含量高,凋落物作為土壤微生物養(yǎng)分的主要來源,在一定在程度上刺激土壤微生物胞外酶的分泌(Wei et al., 2019),進(jìn)而提高了喬木林的土壤酶活性。本研究中, 相較于其他植被恢復(fù)階段,喬木林具有最低的土壤酶活性C∶P和N∶P比值,灌草叢具有最高的土壤酶活性C∶P和N∶P比值。這是因?yàn)槲⑸飳?duì)凋落物的分解作用是土壤中N素的主要來源(李明軍等,2018),植被恢復(fù)前期的凋落物層少,植被覆蓋度低,水源涵養(yǎng)能力弱,N損失更容易隨地下徑流移動(dòng)(Song et al., 2017)。然而,在植被恢復(fù)后期,磷對(duì)基巖風(fēng)化的鈣有很強(qiáng)的吸附作用(Vitousek et al., 2010),因此導(dǎo)致喬木林土壤酶活性C∶P和N∶P比值變低。綜上所述,植被的正向演替提高了根系分泌物酶活性和土壤酶活性。
3.2 根系分泌物酶活性對(duì)根際土酶活性的影響
本研究中,根系分泌物βG、NAG、LAP和ACP酶活性分別與對(duì)應(yīng)的土壤酶活性呈顯著正相關(guān),表明根系分泌物酶和土壤酶之間是相輔相成的,根系分泌物酶促進(jìn)了土壤酶活性的提高,從而進(jìn)一步提高土壤供給植物養(yǎng)分的能力。根際是土壤中根系周邊的狹小區(qū)域,受植物根系與微生物活動(dòng)的強(qiáng)烈影響(Jones et al., 2004),根系在一定程度下直接釋放酶進(jìn)入土壤中以補(bǔ)充土壤酶含量。Koranda等(2011)研究表明,和非根際土相比,根際土中蛋白水解酶活性增強(qiáng),潘復(fù)靜等(2020b)研究結(jié)果也顯示根際土βG和 NAG酶活性顯著高于非根際土。因此,在根際土中,植物根系釋放酶來增加根際土壤中酶的含量。
本研究結(jié)果顯示,相對(duì)于根系分泌物酶活性與相關(guān)養(yǎng)分的相關(guān)性,土壤酶活性與相關(guān)養(yǎng)分的相關(guān)性明顯變強(qiáng)了,說明根系分泌的酶提高了土壤酶從復(fù)雜有機(jī)物中釋放可利用的碳、氮和磷化[JP+2]合物的能力。肖曉明等(2014)研究表明,在缺磷條件下,澳洲堅(jiān)果幼苗的根系能分泌大量的酸性磷酸酶,活化有機(jī)磷,釋放出磷酸根離子,實(shí)現(xiàn)對(duì)土壤磷營養(yǎng)的改良。本研究中,該區(qū)域植被恢復(fù)前期受氮素限制嚴(yán)重,植被恢復(fù)后期受磷素限制嚴(yán)重,灌草叢的根系分泌物NAG分泌量高于灌木林,喬木林根系積極釋放ACP來增加土壤酶含量以應(yīng)對(duì)養(yǎng)分缺乏。因此,根系分泌物酶是作為土壤酶的一種有利補(bǔ)充,明顯提高了土壤酶的作用。
3.3 根系分泌物酶和根際土酶與土壤養(yǎng)分的關(guān)系
本研究中,土壤以及根系分泌物βG、NAG和LAP酶活性與土壤SOC和TN呈顯著正相關(guān)。有研究表明,土壤有機(jī)質(zhì)與水解酶之間關(guān)系密切,有機(jī)質(zhì)和土壤酶之間呈正相關(guān)關(guān)系(隋躍宇等,2009;湯茜等,2020)。土壤酶由微生物和植物根系分泌物產(chǎn)生(Liu et al., 2020),氮素是合成土壤酶的重要元素,TN能增加植被地下細(xì)根生物量,促進(jìn)根際微生物生長(zhǎng),致使土壤中相關(guān)酶活性增強(qiáng)(涂利華等,2012),說明在土壤酶參與養(yǎng)分循環(huán)過程中,土壤氮素正向釋放是因?yàn)槟苓m應(yīng)生境條件異質(zhì),一定程度上決定了微生物產(chǎn)生的酶數(shù)量(羅攀等,2017)。
本研究中,根系分泌物ACP與土壤AP呈顯著正相關(guān)。RDA分析顯示,AP是植被恢復(fù)過程中影響兩種酶活性的關(guān)鍵環(huán)境因子之一。這是因?yàn)楦礎(chǔ)CP分泌的增強(qiáng)是植物應(yīng)對(duì)磷素缺乏的生理可塑性機(jī)制,該酶參與了根際有機(jī)磷的活化利用(竹嘉妮等,2022),是從有機(jī)分子中獲取磷酸鹽離子的最重要的生物策略。ACP不僅由菌根和腐生真菌或細(xì)菌等微生物產(chǎn)生(Margalef et al., 2021),還由植物根系釋放??λ固厥峭寥懒姿毓?yīng)量比較稀缺的地區(qū)(潘復(fù)靜等,2011)。植物根系可直接吸收利用土壤中無機(jī)態(tài)可溶性磷酸鹽,而土壤中存在大量的磷酸酯、磷酸酐等有機(jī)磷卻無法被植物直接吸收(周夢(mèng)巖等,2021)。土壤有機(jī)磷的利用需要磷酸酶的水解,植物ACP的主要作用是分解土壤環(huán)境中的有機(jī)磷底物釋放出可以供植物直接吸收利用的無機(jī)磷,從而提高了土壤磷素的有效性(Miller et al., 2001;張燁,2014)。有研究結(jié)果表明,在低磷下植物根系外泌ACP活性均呈顯著增加的趨勢(shì)(梁霞等,2005;謝鈺容等,2005)。除此之外,土壤ACP酶與土壤AP呈顯著正相關(guān)。這可能是由于根系分泌物中的ACP增加了土壤中ACP的含量,進(jìn)一步促進(jìn)土壤有機(jī)磷的轉(zhuǎn)化過程,從而增加了土壤AP含量。Hu等(2019)研究表明,菌根化植物可以通過改善營養(yǎng)或擴(kuò)大根系釋放更多的酶,增強(qiáng)土壤中的磷酸酶活性是動(dòng)員土壤磷的重要作用之一。根產(chǎn)生的生態(tài)酶還能在根部死亡后進(jìn)入土壤(Rillig et al., 2007),會(huì)改變碳氮磷循環(huán)酶的水平。因此,根系分泌物酶是土壤養(yǎng)分循環(huán)的關(guān)鍵驅(qū)動(dòng)因素,植物根系釋放的酶能夠直接參與土壤養(yǎng)分元素的有效轉(zhuǎn)化過程,及時(shí)分泌胞外酶來獲取自身所需的營養(yǎng)物質(zhì)。
4 結(jié)論
(1)植被恢復(fù)對(duì)根系分泌物酶活性和土壤酶活性的影響顯著,植被的正向演替提高了土壤酶和根系分泌物的酶活性。(2)根系分泌物酶活性與對(duì)應(yīng)的土壤酶活性呈顯著正相關(guān),根系分泌物的酶活性提高了根際土中的酶活性。(3)植物根系分泌物酶活性與養(yǎng)分全量和有效性含量呈顯著正相關(guān)關(guān)系,說明根系分泌物酶活性對(duì)土壤養(yǎng)分有效性提高具有積極作用,調(diào)控根系分泌物分泌及其酶活性對(duì)喀斯特生態(tài)系統(tǒng)土壤養(yǎng)分有效性的提高具有重要價(jià)值。
參考文獻(xiàn):
BELL C, CARRILLO Y, BOOT CM, et al., 2014. Rhizosphere stoichiometry: are C∶N∶P ratios of plants, soils and enzymes conserved at the plant specieslevel?" [J].New Phytol, 201(2): 505-517.
CAI YM, ZHAO QX, ZHANG CF, 2021. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review [J]. J NE Agric Univ, 52(2): 79-86." [蔡銀美, 趙慶霞, 張成富, 2021. 低磷下植物根系分泌物對(duì)土壤磷轉(zhuǎn)化的影響研究進(jìn)展 [J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 52(2): 79-86.]
CHEN H, LI DL, XIAO KC, et al., 2018. Soil microbial processes and resource limitation in karst and nonkarst forests [J]. Funct Ecol, 32(5): 1400-1409.
EGAMBERDIEVA D, RENELLA G, WIRTH S, et al., 2010. Enzyme activities in the rhizosphere of plants [J]. Soil Biol Biochem, 22: 149-166.
GIANFREDA L, 2015. Enzymes of importance to rhizosphere processes [J]. J Soil Sci Plant Nat, 15(2): 283-306.
HU JL, CUI XA, WANG JH, et al., 2019. The nonsimultaneous enhancement of phosphorus acquisition and mobilization respond to enhanced arbuscular mycorrhization on maize (Zea mays L.)" [J]. Microorganisms, 7(12). DOI: 10.3390/microorganisms7120651.
HU L, SU Y, HE X, et al., 2012. Response of soil organic carbon mineralization in typical karst soils following the addition of 14Clabeled rice straw and CaCO3 [J]. J Sci Food Agr, 92(5): 1112-1118.
HU N, LAN JC, 2020. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China [J]. J Soils Sed, 20(3): 1264-1275.
HUI Y, LIANG JH, CHEN J, et al., 2015. Soil calcium speciation at different geomorphological positions in the Yaji karst experimental site in Guilin, China [J]. J Resour Ecol, 6(4): 224-229.
JIANG T, XIANG SS, FANG XR, et al., 2021. Gradient analysis of functional traits of different leaf habit plants in evergreen deciduous broadleaved mixed forest in karst hills of Guilin, Southwest China [J]. J Anhui Agric Sci, 49(8): 104-113." [蔣婷, 向珊珊, 方秀茹, 等, 2021. 桂林巖溶石山常綠落葉闊葉混交林不同葉習(xí)性植物功能性狀梯度分析 [J]. 安徽農(nóng)業(yè)科學(xué), 49(8): 104-113.]
JING X, CHEN X, XIAO W, et al., 2018. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a metaanalysis [J]. Pedobiologia, 71: 50-58.
JONES DL, HODGE A, KUZYAKOV Y, 2004. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytol, 163(3): 459-480.
KORANDA M, SCHNECKER J, KAISER C, et al., 2011. Microbial processes and community composition in the rhizosphere of European beech — The influence of plant C exudates [J]. Soil Biol Biochem, 43(3): 551-558.
LI MJ, YU LF, DU MF, et al., 2018. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages [J]. Acta Ecol Sin," 38(21): 7772-7781." [李明軍, 喻理飛, 杜明鳳, 等, 2018. 不同林齡杉木人工林植物-凋落葉-土壤C、N、P化學(xué)計(jì)量特征及互作關(guān)系 [J]. 生態(tài)學(xué)報(bào), 38(21): 7772-7781.]
LIANG X, LIU AQ, MA XQ, et al., 2005. The effect of phosphorus deficiency stress on activities of and acid phosphatase in different clones of Chinese fir [J]. J Plant Ecol, 29(1): 54-59." [梁霞, 劉愛琴, 馬祥慶, 等, 2005. 磷脅迫對(duì)不同杉木無性系酸性磷酸酶活性的影響 [J]. 植物生態(tài)學(xué)報(bào), 29(1): 54-59.]
LIANG YM, LI Q, PAN FJ, 2017. Ecological stoichiometric characteristics of Loropetalum chinense rhizosphere soils at different vegetation restoration stage in karst region [J]. Bull soil Water Conserv, 37(5): 123-127." [梁月明, 李強(qiáng), 潘復(fù)靜, 2017. 巖溶區(qū)不同恢復(fù)階段檵木根際土壤生態(tài)化學(xué)計(jì)量學(xué)特征 [J]. 水土保持通報(bào), 37(5): 123-127. ]
LIANG YM, PAN FJ, MA JM, et al., 2021. Longterm forest restoration influences succession patterns of soil bacterial communities [J]. Environ Sci Pollut Res, 28(16): 20598-20607.
LIU JB, CHEN J, CHEN GS, et al., 2020. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests [J]. PLoS ONE, 15(2). DOI: 10.1371/JOURNAL.PONE.0220599.
LIU L, 2017. Soil extracellular enzyme activities and their controlling factors in typical karst ecosystems, southwest China [D]. Guilin: Guangxi Normal University." [劉璐, 2017. 喀斯特典型生態(tài)系統(tǒng)土壤胞外酶活性及其影響因素 [D]. 桂林: 廣西師范大學(xué). ]
LUO P, CHEN H, XIAO KC, et al., 2017. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions [J]. Chin J Environ Sci, 38(6): 2577-2585." [羅攀, 陳浩, 肖孔操, 等, 2017. 地形、樹種和土壤屬性對(duì)喀斯特山區(qū)土壤胞外酶活性的影響 [J]. 環(huán)境科學(xué), 38(6): 2577-2585.]
MA XM, LIU Y, ZAREBANADKOUKI M, et al., 2018. Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology [J]. Biol Fert Soils, 54(7): 819-828.
MARGALEF O, SARDANS J, MASPONS J, et al., 2021. The effect of global change on soil phosphatase activity [J]. Glob Change Biol, 27(22): 5989-6003.
MILLER SS, LIU JQ, ALLAN DL, et al., 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorusstressed white lupin [J]. Plant Physiol, 127(2): 594-606.
NADALROMERO E, CAMMERAAT E, PEREZCARDIEL E, et al., 2016. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas [J]. Agr Ecosyst Environ, 228: 91-100.
PAN FJ, LIANG YM, ZHANG W, et al., 2016. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere [J]. Front Plant Sci, 7: 687.
PAN FJ, ZHANG W, WANG KL, et al., 2011. Litter C∶N∶P ecological stoichiometry charater of plant communities in typical karst peakcluster depression [J]. Acta Ecol Sin, 31(2): 335-343." [潘復(fù)靜, 張偉, 王克林, 等, 2011. 典型喀斯特峰叢洼地植被群落凋落物C∶N∶P生態(tài)化學(xué)計(jì)量特征 [J]. 生態(tài)學(xué)報(bào), 31(2): 335-343.]
PAN FJ, ZHANG W, LIANG YM, et al., 2020a. Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a karst ecosyst [J]. Chin J Ecol, 39(4): 1112-1120." [潘復(fù)靜, 張偉, 梁月明, 等, 2020a. 喀斯特不同植被恢復(fù)階段土壤有機(jī)酸季節(jié)變化與有效氮磷的關(guān)系 [J]. 生態(tài)學(xué)雜志, 39(4): 1112-1120.]
PAN FJ, WANG KL, ZHANG W, et al., 2020b. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin For Univ, 40(1): 209-217." [潘復(fù)靜, 王克林, 張偉, 等, 2020b. 喀斯特不同恢復(fù)階段植物根際土養(yǎng)分和酶活性的季節(jié)性變化和根際效應(yīng) [J]. 桂林理工大學(xué)學(xué)報(bào), 40(1): 209-217.]
PENG X, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China [J]. Soil Boil Biochem, 98: 74-84.
PHILLIPS RP, ERLITZ Y, BIER R, et al., 2008. New approach for capturing soluble root exudates in forest soils [J]. Funct Ecol, 22(6): 990-999.
[JP3]RILLIG MC, CALDWELL BA, WOSTEN HAB, et al., 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence [J]. Biogeochemistry, 85(1): 25-44.[JP2]
SINSABAUGH RL, HILL BH, SHAH JJF, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 462(7274): 795-798.
SINSABAUGH RL, SHAH JJF, 2012. Ecoenzymatic stoichiometry and ecological theory [J]. Ann Rev Ecol Evol Syst, 43(1): 313-343.
SNAJDR J, DOBIASOVA P, URBANOVA M, et al., 2013. Dominant trees affect microbial community composition and activity in postmining afforested soils [J]. Soil Biol Biochem, 56: 105-115.
SONG X, GAO Y, GREEN SM, et al., 2017. Nitrogen loss from karst area in China in recent 50 years: An insitu simulated rainfall experiments assessment [J]. Rangel Ecol, 7(23): 10131-10142.
SUI YY, JIAO XG, GAO CS, et al., 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039." [隋躍宇, 焦曉光, 高崇生, 等, 2009. 土壤有機(jī)質(zhì)含量與土壤微生物量及土壤酶活性關(guān)系的研究 [J]. 土壤通報(bào), 40(5): 1036-1039.]
SUN Y, XU XL, YAKOV K, 2014. Mechanisms of rhizosphere priming effects and their ecological significance [J]. J Plant Ecol, 38(1): 62-75." [孫悅, 徐興良, YAKOV K, 2014. 根際激發(fā)效應(yīng)的發(fā)生機(jī)制及其生態(tài)重要性 [J]. 植物生態(tài)學(xué)報(bào), 38(1): 62-75.]
TANG Q, DING FJ, ZHU SX, et al., 2020. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in karst region of Maolan [J]. Ecol Environ Sci," 29(10): 1943-1952." [湯茜, 丁訪軍, 朱四喜, 等, 2020. 茂蘭喀斯特地區(qū)不同植被演替階段對(duì)土壤化學(xué)性質(zhì)與酶活性的影響 [J]. 生態(tài)環(huán)境學(xué)報(bào), 29(10): 1943-1952.]
TU LH, HU HL, HU TX, et al., 2012. Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 23(8): 2129-2134." [涂利華, 胡紅玲, 胡庭興, 等, 2012. 模擬氮沉降對(duì)華西雨屏區(qū)光皮樺林土壤酶活性的影響 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 23(8): 2129-2134.]
VAN HALL RL, CAMMERAAT LH, KEESSTRA SD, et al., 2017. Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape [J]. Catena, 149: 836-843.
VITOUSEK PM, PORDER S, HOULTON BZ, et al., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogenphosphorus interactions [J]. Ecol Appl, 20(1): 5-15.
VIVESPERIS V, DEOLLAS C, GOMEZCADENAS A, et al., 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.
WANG K, ZHANG C, CHEN H, et al., 2019. Karst landscapes of China: patterns, ecosystem processes and services [J]. Landscape Ecol, 34(12): 2743-2763.
WANG KL, YUE YM, CHEN HS, et al., 2019. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecol Sin, 39(20): 7432-7440." [王克林, 岳躍民, 陳洪松, 等, 2019. 喀斯特石漠化綜合治理及其區(qū)域恢復(fù)效應(yīng) [J]. 生態(tài)學(xué)報(bào)," 39(20): 7432-7440.]
WEI L, RAZAVI BS, WANG W, et al., 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil [J]. Soil Biol Biochem, 135: 134-143.
WEN Z, WHITE PJ, SHEN J, et al., 2022. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytol, 233(4): 1620-1635.
XIAO XM, LIU JS, ZHOU C, et al., 2014. Difference of root exudates from macadamia seedlings under different phosphorus supply [J]. Chin J Trop Crop, 35(2): 261-265." [肖曉明, 劉軍生, 周程, 等," 2014. 不同磷水平下澳洲堅(jiān)果幼苗根系分泌物的差異 [J]. 熱帶作物學(xué)報(bào), 35(2): 261-265.]
XIE YR, ZHOU ZC, LIAO GH, et al., 2005. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Sci Silv Sin, 41(3): 58-62." [謝鈺容, 周志春, 廖國華, 等, 2005. 低磷脅迫下馬尾松種源酸性磷酸酶活性差異 [J]. 林業(yè)科學(xué), 41(3): 58-62.]
XU ZW, YU GR, ZHANG XY, et al., 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the NorthSouth Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 104: 152-163.
YUAN DX, 2008. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Acta Pratac Sin, (9): 19-25." [袁道先, 2008. 巖溶石漠化問題的全球視野和我國的治理對(duì)策與經(jīng)驗(yàn) [J]. 草業(yè)科學(xué), (9): 19-25.]
ZHANG W, WANG KL, LIU SJ, et al., 2013. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peakcluster depressions of South China [J]. Chin J Appl Ecol, 24(7): 1801-1808." [張偉, 王克林, 劉淑娟, 等, 2013. 喀斯特峰叢洼地植被演替過程中土壤養(yǎng)分的積累及影響因素 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 24(7): 1801-1808.]
ZHANG W, ZHAO J, PAN FJ, et al., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 391: 77-91.
ZHANG X, DIPPOLD MA, KUZYAKOV Y, et al., 2019. Spatial pattern of enzyme activities depends on root exudate composition [J]. Soil Biol Biochem, 133: 83-93.
ZHANG XB, BAI XY, HE XB, 2011. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China [J]. Carbonate Evaporite, 26(2): 149-153.
ZHANG XZ, LI TX, WANG YD, 2007. Relationship between growth environment and root exudates of plants: a review [J]. Chin J Soil Sci, 38(4): 785-789.nbsp; [張錫洲, 李廷軒, 王永東, 2007. 植物生長(zhǎng)環(huán)境與根系分泌物的關(guān)系 [J]. 土壤通報(bào), 38(4): 785-789.]
ZHANG Y, 2014. Molecular regulation of phosphate starvationinduced acid phosphatase activity [D]. Beijing: Tsinghua University." [張燁, 2014. 低磷脅迫誘導(dǎo)植物酸性磷酸酶的分子調(diào)控機(jī)制 [D]. 北京: 清華大學(xué).]
ZHOU MY, HE DM, LI YC, et al., 2021. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress [J]. Mol Plant Breed, 19(11): 3763-3770." [周夢(mèng)巖, 何冬梅, 李亞超, 等, 2021. 紫色酸性磷酸酶在植物響應(yīng)低磷脅迫中的作用研究進(jìn)展 [J]. 分子植物育種, 19(11): 3763-3770. ]
ZHU JN, HUANG H, DU Y, et al., 2022. The transgenerational effect of arbuscular mycorrhizal fungi on root phosphatase activity of host plant Medicago truncatula [J]. Chin J Ecol, 41(5): 912-918." [竹嘉妮, 黃弘, 杜勇, 等, 2022. 叢枝菌根真菌影響宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效應(yīng) [J]. 生態(tài)學(xué)雜志, 41(5): 912-918.]
ZI HB, HU L, WANG CT, et al., 2018. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow [J]. Eur J Soil Sci, 69(3): 429-438.
(責(zé)任編輯 周翠鳴)
基金項(xiàng)目: "國家自然科學(xué)基金(U20A2011,41907208,42261011,32271730); 廣西自然科學(xué)基金(2018GXNSFBA138012); 廣西科技基地和人才專項(xiàng)(桂科AD20325003)。
第一作者: 覃蒙爾(1998—),碩士研究生,主要從事喀斯特生態(tài)系統(tǒng)恢復(fù)機(jī)理研究,(Email)2423276689@qq.com。
*通信作者: "潘復(fù)靜,博士,副研究員,主要從事生態(tài)恢復(fù)及地上地下生態(tài)學(xué)研究,(Email)panfujing@glut.edu.cn。