摘 要: 植物細(xì)根養(yǎng)分生態(tài)化學(xué)計(jì)量特征是植被適應(yīng)土壤環(huán)境的一種策略。為了解喀斯特地區(qū)不同林地類型細(xì)根碳(C)氮(N)磷(P)的生態(tài)化學(xué)計(jì)量比值的季節(jié)變化及其影響因素,該文研究了喀斯特地區(qū)灌木林和喬木林活細(xì)根和死細(xì)根的C、N、P含量和比值及其與環(huán)境因子的關(guān)系。結(jié)果表明:(1)總體上喬木林兩類細(xì)根C、N、P含量高于灌木林,表明喬木物種細(xì)根對(duì)養(yǎng)分的吸收和儲(chǔ)存比灌木物種更強(qiáng)。另外,兩種林地類型活細(xì)根C含量顯著高于死細(xì)根(Plt;0.05),而活細(xì)根N、P含量則低于死細(xì)根。(2)兩種林地類型的兩類細(xì)根C含量在雨季均低于旱季;灌木林活細(xì)根N、P含量在雨季高于旱季,而喬木林相反。灌木林活細(xì)根C∶N、C∶P和N∶P比值在雨季均低于旱季;喬木林兩類細(xì)根的C∶N和C∶P比值在雨季高于旱季,而N∶P比值則是雨季低于旱季。雨季較低的活細(xì)根N∶P比值,表明灌木林和喬木林的植物在雨季的P限制程度較低。(3)兩種林地類型上坡兩類細(xì)根的C含量均高于中坡和下坡,而灌木林下坡N、P含量相對(duì)較高,喬木林中坡N、P含量相對(duì)較高;灌木林上坡兩類細(xì)根C∶N、C∶P、N∶P比值相對(duì)較高,喬木林下坡兩類細(xì)根的C∶N比值高于其他坡位而C∶P和N∶P比值是上坡高于其他坡位,表明兩種林地中的植物在上坡受P限制影響較強(qiáng),在中下坡受影響較弱。(4)冗余分析表明,林地類型、有效磷、季節(jié)是細(xì)根C、N、P養(yǎng)分含量及比值的主要影響因子,它們的單獨(dú)解釋量分別為18.8%、6.6%、6.5%。上述結(jié)果表明,在人工促進(jìn)植被恢復(fù)時(shí)應(yīng)考慮適當(dāng)?shù)牧值仡愋汀⒓竟?jié)以及坡位差異造成的N∶P比值變化的影響,以便加快喀斯特生態(tài)系統(tǒng)的恢復(fù)。
關(guān)鍵詞: 喀斯特生態(tài)系統(tǒng), 不同林地類型, 細(xì)根養(yǎng)分, 土壤養(yǎng)分, 生態(tài)化學(xué)計(jì)量
中圖分類號(hào):Q945" 文獻(xiàn)標(biāo)識(shí)碼:A" "文章編號(hào):1000-3142(2024)03-0452-13
Seasonal variation of ecological stoichiometric characteristics of C, N and P in fine roots from karst forest and its influencing factors
DOU Li1, ZHANG Wei2, QIN Menger1, LIANG Yueming3, PAN Fujing1*
( 1. Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental and Engineering, Guilin University of Technology, Guilin 541000, Guangxi, China; 2. Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China; 3. Key Laboratory of Karst Dynamics, Ministry of Natural and Resources amp; Guangxi Zhuang Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541000, Guangxi, China )
Abstract: "The ecological stoichiometry of fine root carbon (C), nitrogen (N), and phosphorus (P) is considered to reflect the strategies whereby plants adapt to the soil environment. In order to gain an understanding of the seasonal variation in fine root C∶N∶P ratios in different forest types of karst ecosystem, we measured the C, N, and P contents and ratios of living and dead fine roots in shrubland and arbor forest, as well as the influence of abiotic and biotic factors. The results were as follows: (1) C, N, and P contents in the fine roots of arbor forest" were higher than those of shrubland, thereby indicating that the fine roots of arbors" may by characterized by a stronger absorption and storage of nutrients than those of shrubs. In addition, the contents of C in living fine roots were significantly higher than those in dead fine roots (Plt;0.05), but N and P contents in living fine roots were lower than those in dead fine roots. (2) It was found that the contents of C in the living and dead fine roots of the two forest types were lower during the rainy season than during the dry season. The N and P contents of living fine roots of shrubs were higher during the rainy season than those in dry season, the opposite pattern was observed for the living fine roots of arbors. During the rainy season, the C∶N, C∶P, and N∶P ratios of living fine roots in shrubland were lower than the values obtained during the dry season. Conversely, the C∶N and C∶P ratios of the living and dead fine roots of arbors were higher during the rainy season than in the dry season, whereas the values for the N∶P ratio were lower during the rainy season than during the dry season. The lower N∶P ratios of rainy season" tended to indicate that plants in shrubland and arbor forest may be less P restricted during this season. (3) It was found that for both the living and dead fine roots of the two forest types, C contents were higher in trees growing on the upper slopes than in those growing on the middle and lower slopes, whereas the contents of N and P were higher in shrubs growing on the lower slopes and in arbors growing on the middle slopes. Furthermore, the C∶N, C∶P, and N∶P ratios of living and dead fine roots were found to be relatively higher in shrubs growing on the upper slopes. In the case of arbor forest, the C∶N ratios of living and dead fine roots in trees growing on the lower slopes were higher than other slopes, however" the C∶P and N∶P ratios in trees growing on the upper slopes were higher than those of trees growing at other slopes, indicating that trees under these two forest types were strongly influenced by P limitation in the upper slopes, but only weakly affected on the middle and lower slopes. (4) Redundancy analysis revealed that forest type, available phosphorus, and season were the main factors influencing the contents and ratios of C, N, and P nutrients in fine roots, and could explain 18.8%, 6.6%, and 6.5% of the observed variation, respectively. These findings indicate that the effects of changes in the N∶P ratio associated with differences in forest type, season, and slope should be taken into consideration when vegetation restoration is promoted, which will contribute to accelerating the restoration of karst ecosystems.
Key words: karst ecosystem, different forest types, fine root nutrients, soil nutrients, ecological stoichiometry
植物根系是地上部分與土壤連接的橋梁(Pan et al., 2022),龐大的根系不僅有利于土壤顆粒的固定、有效控制土壤侵蝕的發(fā)生以及發(fā)揮重要的水土保持功能(蘇樑等,2018),而且有利于調(diào)節(jié)碳(carbon, C)、氮(nitrogen, N)、磷(phosphorus, P)養(yǎng)分元素平衡以及促進(jìn)C、N、P在生態(tài)系統(tǒng)中的循環(huán)。細(xì)根是植物根系中直徑小于2 mm的部分(陳曉萍等,2018),其生產(chǎn)-死亡-分解循環(huán)周轉(zhuǎn)迅速,通過死亡和分解向土壤歸還養(yǎng)分的能力超過地上凋落物(Vogt et al., 1986;張小全和吳可紅,2001;魏鵬等,2013)。當(dāng)土壤養(yǎng)分發(fā)生匱乏、異質(zhì)性變化時(shí),細(xì)根可以通過調(diào)控生命周期、生態(tài)化學(xué)計(jì)量比值來適應(yīng)環(huán)境的變化,是響應(yīng)土壤環(huán)境變化最敏感的部位(Liu et al., 2014)。
生態(tài)化學(xué)計(jì)量學(xué)是一種研究多種化學(xué)元素含量及其平衡關(guān)系綜合有效的方法(賀金生和韓興國,2010;潘復(fù)靜等,2011)。細(xì)根C∶N∶P比值可用于表征植物對(duì)N、P養(yǎng)分的利用效率(熊坤等,2015;張曉龍等,2021),也可以表征植物生長限制性情況,即N∶P比值低于14受到氮限制,高于16受到P限制,介于14~16之間受到N、P共同限制(譚雪等,2022;鄭翔等,2022)。林地類型、季節(jié)、坡位等因子以及土壤養(yǎng)分全量和有效性變化會(huì)導(dǎo)致植物產(chǎn)生細(xì)根養(yǎng)分變化的適應(yīng)性策略調(diào)整(陳曉萍等,2018;張雪等,2022)。利用生態(tài)化學(xué)計(jì)量學(xué)理論,分析植物細(xì)根C、N、P含量及其比值特征有助于了解植物對(duì)外界環(huán)境的適應(yīng)能力和策略。但是,目前我們還未能清晰地了解喀斯特地區(qū)不同林地類型細(xì)根養(yǎng)分如何響應(yīng)環(huán)境的變化。
不同林地類型其物種組成、群落結(jié)構(gòu)等存在較大差異(劉帥楠等,2021),進(jìn)而造成土壤養(yǎng)分含量的差異(田寧寧等,2015)。而受到土壤養(yǎng)分的變化影響最直接的是根系,養(yǎng)分的限制也會(huì)體現(xiàn)在植物細(xì)根上(譚雪等,2022)。研究表明,季節(jié)變化導(dǎo)致的土壤養(yǎng)分含量的差異強(qiáng)烈影響植物根系養(yǎng)分的變化,李勝平和王克林(2016)對(duì)桂北草地研究中發(fā)現(xiàn),夏季與秋季土壤全氮、全磷、有效氮和有效磷含量相對(duì)高于其他季節(jié),進(jìn)而影響著細(xì)根C、N、P養(yǎng)分含量。當(dāng)然,季節(jié)變化與植物細(xì)根生長動(dòng)態(tài)變化具有協(xié)同性,如細(xì)根生物量和生長高峰均出現(xiàn)在雨季(Rufat amp; Dejong, 2001;陳光水等,2004;徐志堯等,2018)。所以,季節(jié)的變化影響了植物地上地下和土壤環(huán)境的特性。另外,影響土壤環(huán)境特性的因素還包括坡位等地形因素(余明等,2019)。在非喀斯特地區(qū)上坡土壤養(yǎng)分相對(duì)貧瘠(楊森霖等,2018),而在喀斯特地區(qū)卻出現(xiàn)土壤養(yǎng)分倒置現(xiàn)象,具體表現(xiàn)為上坡大于下坡(梁月明等,2017),從而影響植物對(duì)細(xì)根養(yǎng)分的分配以及細(xì)根對(duì)養(yǎng)分吸收利用最終造成不同坡位細(xì)根養(yǎng)分含量差異(秦艷等,2008;陳曉萍等,2018)。近年來諸多學(xué)者對(duì)土壤、植被乃至植物不同器官間生態(tài)化學(xué)計(jì)量特征進(jìn)行研究,何高迅等(2020)認(rèn)為植被類型與土壤C、N、P化學(xué)計(jì)量比有密切聯(lián)系,土壤C、N、P化學(xué)計(jì)量比的變化會(huì)影響植被物種組成(Bui amp; Henderson,2013),反過來植被也可以通過枯落物和根系影響土壤C、N、P養(yǎng)分循環(huán)從而影響土壤養(yǎng)分含量(Gao et al.,2014)。郭雯等(2021)發(fā)現(xiàn)植被不同器官間養(yǎng)分分配格局存在差異,是通過調(diào)節(jié)器官間C∶N∶P比來響應(yīng)外界環(huán)境變化且根的重要性非常高。
喀斯特地區(qū)石漠化嚴(yán)重,水土流失加劇,以致土地生產(chǎn)力下降,呂文強(qiáng)等(2016)和吳鵬等(2020)通過對(duì)植物地上部分,如葉片化學(xué)計(jì)量特征的研究來了解生境的養(yǎng)分限制狀況以及養(yǎng)分獲取效率,但植物地上部分對(duì)土壤環(huán)境變化的敏感度不如細(xì)根(郭雯等,2021)。因此,明晰細(xì)根養(yǎng)分在不同林地類型和季節(jié)間的變化、根系養(yǎng)分分配以及影響因素可以充分了解該地區(qū)植物根系適應(yīng)環(huán)境的機(jī)制。為了探究不同林地類型細(xì)根養(yǎng)分響應(yīng)環(huán)境變化的特征,我們采集了喀斯特地區(qū)灌木林和喬木林中植物細(xì)根及土壤樣品進(jìn)行分析,探討喀斯特地區(qū)植物細(xì)根C、N、P養(yǎng)分含量及比值在不同林地類型、季節(jié)、坡位的變化特征,揭示喀斯特地區(qū)不同林地類型細(xì)根在適應(yīng)季節(jié)和坡位等環(huán)境變化的響應(yīng)規(guī)律,為喀斯特地區(qū)生態(tài)恢復(fù)與管理提供科學(xué)的依據(jù)。
1 材料、研究區(qū)域與方法
1.1 研究區(qū)域
研究區(qū)地處我國廣西壯族自治區(qū)環(huán)江毛南族自治縣,包括中國科學(xué)院環(huán)江喀斯特生態(tài)系統(tǒng)觀測(cè)研究站(108°18′—108°19′ E、24°43′—24°44′ N)和木論國家級(jí)自然保護(hù)區(qū)(107°53′—108°05′ E、25°06′—25°12′ N)。該研究區(qū)為典型的喀斯特峰叢洼地且屬于典型的亞熱帶季風(fēng)氣候,年均氣溫19.9 ℃,極端低溫-5.2 ℃,極端高溫38.7 ℃,年均降雨量1 389.1 mm,降水豐富但季節(jié)分布不均,雨季(4—9月)降雨量占全年降雨量的70%以上(陳洪松等,2012),旱季為10月至次年3月。
中國科學(xué)院環(huán)江喀斯特生態(tài)系統(tǒng)觀測(cè)研究站所在地從1958年到1985年經(jīng)歷了頻繁的火燒和放牧,1985年所有居民外遷,退化系統(tǒng)才得以恢復(fù)。其典型景觀單元為峰叢洼地,研究區(qū)屬亞熱帶季風(fēng)氣候(宋同清等,2009),該研究區(qū)約70%的面積被灌木林覆蓋(潘復(fù)靜等,2020),優(yōu)勢(shì)植物有紅背山麻稈(Alchornea trewioides)、灰毛漿果楝(Cipadessa cinerascens)、鹽麩木(Rhus chinensis)和深紫木藍(lán)(Indigofera atropurpurea)等。
木論國家級(jí)自然保護(hù)區(qū)土地總面積190.2 hm2,森林覆蓋率達(dá)94.8%,是目前世界上喀斯特地區(qū)保存最完好、面積最大的原生林(潘復(fù)靜等,2011;張川等,2013)。優(yōu)勢(shì)植物有青岡櫟(Cyclobalanopsis glauca)、檵木(Loropetalum chinense)、野獨(dú)活(Miliusa balansae)、青檀(Pteroceltis tatarinowii)等(潘復(fù)靜等,2020)。
1.2 細(xì)根和土壤樣品采集及處理
2014年5月,在環(huán)江喀斯特生態(tài)系統(tǒng)觀測(cè)研究站和木論國家級(jí)自然保護(hù)區(qū)各建立了15個(gè)標(biāo)準(zhǔn)樣方(10 m × 10 m,每個(gè)坡位5個(gè)樣地),布設(shè)在上、中、下3個(gè)坡位,每個(gè)坡位5個(gè)樣方,樣方間隔大于10 m。
在本研究中,用連續(xù)根鉆法連續(xù)1年研究細(xì)根的季節(jié)動(dòng)態(tài)(宋日欽等,2010)。2014年5月至2015年5月,每兩個(gè)月通過連續(xù)根鉆法對(duì)細(xì)根進(jìn)行一次采樣(采樣時(shí)間分別為2014年5月、7月、9月、11月和2015年1月、3月、5月,雨季為4月到9月,旱季為10月至次年3月),采樣深度為10 cm。每個(gè)樣方分為4個(gè)子樣方(5 m × 5 m),用內(nèi)徑10 cm × 內(nèi)管長10 cm的根鉆采集土樣并混合成一個(gè)樣本。總共收集了210個(gè)樣本,即2種林地類型 × 15個(gè)樣方 × 7次采樣。
采集的土芯樣品在水中浸泡24 h后將土壤沖洗干凈。按照根系直徑為小于等于2 mm的標(biāo)準(zhǔn)挑選出細(xì)根(施濟(jì)普和唐建維,2002),接著根據(jù)細(xì)根的顏色、外形、彈性、根皮與中柱分離的難易程度區(qū)分活細(xì)根和死細(xì)根(Ostonen et al., 2005)。每個(gè)細(xì)根樣品在65 ℃下干燥至少48 h后研磨并過0.154 mm篩孔。用于分析的活細(xì)根和死細(xì)根樣本量共420個(gè)。
2014年5月,每個(gè)樣方的4個(gè)子樣方采集10 cm深的土樣,混合成一個(gè)樣本,風(fēng)干、研磨并過2 mm篩網(wǎng)以備分析其理化特征。
1.3 細(xì)根及土壤樣品指標(biāo)測(cè)定
用元素分析儀(Vario MAX CN, Elementar, Germany)測(cè)定細(xì)根的C含量和N含量;用H2SO4+H2O2消煮細(xì)根后,鉬銻抗比色分光光度法測(cè)定P含量(潘復(fù)靜等,2011)。
土壤全氮(total nitrogen, TN)采用凱氏定氮法并用流動(dòng)注射儀(FIAstar 5000, FOSS, HiI1erd, Denmark)測(cè)定;土壤有效氮(available nitrogen, AN)采用堿解擴(kuò)散法測(cè)定;土壤全磷(total phosphorus, TP)加NaOH后放入馬弗爐高溫消煮,H2SO4+HCl清洗后以鉬藍(lán)顯色液顯色,用分光光度計(jì)進(jìn)行測(cè)定;土壤有效磷(available phosphorus, AP)用NaHCO3溶液浸提后,顯色和測(cè)定步驟與TP相同(鮑士旦,2000)。
1.4 數(shù)據(jù)處理和分析方法
用Excel 2013和SPSS 26.0軟件對(duì)測(cè)定的原始數(shù)據(jù)進(jìn)行處理,各項(xiàng)指標(biāo)在分析前進(jìn)行正態(tài)分布檢驗(yàn),采用單因素方差分析法(one-way ANOVA)和最小顯著差異法(least signifcant difference, LSD)分析兩種林地類型土壤養(yǎng)分和細(xì)根養(yǎng)分的含量差異,利用皮爾遜(Pearson)對(duì)兩種林地類型細(xì)根C、N、P含量及其化學(xué)計(jì)量特征與土壤養(yǎng)分之間進(jìn)行相關(guān)性分析。利用冗余分析(redundancy analysis, RDA)方法分析土壤養(yǎng)分與細(xì)根養(yǎng)分含量及其化學(xué)計(jì)量比之間的關(guān)系,再運(yùn)用方差分解分析(variance partitioning analysis, VPA)方法分析環(huán)境因子對(duì)細(xì)根養(yǎng)分含量及其化學(xué)計(jì)量比差異的貢獻(xiàn)率。
2 結(jié)果與分析
2.1 不同林地類型土壤養(yǎng)分特征
由圖1可知,土壤TN和AN含量在灌木林與喬木林之間存在顯著性差異(Plt;0.05),而土壤TP和AP含量在灌木林與喬木林之間的差異不顯著。TN∶TP比值和AN∶AP比值在灌木林與喬木林之間的差異不顯著。從灌木林到喬木林,土壤TN、AN和TP含量及TN∶TP、AN∶AP比值增加,AP含量降低。
2.2 林地類型對(duì)細(xì)根C、N、P含量及其化學(xué)計(jì)量特征的影響
兩種林地類型下活細(xì)根C含量均顯著高于死細(xì)根C含量(Plt;0.05,圖2:a),而活細(xì)根N、P含量卻小于死細(xì)根N、P含量(圖2:b、c)。喬木林兩類細(xì)根C、N、P含量以及N∶P比值均大于灌木林且細(xì)根N含量在兩種林型間差異顯著(Plt;0.05),而C∶N、C∶P比值均小于灌木林。
2.3 季節(jié)對(duì)細(xì)根C、N、P含量及其化學(xué)計(jì)量特征的影響
灌木林,雨季兩類細(xì)根C含量(448.70、412.98 g·kg-1)低于旱季兩類細(xì)根C含量(457.99、422.22 g·kg-1)(圖2:a);雨季活細(xì)根N、P含量(14.24、1.22 g·kg-1)高于旱季活細(xì)根N、P含量(14.16、1.15 g·kg﹣1),而死細(xì)根N、P含量相反(圖2:b、c)。
雨季活細(xì)根養(yǎng)分計(jì)量比均小于旱季活細(xì)根養(yǎng)分計(jì)量比,而雨季死細(xì)根C∶P、N∶P比(314.70、13.87)大于旱季死細(xì)根C∶P、N∶P比(294.20、12.61)且死細(xì)根N∶P比的差異顯著(Plt;0.05)(圖2:e、f)。
喬木林中,雨季兩類細(xì)根養(yǎng)分均小于旱季(圖2:a、b、c)且2個(gè)季節(jié)下細(xì)根N含量差異顯著(Plt;0.05);雨季、死細(xì)根的C∶N和C∶P比(21.97和391.49、20.36和304.91)均大于旱季活細(xì)根、死細(xì)根的C∶N和C∶P比(21.30和361.54、17.72和274.48)(圖2:d、e),而N∶P比恰恰相反(圖2:f)。
2.4 坡位對(duì)細(xì)根C、N、P含量及其化學(xué)計(jì)量特征的影響
灌木林中,從上坡到下坡活細(xì)根和死細(xì)根C含量逐漸降低(圖3:a);下坡活細(xì)根和死細(xì)根N、P含量高于其他兩個(gè)坡位(圖3:b、c);上坡和中坡的活細(xì)根和死細(xì)根C∶N、C∶P比顯著大于下坡(Plt;0.05;圖3:d、e);活細(xì)根和死細(xì)根N∶P比在中坡最低(圖3:f)。
喬木林中,上坡活細(xì)根和死細(xì)根C含量大于其他兩個(gè)坡位(圖3:a);中坡活細(xì)根和死細(xì)根N、P含量高于其他兩個(gè)坡位(圖3:b、c);下坡活細(xì)根和死細(xì)根C∶N比高于其他兩個(gè)坡位(圖3:d);上坡活細(xì)根和死細(xì)根C∶P、N∶P比顯著高于其他兩個(gè)坡位(Plt;0.05;圖3:e、f)。
2.5 細(xì)根C、N、P含量及其生態(tài)化學(xué)計(jì)量比與土壤養(yǎng)分的聯(lián)系
活細(xì)根和死細(xì)根N含量與土壤TN呈顯著正相關(guān)(Plt;0.05),活細(xì)根N含量與土壤AP呈顯著負(fù)相關(guān)(Plt;0.01)。死細(xì)根N含量與活細(xì)根N、P含量呈顯著正相關(guān)(Plt;0.01),活細(xì)根的N含量與P含量呈顯著正相關(guān)(Plt;0.01);活細(xì)根和死細(xì)根N含量、活細(xì)根P含量與活細(xì)根、死細(xì)根N∶P比呈顯著正相關(guān)(Plt;0.01),與活細(xì)根、死細(xì)根C∶N比呈顯著負(fù)相關(guān)(Plt;0.01)(表1)。
RDA分析和方差分解分析表明,細(xì)根C、N、P含量及其比值的變化主要受到林地類型(18.8%的單獨(dú)解釋量,F(xiàn)=7.933 8,P=0.001)、有效磷(6.6%的單獨(dú)解釋量,F(xiàn)=3.278 4,Plt;0.05)和季節(jié)的影響(6.5%的單獨(dú)解釋量,F(xiàn)=2.504 8,Plt;0.05)(圖4)。
3 討論
3.1 林地類型對(duì)細(xì)根養(yǎng)分含量及其計(jì)量比的影響
喬木林活細(xì)根和死細(xì)根C、N、P含量和N∶P比值高于灌木林,而C∶N和C∶P比值低于灌木林。廖逸寧和郭素娟(2022)研究表明土壤TN、TP含量的提高有利于促進(jìn)細(xì)根養(yǎng)分的吸收。本研究發(fā)現(xiàn),喬木林土壤TN、TP、AN含量均高于灌木林且喬木林可能對(duì)養(yǎng)分的吸收能力高于灌木林,因此說明喬木林細(xì)根養(yǎng)分高于灌木林。灌木林細(xì)根N∶P比小于14,細(xì)根生長主要受到N限制,可能是灌木細(xì)根P含量相對(duì)較高,導(dǎo)致細(xì)根N∶P比降低,進(jìn)而表現(xiàn)為N限制;喬木林(N∶P>16)受到P限制,因喬木林土壤N含量相對(duì)于灌木林更高且P的供應(yīng)量低于N,同時(shí)細(xì)根對(duì)N、P養(yǎng)分吸收不同步(郭潤泉等,2018),導(dǎo)致N含量高于P含量,N∶P比升高,最終造成P限制更加嚴(yán)重,也有可能是因生長而產(chǎn)生的稀釋作用使細(xì)根P含量相對(duì)較低(問宇翔等,2022)。相關(guān)性分析表明細(xì)根C含量與土壤養(yǎng)分沒有顯著相關(guān)性,這是由于C是植物結(jié)構(gòu)性元素,穩(wěn)定性強(qiáng),不直接參與生產(chǎn)活動(dòng)(胡歡甜等,2018)。同時(shí),本研究中活細(xì)根N含量與土壤TN呈顯著正相關(guān),活細(xì)根N含量及活細(xì)根P含量與土壤AP呈顯著負(fù)相關(guān),因此影響細(xì)根C、N、P化學(xué)計(jì)量比的主要因素是N、P,而灌木林細(xì)根N、P含量小于喬木林細(xì)根N、P含量,所以造成灌木林細(xì)根C∶N、C∶P比大于喬木林。結(jié)合冗余分析結(jié)果可知,林地類型是細(xì)根C、N、P養(yǎng)分及其化學(xué)計(jì)量比最主要的影響因子,其影響機(jī)制可能是喬木物種細(xì)根對(duì)養(yǎng)分的吸收利用可能比灌木物種更強(qiáng)。相較于灌木林,喬木林群落物種豐富度增加(楊華斌等,2009),地表凋落物的輸入量和地下根系生物量也因此增加,進(jìn)而改善土壤質(zhì)量(孫彩麗等,2021),而細(xì)根對(duì)土壤環(huán)境變化敏感,最終更利于促進(jìn)細(xì)根對(duì)養(yǎng)分的吸收與儲(chǔ)存。
3.2 季節(jié)對(duì)細(xì)根養(yǎng)分含量及其計(jì)量比的影響
在雨季,兩種林地類型活細(xì)根和死細(xì)根C含量以及喬木林兩類細(xì)根和灌木林死細(xì)根的N、P含量均小于旱季,而灌木林的活細(xì)根N、P含量大于旱季;灌木林中活細(xì)根C、N、P化學(xué)計(jì)量比雨季小于旱季;喬木林中雨季活細(xì)根和死細(xì)根C∶N、C∶P比大于旱季,而雨季N∶P比小于旱季。研究區(qū)雨熱同季,雨季雨量充足,氣溫高,植物生長旺盛、生命力相對(duì)更強(qiáng)(鄧彭艷等,2010),因而C的分配格局易發(fā)生變化,更多的C用于維持植物地上部分的生長繁殖(Pregitzer, 2003;李旭等,2021),導(dǎo)致細(xì)根C含量雨季低于旱季。雨季灌木林處于生長旺盛階段, 需要大量的營養(yǎng)元素,而死細(xì)根可能在衰亡前將部分養(yǎng)分轉(zhuǎn)移回體內(nèi)為植物生長提供養(yǎng)分(張小全和吳可紅,2001),造成雨季死細(xì)根N、P含量低于旱季。C在植物體內(nèi)含量相對(duì)較高,變異程度相對(duì)較小,不會(huì)成為植物生長的限制元素(牛得草等,2011)且相關(guān)性分析表明細(xì)根C含量與細(xì)根N、P養(yǎng)分及化學(xué)計(jì)量比間沒有顯著相關(guān)性。因此,C∶N、C∶P的變化主要受N和P元素影響,而本研究中灌木林活細(xì)根N、P含量在雨季大于旱季進(jìn)而導(dǎo)致灌木林雨季活細(xì)根C∶N、C∶P比小于旱季。與灌木林不同,喬木林活細(xì)根N、P養(yǎng)分卻是雨季小于旱季,一方面會(huì)與物種組成不同以及植被生長有關(guān),喬木林相較于灌木林物種豐富度增加,細(xì)根生物量相對(duì)更多(楊華斌等,2009;杜有新等,2010;王韋韋等,2014),而雨季是細(xì)根生物量的生長高峰(Rufat amp; Dejong et al., 2001;陳光水等,2004),更多的細(xì)根生物量會(huì)稀釋了活細(xì)根中N、P養(yǎng)分元素進(jìn)而造成雨季喬木林活細(xì)根N、P養(yǎng)分較低;另一方面可能是兩種林型在旱季對(duì)水分脅迫的響應(yīng)機(jī)制不同,灌木林淺根系植物較多主要利用淺層土壤水(黃甫昭等,2021),而在喬木林中有較多深根系植物以及淺根系植物,除了利用淺層土壤水還能利用深根提水供應(yīng)淺根植物(陳洪松等,2013;陳日升等,2022),更有利于根系養(yǎng)分的吸收,加上在旱季時(shí)N、P養(yǎng)[JP]分元素可能從衰亡的細(xì)根轉(zhuǎn)移到活細(xì)根中,導(dǎo)致活細(xì)根養(yǎng)分元素富集而死細(xì)根養(yǎng)分相對(duì)貧乏(Tripathi et al., 1999),最終致使喬木林雨季活細(xì)根C∶N、C∶P比大于旱季。Terzaghi等(2013)研究表明,細(xì)根C∶N、C∶P比通常反映細(xì)根周轉(zhuǎn)能力,細(xì)根C∶N、C∶P比越大,細(xì)根周轉(zhuǎn)越慢。因此,灌木林在雨季周轉(zhuǎn)速率大于旱季,而喬木林卻是旱季周轉(zhuǎn)速率大于雨季。N∶P可作為對(duì)生產(chǎn)力起限制性作用的營養(yǎng)元素的指標(biāo)(賀合亮等,2017),雨季灌木林和喬木林活細(xì)根N∶P比均小于旱季活細(xì)根N∶P比,因此兩種林地類型在雨季受到P限制程度較低。綜上所述,季節(jié)變化帶來降水、氣溫等變化,而不同植被不同部位對(duì)外界環(huán)境變化的響應(yīng)度不同,細(xì)根作為植被地下部分最敏感的部位積極響應(yīng)外界環(huán)境變化調(diào)控養(yǎng)分循環(huán),進(jìn)而影響自身C、N、P養(yǎng)分含量及化學(xué)計(jì)量比。
3.3 坡位對(duì)細(xì)根養(yǎng)分含量及其計(jì)量比的影響
兩種林地類型上坡細(xì)根C含量大于其他2個(gè)坡位,灌木林下坡細(xì)根N、P含量和喬木林中坡細(xì)根N、P含量比其他坡位高,而灌木林中坡及喬木林下坡細(xì)根N∶P比值比其他坡位低。坡位作為重要的地形因子,影響著水熱條件、土壤養(yǎng)分等變化且與植物生長密切相關(guān),間接影響植物細(xì)根養(yǎng)分(樊月等,2019)。上坡地表徑流少,土壤保水能力差(張繼光等,2010),為提高根系保水能力,植物會(huì)增加對(duì)根系中碳的分配比重,以維持根系的正常生理生態(tài)功能(羅海斌等,2020),最終造成兩種林地類型上坡細(xì)根C含量大于下坡。同時(shí),相關(guān)性分析表明,細(xì)根C含量與細(xì)根C、N、P化學(xué)計(jì)量比沒有顯著相關(guān)性,因而影響細(xì)根化學(xué)計(jì)量比的主要元素就是N、P。對(duì)此造成不同林地類型細(xì)根N、P養(yǎng)分及化學(xué)計(jì)量比在坡位上的差異可能有以下2個(gè)原因: (1)環(huán)境因子(土壤養(yǎng)分等)的空間異質(zhì)性。西南喀斯特地區(qū)土壤養(yǎng)分含量出現(xiàn)上坡大于下坡的倒置現(xiàn)象(張偉等,2006;劉璐等,2010;梁月明等,2017),下坡由于土壤養(yǎng)分相對(duì)貧瘠,植物向細(xì)根分配的養(yǎng)分比例反而適當(dāng)增加(蔡銀美等,2022),對(duì)養(yǎng)分的利用率更高(曾昭霞等,2015),造成灌木林下坡細(xì)根N、P含量相對(duì)較高。灌木林上坡細(xì)根P含量均低于其他坡位,從而致使它們的細(xì)根C∶P比高于其他坡位;細(xì)根N含量下坡高于其他兩個(gè)坡位,導(dǎo)致C∶N比相對(duì)低于其他2個(gè)坡位;同時(shí),中坡細(xì)根N∶P比值低于其他坡位,說明灌木林中坡相對(duì)于其他坡位受到P限制較弱。(2)生物因子的空間異質(zhì)性以及人類活動(dòng)。喬木林中坡群落多樣性高、群落結(jié)構(gòu)健全、受人為干擾強(qiáng)度?。≒eng et al., 2012),因此根系相對(duì)發(fā)達(dá)、根系生物量較大、植被覆蓋率以及凋落物的積累和覆蓋度相也對(duì)較高(劉欣等,2016),以致土壤肥力水平較高,更有利于細(xì)根對(duì)養(yǎng)分的吸收與貯存,使得喬木林中坡細(xì)根N、P養(yǎng)分高于其他兩個(gè)坡位。同時(shí),喬木林上坡細(xì)根N含量高于下坡,而細(xì)根P含量相反,造成下坡細(xì)根N∶P比值低于其他坡位,因此下坡相對(duì)于其他坡位受到P限制的程度低。由此可見,由于各坡位環(huán)境與生物因子以及人為活動(dòng)的干擾,直接或間接地影響各坡位上細(xì)根對(duì)養(yǎng)分的吸收,造成坡位細(xì)根養(yǎng)分及化學(xué)計(jì)量比存在差異。
4 結(jié)論
喬木林相較于灌木林細(xì)根養(yǎng)分含量更高,而C∶N和C∶P比值低于灌木林,表明喬木物種細(xì)根對(duì)N、P養(yǎng)分的吸收與儲(chǔ)存能力可能更強(qiáng),同時(shí)灌木林細(xì)根N∶P比低于喬木林,表明喬木林受到的P限制程度更大。
灌木林中雨季活細(xì)根N、P養(yǎng)分大于旱季,喬木林相反;灌木林雨季活細(xì)根C∶N、C∶P比小于旱季,而喬木林相反,但是N∶P比均為雨季小于旱季,表明在雨季兩種植被受P限制程度低。
中下坡使得細(xì)根N、P含量較高而N∶P比值較低,表明較低的坡位P限制程度較低。
參考文獻(xiàn):
BAO SD, 2000. Soil agricultural chemmistry analysis [M]. Beijing: China Agriculture Press." [鮑士旦, 2000. 土壤農(nóng)化分析 [M]. 北京: 中國農(nóng)業(yè)出版社.]
BUI EN, HENDERSON BL, 2013. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors [J]. Plant Soil, 373(1/2): 553-568.
CAI YM, ZHANG CF, LI XY, et al., 2022. Effect of litter input on the growth and stoichiometry of fine roots of Pinus massoniana [J]. J NE For Univ, 50(6): 32-38." [蔡銀美, 張成富, 李昕穎, 等, 2022. 凋落物輸入對(duì)馬尾松細(xì)根生長及化學(xué)計(jì)量的影響 [J]. 東北林業(yè)大學(xué)學(xué)報(bào), 50(6): 32-38.]
CHEN HS, YANG J, FU W, et al., 2012. Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi [J]. Trams Chin Soc Agric Eng, 28(16): 121-126." [陳洪松, 楊靜, 傅偉, 等, 2012. 桂西北喀斯特峰叢不同土地利用方式坡面產(chǎn)流產(chǎn)沙特征 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 28(16): 121-126.]
CHEN HS, NIE YP, WANG KL, 2013. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review [J]. Acta Ecol Sin, 33(2): 317-326." [陳洪松, 聶云鵬, 王克林, 2013. 巖溶山區(qū)水分時(shí)空異質(zhì)性及植物適應(yīng)機(jī)理研究進(jìn)展 [J]. 生態(tài)學(xué)報(bào), 33(2): 317-326.]
CHEN GS, HE ZM, XIE JS, et al., 2004. Comparision on fine root production, distribution and turnover between plantations of Fokienia hodginsii and Cunninghamia lancelata [J]. Sci Silv Sin, 40(4): 15-21." [陳光水, 何宗明, 謝錦升, 等, 2004. 福建柏和杉木人工林細(xì)根生產(chǎn)力、分布及周轉(zhuǎn)的比較 [J]. 林業(yè)科學(xué), 40(4): 15-21.]
CHEN RS, KANG WX, HE JN, et al., 2022. Water storage capacities of different vegetation ecosystems [J]. J Cent S Univ For Technol, 42(6): 108-116." [陳日升, 康文星, 何介南, 等, 2022. 不同植被生態(tài)系統(tǒng)的調(diào)蓄水量能力 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 42(6): 108-116.]
CHEN XP, GUO BQ, ZHONG QL, et al., 2018. Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains [J]. Acta Ecol Sin, 38(1): 273-281." [陳曉萍, 郭炳橋, 鐘全林, 等, 2018. 武夷山不同海拔黃山松細(xì)根碳、氮、磷化學(xué)計(jì)量特征對(duì)土壤養(yǎng)分的適應(yīng) [J]. 生態(tài)學(xué)報(bào), 38(1): 273-281.]
DENG PY, CHEN HS, NIE YP, et al., 2010. Photosynthetic characteristics of Radermachera sinica and Alchornea trewioides in karst regions of Northwest Guangxi, China in dry and rainy seasons [J]. Chin J Ecol, 29(8): 1498-1504." [鄧彭艷, 陳洪松, 聶云鵬, 等, 2010. 桂西北喀斯特地區(qū)菜豆樹和紅背山麻桿旱、雨季光合特性比較 [J]. 生態(tài)學(xué)雜志, 29(8): 1498-1504.]
DU YX, PAN GX, LI LQ, et al., 2010. Fine root biomass and its nutrient storage in karst ecosystems under different vegetations in Central Guizhou, China [J]. Chin J Appl Ecol, 21(8): 1926-1932." [杜有新, 潘根興, 李戀卿, 等, 2010. 貴州中部喀斯特山地不同植被生態(tài)系統(tǒng)細(xì)根生態(tài)特征及養(yǎng)分儲(chǔ)量 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 21(8): 1926-1932.]
FAN Y, CHEN ZW, PAN YL, et al., 2019. Effect of stand, age, and slope position on the stoichiometric characters of Cunninghamia lanceolata-Aleurites montana mixed forest [J]. Chin J Appl Environ Biol, 25(2): 246-253." [樊月, 陳志為, 潘云龍, 等, 2019. 林齡和坡位對(duì)杉桐混交林化學(xué)計(jì)量特征的影響 [J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 25(2): 246-253.]
GAO Y, HE NP, YU GR, et al., 2014. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China [J]. Ecol Eng, 67 : 171-181.
GUO RQ, XIONG DC, SONG TT, et al., 2018. Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir ( Cunninghamia lanceolata) seedlings [J]. Acta Ecol Sin, 38(17): 6101-6110." [郭潤泉, 熊德成, 宋濤濤, 等, 2018. 模擬氮沉降對(duì)杉木幼苗細(xì)根化學(xué)計(jì)量學(xué)特征的影響 [J]. 生態(tài)學(xué)報(bào), 38(17): 6101-6110.]
GUO W, QI LH, LEI G, et al., 2021. Nutrient distribution patterns and stoichiometry characteristics in Phyllostachys edulis and its varieties [J]. J NE For Univ, 49(4): 39-44." [郭雯, 漆良華, 雷剛, 等, 2021. 毛竹及其變種養(yǎng)分分配格局與化學(xué)計(jì)量特征 [J]. 東北林業(yè)大學(xué)學(xué)報(bào), 49(4): 39-44.]
HE GX, WANG Y, PENG SX,et al., 2020. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China [J]. Acta Ecol Sin, 40(13): 4425-4435." [何高迅, 王越, 彭淑嫻, 等, 2020. 滇中退化山地不同植被恢復(fù)下土壤碳氮磷儲(chǔ)量與生態(tài)化學(xué)計(jì)量特征 [J]. 生態(tài)學(xué)報(bào), 40(13): 4425-4435.]
HE HL, YANG XG, LI DD,et al., 2017. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shurub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 41(1): 126-135." [賀合亮, 陽小成, 李丹丹, 等, 2017. 青藏高原東部窄葉鮮卑花碳、氮、磷化學(xué)計(jì)量特征 [J]. 植物生態(tài)學(xué)報(bào), 41(1): 126-135.]
HE JS, HAN XG, 2010. Ecological stoichiometry: Searching for unifying principles from indiviuals to ecosystems [J]. Chin J Plant Ecol, 34(1): 2-6." [賀金生, 韓興國, 2010. 生態(tài)化學(xué)計(jì)量學(xué): 探索從個(gè)體到生態(tài)系統(tǒng)的統(tǒng)一化理論 [J]. 植物生態(tài)學(xué)報(bào), 34(1): 2-6.]
HU HT, QIU LJ, GE LL, et al., 2018. Stoichometry of fine roots and topsoil of five plantations in coastal sandy [J]. J Sichuan Agric Univ, 36(4): 444-449." [胡歡甜, 邱嶺軍, 葛露露, 等, 2018. 濱海沙地5種人工林細(xì)根與表層土壤化學(xué)計(jì)量特征 [J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 36(4): 444-449.]
HUANG PZ, LI JX, LI DX, et al., 2021. Physiological and ecological adaption of karst woody plants to drought [J]. Guihaia, 41(10): 1644-1653." [黃甫昭, 李健星, 李冬興, 等, 2021. 巖溶木本植物對(duì)干旱的生理生態(tài)適應(yīng) [J]. 廣西植物, 41(10): 1644-1653.]
LI SP, WANG KL, 2016. Seasonal distribution of soil nutrients and their response to the plant diversity of karst mountain grassland [J]. J Soil Water Conserv, 30(4): 199-205." [李勝平, 王克林, 2016. 桂西北喀斯特山地草地土壤養(yǎng)分季節(jié)變化規(guī)律及其對(duì)植被多樣性的響應(yīng) [J]. 水土保持學(xué)報(bào), 30(4): 199-205.]
LI X, TAN ND, WU T, et al., 2021. Plant growth and C∶N∶P stoichiometry characteristics in response to experimental warming in four co-occurring subtropical forest tree seedlings [J]. Acta Ecol Sin, 41(15): 6164-6158." [李旭, 譚鈉丹, 吳婷, 等, 2021. 增溫對(duì)南亞熱帶常綠闊葉林4種幼樹生長和碳氮磷化學(xué)計(jì)量特征的影響 [J]. 生態(tài)學(xué)報(bào), 41(15): 6146-6158.]
LIANG YM, SU YR, HE XY, et al., 2017. Various effects on the abundance and composition of arbuscular mycorrhizal fungal communities in soils in karst shrub ecosystems [J]. Chin J Environ Sci, 38(11): 4828-4835." [梁月明, 蘇以榮, 何尋陽, 等, 2017. 喀斯特灌叢土壤叢枝菌根真菌群落結(jié)構(gòu)及豐度的影響因子 [J]. 環(huán)境科學(xué), 38(11): 4828-4835.]
LIAO YN, GUO SJ, 2022. Effects of organic-inorganic fertilizer on the stoichiometric characteristics in chestnut rhizosphere soil and fine roots [J]. J NE For Univ, 50(1): 58-63. [廖逸寧, 郭素娟, 2022. 有機(jī)-無機(jī)肥配施對(duì)板栗根際土壤及細(xì)根化學(xué)計(jì)量特征的影響 [J]. 東北林業(yè)大學(xué)學(xué)報(bào), 50(1): 58-63.]
LIU C, XIAO WH, LEI PF, et al., 2014. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient [J]. Plant Soil, 376(1/2) : 445-459.
LIU L, ZENG FP, SONG TQ,et al., 2010. Spatial heterogeneity of soil nutrients in Karst area’ s Mulun National Nature Reserve [J]. Chin J Appl Ecol, 21(7): 1667-1673." [劉璐, 曾馥平, 宋同清, 等, 2010. 喀斯特木論自然保護(hù)區(qū)土壤養(yǎng)分的空間變異特征 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 21(7): 1667-1673.]
LIU SN, LI G, YANG CJ, et al., 2021. Seasonal variation of soil carbon, nitrogrn and phosphorus stoichiometry under different vegetation types in loess hilly region [J]. J Soil Water Conserv, 35(6): 343-349." [劉帥楠, 李廣, 楊傳杰, 等, 2021. 植被類型對(duì)黃土丘陵區(qū)土壤碳氮磷化學(xué)計(jì)量特征的季節(jié)變異 [J]. 水土保持學(xué)報(bào), 35(6): 343-349.]
LIU X, HUANG YX, YUAN H, et al., 2016. Effects of vegetation type and slope position on soil nitrogen transformation rate in karst regions [J]. Acta Ecol Sin, 36(9): 2578-2587." [劉欣, 黃運(yùn)湘, 袁紅, 等, 2016. 植被類型與坡位對(duì)喀斯特土壤氮轉(zhuǎn)化速率的影響 [J]. 生態(tài)學(xué)報(bào), 36(9): 2578-2587.]
LUO HB, HUANG CM, ZHU HM,et al., 2020. Effects of drought stress on carbon and nitrogen metabolism of sugarcane roots [J]. J S Agric, 51(6): 1332-1338." [羅海斌, 黃誠梅, 朱慧明, 等, 2020. 干旱脅迫對(duì)甘蔗根系碳氮代謝的影響 [J]. 南方農(nóng)業(yè)學(xué)報(bào), 51(6): 1332-1338.]
Lü"WQ, ZHOU CY, YAN JH, et al., 2016. Leaf C, N, and P stoichiometry for four typical artificial forests in the karst region of Guizhou Province [J]. J Zhejiang A amp; F Univ, 33(6): 984-990." [呂文強(qiáng), 周傳艷, 閆俊華, 等, 2016. 貴州省喀斯特地區(qū)4種典型人工林葉片化學(xué)計(jì)量特征 [J]. 浙江農(nóng)林大學(xué)學(xué)報(bào), 33(6): 984-990.]
NIU DC, DONG XY, FU H, 2011. Seasonal dynamics of carbon,nitrogen and phosphorus stoichiometry in Stipa bungeana [J]. Pratac Sci, 28(6): 915-920." [牛得草, 董曉玉, 傅華, 2011. 長芒草不同季節(jié)碳氮磷生態(tài)化學(xué)計(jì)量特征 [J]. 草業(yè)科學(xué), 28(6): 915-920.]
OSTONEN I, LOHMUS K,PAJUSTE K, 2005. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods [J]. For Ecol Manag, 212(1/3): 264-277.
PAN FJ, QIAN Q, LIANG YM, et al., 2022. Spatial variations in fine root turnover, biomass, and necromass of two vegetation types in a karst ecosystem, Southwestern China [J]. Forests, 13(4): 611.
PAN FJ, WANG KL, ZHANG W,et al., 2020. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin Univ Technol, 40(1): 209-217." [潘復(fù)靜, 王克林, 張偉, 等, 2020. 喀斯特不同恢復(fù)階段植物根際土養(yǎng)分和酶活性的季節(jié)性變化和根際效應(yīng) [J]. 桂林理工大學(xué)學(xué)報(bào), 40(1): 209-217.]
PAN FJ, ZHANG W, WANG KL, et al., 2011. Litter C∶N∶P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster depression [J]. Atca Ecol Sin, 31(2): 335-343." [潘復(fù)靜, 張偉, 王克林, 等, 2011. 典型喀斯特峰叢洼地植被群落凋落物C∶N∶P生態(tài)化學(xué)計(jì)量特征 [J]. 生態(tài)學(xué)報(bào), 31(2): 335-343.]
PENG WX, SONG TQ, ZENG FP, et al., 2012. Relationships between woody plants and environmental factors in karst mixed evergreen-deciduous broadleaf forest, southwest China [J]. J Food Agric Environ, 10(1): 890-896.
PREGITZER KS, 2003. Woody plants, carbon allocation and fine roots [J]. New Phytol, 158(3): 421-424.
QIN Y, WANG LH, ZHANG GS,et al., 2008. Fine root biomass seasonal dynamics and spatial changes of Sabina vulgaris and Artemisia ordosica communities in MU US Sandland [J]. J Desert Res, 28(3): 455-461." [秦艷, 王林和, 張國盛, 等, 2008. 毛烏素沙地臭柏與油蒿群落細(xì)根生物量的季節(jié)動(dòng)態(tài)及其空間變化 [J]. 中國沙漠, 28(3): 455-461.]
RUFAT J, DEJONG TM, 2001. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden [J]. Tree Physiol, 21(15): 1057.
SHI JP, TANG JW, 2002. Fine root dynamics of several types of tropical communities in Xishuangbanna [J]. Guihaia, 22(6): 509-512." [施濟(jì)普, 唐建維, 2002. 西雙版納不同熱帶森林群落土壤表層的細(xì)根年動(dòng)態(tài) [J]. 廣西植物, 22(6): 509-512.]
SONG RQ, ZHAI MP, JIA LM,et al., 2010. Fine root dynamics of different aged triploid Populus tomentosa pulp forests during growth period [J]. Chin J Ecol, 29(9): 1696-1702." [宋日欽, 翟明普, 賈黎明, 等, 2010. 不同年齡三倍體毛白楊紙漿林生長期間細(xì)根變化規(guī)律 [J]. 生態(tài)學(xué)雜志, 29(9): 1696-1702.]
SONG TQ, PENG WX, ZENG FP,et al., 2009. Spatial heterogeneity of surface soil moisture content in dry season in Mulun National Natural Reserve in Karst area [J]. Chin J Appl Ecol, 20(1): 98-104." [宋同清, 彭晚霞, 曾馥平, 等, 2009. 喀斯特木論自然保護(hù)區(qū)旱季土壤水分的空間異質(zhì)性 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 20(1): 98-104.]
SU L, DU H, WANG H, et al., 2018. Root architecture of the dominant species in various vegetation restoration processes in Karst peak-cluster depression [J]. Acta Bot Boreal-Occident Sin, 38(1): 150-157." [蘇樑, 杜虎, 王華, 等, 2018. 喀斯特峰叢洼地不同植被恢復(fù)階段優(yōu)勢(shì)種根系構(gòu)型特征 [J]. 西北植物學(xué)報(bào), 38(1): 150-157.]
SUN CL, WANG YW, WANG CJ, et al., 2021. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecol Sin, 41(10): 4140-4149." [孫彩麗, 王藝偉, 王從軍, 等, 2021. 喀斯特山區(qū)土地利用方式轉(zhuǎn)變對(duì)土壤酶活性及其化學(xué)計(jì)量特征的影響 [J]. 生態(tài)學(xué)報(bào), 41(10): 4140-4149.]
TAN X, LI LB, XIANG GW,et al., 2022. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in the fine root of Taxodium distichum and their correlation with soil nutrients in the riparian zone of the three Gorges Reservoir Region [J]. J SW Univ(Nat Sci Ed), 44(7): 14-23." [譚雪, 李留彬, 向國偉, 等, 2022. 三峽庫區(qū)消落帶落羽杉細(xì)根碳氮磷化學(xué)計(jì)量特征及其與土壤養(yǎng)分的關(guān)系研究 [J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 44(7): 14-23.]
TERZAGHI M, MONTAGNOLI A, DI IORIO A,et al., 2013. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L.) in Italy Prealps: possible implications of coppice conversion to high forest [J]. Front Plant Sci, 4: 192.
TIAN NN, ZHANG JJ, RU H, et al., 2015. Soil moisture and nutrient characteristics of soil and water conservation forests in Loess Plateau of western Shanxi Province [J]. Sci Soil Water Conserv, 13(6): 61-67." [田寧寧, 張建軍, 茹豪, 等, 2015. 晉西黃土區(qū)水土保持林地的土壤水分和養(yǎng)分特征 [J]. 中國水土保持科學(xué), 13(6): 61-67.]
TRIPATHI SK, SINGH KP, SINGH PK, 1999. Temporal changes in spatial pattern of fine-root mass and nutrient concentrations in Indian bamboo savanna [J]. Appl Veg Sci, 2(2): 229-238.
VOGT KA, GRIER CC, VOGT DJ, 1986. Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests [J]. Adv Ecol Res, 15: 303-377.
WANG WW, HUANG JX, CHEN F, et al., 2014. Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopisi carlesii forests [J]. Chin J Appl Ecol, 25(2): 318-324." [王韋韋, 黃錦學(xué), 陳鋒, 等, 2014. 樹種多樣性對(duì)亞熱帶米櫧林細(xì)根生物量和形態(tài)特征的影響 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 25(2): 318-324.]
WEI P, LI XW, FAN C, et al., 2013. Fine root biomass and carbon storage in surface soil of Cinnamomum camphora plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 24(10): 2755-2762." [魏鵬, 李賢偉, 范川, 等, 2013. 華西雨屏區(qū)香樟人工林土壤表層細(xì)根生物量和碳儲(chǔ)量 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 24(10): 2755-2762.]
WEN YX, FENG KQ, TONG R, et al., 2022. Response of C, N, P stoichiometry of fine and coarse roots of Metasequoia glyptostroboides plantation to nitrogen addition [J]. For Res, 35(3): 161-168." [問宇翔, 馮坤喬, 童冉, 等, 2022. 水杉人工林細(xì)根和粗根碳氮磷計(jì)量特征對(duì)N添加的響應(yīng) [J]. 林業(yè)科學(xué)研究, 35(3): 161-168.]
WU P, CUI YC, ZHAO WJ, et al., 2020. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China [J]. Acta Ecol Sin, 40(14): 5063-5080. [吳鵬, 崔迎春, 趙文君, 等, 2020. 茂蘭喀斯特區(qū)68種典型植物葉片化學(xué)計(jì)量特征 [J]. 生態(tài)學(xué)報(bào), 40(14): 5063-5080.]
XIONG K, JIN ML, YU T,et al., 2015. Stoichiometric characteristics of CNP in typical steppe plant at different grazing gradients [J]. J Green Sci Technol, 17(7): 4-7." [熊坤, 金美伶, 于婷, 等, 2015. 不同放牧梯度上典型草原植物碳氮磷化學(xué)計(jì)量特征 [J]. 綠色科技, 17(7): 4-7.]
XU ZY, ZHANG QD, YANG L,et al., 2018. Analysis of temporal variation of soil water in a growing season in semi-arid loess hilly area [J]. J Arid Land Resour Environ, 32(3): 145-151." [徐志堯, 張欽弟, 楊磊, 2018. 半干旱黃土丘陵區(qū)土壤水分生長季動(dòng)態(tài)分析 [J]. 干旱區(qū)資源與環(huán)境, 32(3): 145-151.]
YANG HB, WEI XL, DANG W, 2009. Species composition and diversity variations at different succession stages of karst vegetation in central Guizhou [J]. J Mount Agric Biol, 28(3): 203-207." [楊華斌, 韋小麗, 黨偉, 2009. 黔中喀斯特植被不同演替階段群落物種組成及多樣性 [J]. 山地農(nóng)業(yè)生物學(xué)報(bào), 28(3): 203-207.]
YANG SL, ZHANG J, YANG WQ, et al., 2018. A study on the growth characteristics of roots of Pennisetum sinese in different slope of the dry-hot valley [J]. J Yuannan Agric Univ(Nat Sci Ed), 40(3): 577-585." [楊森霖, 張健, 楊萬勤, 等, 2018. 干熱河谷區(qū)不同坡位引種巨菌草根系生長特性研究 [J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版), 40(3): 577-585.]
YU M, WANG ZM, XUE L, 2019. Effects of different slope positions on leaf nutrient of four broadleaf native tree species [J]. J Cent S Univ For Technol, 39(5): 89-94." [余明, 王卓敏, 薛立, 2019. 不同坡位對(duì)4種闊葉鄉(xiāng)土樹種葉片養(yǎng)分的影響 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 39(5): 89-94.]
ZENG ZX, WANG KL, LIU XL, et al., 2015. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol,39(7): 682-693." [曾昭霞, 王克林, 劉孝利, 等, 2015. 桂西北喀斯特森林植物-凋落物-土壤生態(tài)化學(xué)計(jì)量特征 [J]. 植物生態(tài)學(xué)報(bào), 39(7): 682-693.]
ZHANG C, CHEN HS, NIE YP, et al., 2013. Dynamics of soil profile water content in peak-cluster depression areas in karst region [J]. Chin J Ecol-Agric, 21(10): 1225-1232." [張川, 陳洪松, 聶云鵬, 等, 2013. 喀斯特地區(qū)洼地剖面土壤含水率的動(dòng)態(tài)變化規(guī)律 [J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 21(10): 1225-1232.]
ZHANG JG, CHEN HS, SU YR, et al., 2010. Variability of soil moisture and its relationship with environmental factors on karst hilllslope [J]. Trams Chin Soc Agric Eng, 26(9): 87-93." [張繼光, 陳洪松, 蘇以榮, 等, 2010. 喀斯特山區(qū)坡面土壤水分變異特征及其與環(huán)境因子的關(guān)系 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 26(9): 87-93.]
ZHANG W, CHEN HS, WANG KL,et al., 2006. The heterogeneity of soil nutrients and their influencing factors in peak-cluster depression aress of karst region [J]. Sci Agric Sin, 39(9): 1828-1835." [張偉, 陳洪松, 王克林, 等, 2006. 喀斯特峰叢洼地土壤養(yǎng)分空間分異特征及影響因子分析 [J]. 中國農(nóng)業(yè)科學(xué), 39(9): 1828-1835.]
ZHANG X, WANG DM, WEN WJ,et al., 2022. Seasonal patterns in fine root biomass and nutrient storage of four plantations in the alpine region of Qinghai Province [J]. Sci Silv Sin, 58(6):13-22." [張雪, 王冬梅, 溫文杰, 等, 2022. 青海高寒區(qū)4種人工林細(xì)根生物量及其養(yǎng)分儲(chǔ)量變化特征 [J]. 林業(yè)科學(xué), 58(6): 13-22.]
ZHANG XL, ZHOU JH, LAI LM, et al., 2021. Carbon, nitrogen and phosphorus stoichiometric characteristics of Tamarix ramosissima Ledeb. shrubland and their influencing factors in a desert riparian area of China [J]. Res Environ Sci, 34(3): 698-706." [張曉龍, 周繼華, 來利明, 等, 2021. 荒漠河岸多枝檉柳灌叢碳氮磷化學(xué)計(jì)量特征及其影響因素 [J]. 環(huán)境科學(xué)研究, 34(3): 698-706.]
ZHANG XQ, WU KH, 2001. Fine-root production and turnover for forest ecosystems [J]. Sci Silv Sin, 37(3):126-138." [張小全, 吳可紅, 2001. 森林細(xì)根生產(chǎn)和周轉(zhuǎn)研究 [J]. 林業(yè)科學(xué), 37(3): 126-138.]
ZHENG X, LIU Q, CAO MM,et al., 2022. A review of responses of soil nitrous oxide emissions to nitrogen input in forest ecosystems [J]. Acta Pedol Sin, 59(5): 1190-1203." [鄭翔, 劉琦, 曹敏敏, 等, 2022. 森林土壤氧化亞氮排放對(duì)氮輸入的響應(yīng)研究進(jìn)展 [J]. 土壤學(xué)報(bào), 59(5): 1190-1203.]
(責(zé)任編輯 周翠鳴)
基金項(xiàng)目: "國家自然科學(xué)基金(U20A2011,41907208,42261011,32271730); 廣西自然科學(xué)基金(2018GXNSFBA138012)。
第一作者: 竇莉(1998—),碩士研究生,研究方向?yàn)榛謴?fù)生態(tài)學(xué),(E-mail)douli2020@glut.edu.cn。
*通信作者: "潘復(fù)靜,博士,副研究員,主要從事生態(tài)恢復(fù)及地上地下生態(tài)研究,(E-mail)panfujing@glut.edu.cn。