摘要:為明確不同劑量高羊毛氨酸硒(SeHLan)對(duì)陜北白絨山羊羯羊瘤胃古菌結(jié)構(gòu)與組成的影響,本研究選取發(fā)育一致的陜北白絨山羊羯羊32只,均分為4組,分別飼喂硒含量為0.016 mg/kg(CK)、0.300 mg/kg、0.600 mg/kg和1.200 mg/kg的飼料,飼養(yǎng)70 d后,采集羯羊瘤胃液,提取DNA并利用古菌特異性引物進(jìn)行PCR擴(kuò)增,對(duì)古菌V4-V5區(qū)進(jìn)行高通量測(cè)序和羯羊瘤胃液古菌結(jié)構(gòu)與組成分析。結(jié)果表明:隨著SeHLan添加量增加,各處理瘤胃液古菌α多樣性指數(shù)呈現(xiàn)出先降低后增高的變化趨勢(shì),但處理間瘤胃液古菌α多樣性指數(shù)差異均不顯著。各處理瘤胃液,在門水平上廣古菌門(Euryarchaeota)古菌,在科水平上甲烷短桿菌科(Methanobacteriaceae)古菌,在屬水平上甲烷短桿菌屬(Methanobrevibacter)古菌的相對(duì)豐度均接近80%,且隨著飼料中SeHLan添加量增加,相對(duì)豐度呈現(xiàn)先降低后升高的變化趨勢(shì)。0.600 mg/kg硒含量飼料處理的羯羊瘤胃液在門水平上廣古菌門(Euryarchaeota)古菌,在科水平上甲烷桿菌科(Methanobacteriaceae)古菌,在屬水平上甲烷短桿菌屬(Methanobrevibacter)古菌,相對(duì)豐度顯著低于其他3個(gè)處理。綜上所述,飼料中添加SeHLan顯著影響陜北白絨山羊羯羊瘤胃液古菌組成及結(jié)構(gòu),0.600 mg/kg硒含量飼料處理的羯羊瘤胃產(chǎn)甲烷菌豐度顯著低于其他處理。
關(guān)鍵詞:高羊毛氨酸硒;陜北白絨山羊羯羊;高通量測(cè)序;瘤胃;古菌
中圖分類號(hào):S827.8文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2024)02-0331-11
Effects of dietary supplementation with selenohomolanthionine on the structure and composition of rumen archaea in Shaanbei white cashmere wether goats
LI Tuo1,2,LI Long-ping1,QU Lei1
(1.Shaanxi Province Engineering amp; Technology Research Center of Cashmere Goat, Yulin University, Yulin 719000, China;2.College of Life Sciences, Yulin University, Yulin 719000, China)
Abstract:In order to clarify the effects of different doses of selenohomolanthionine (SeHLan) on the structure and composition of rumen archaea in Shaanbei white cashmere wether goats, thirty-two Shaanbei white cashmere wether goats with consistent development were selected and divided into four groups randomly. They were fed diets with selenium contents of 0.016 mg/kg (CK), 0.300 mg/kg, 0.600 mg/kg and 1.200 mg/kg, respectively. After the 70-day feeding experiment, the rumen fluid of all the experimental wether goats was collected, DNA was extracted, and PCR amplification was performed using archaeal-specific primers. The archaeal V4-V5 region was subjected to high-throughput sequencing analysis, and the structure and composition of archaea in the rumen fluid of wethers were analyzed. The results showed that with the increase of SeHLan addition, the α diversity index of rumen fluid archaea showed a trend of decreasing first and then increasing, but the difference of α diversity index of rumen fluid archaea between treatments was not significant. The relative abundance of Euryarchaeota archaea at the phylum level, Methanobacteriaceae archaea at the family level and Methanobrevibacter archaea at the genus level in rumen fluid of each treatment was close to 80%, and with the increase of dietary SeHLan addition, the relative abundance showed a trend of decreasing first and then increasing. The relative abundance of Euryarchaeota archaea at the phylum level, Methanobacteriaceae archaea at the family level and Methanobrevibacter archaea at the genus level in rumen fluid of wether goats treated with 0.600 mg/kg selenium content diet was significantly lower than that of the other three treatments. In summary, the addition of SeHLan to the diet significantly affected the composition and structure of rumen fluid archaea in Shanbei white cashmere goats. The abundance of rumen methanogens in wethers treated with 0.600 mg/kg selenium content diet was significantly lower than that in other treatments.
Key words:selenohomolanthionine;Shaanbei white cashmere wether goats;high-throughput sequencing technology;rumen;archaea
陜北白絨山羊是中國(guó)陜西榆林和延安地區(qū)主要養(yǎng)殖羊品種,具有產(chǎn)絨量高和肉品質(zhì)好等特點(diǎn),僅榆林地區(qū)飼養(yǎng)量就達(dá)8.00×105只。但陜北白絨山羊飼養(yǎng)區(qū)屬于嚴(yán)重缺硒地區(qū),陜北白絨山羊體內(nèi)硒含量也低于國(guó)際上公認(rèn)的硒含量最低閾值(0.5 mg/kg),因此,需要在飼料中補(bǔ)充硒元素[1]。微量元素硒具有預(yù)防疾病、促進(jìn)動(dòng)物生長(zhǎng)的重要作用[2-3],飼料中補(bǔ)充硒能夠改善反芻動(dòng)物機(jī)體及瘤胃微生物抗氧化能力[4-6]。Cui等[7]報(bào)道在飼料中添加酵母硒能夠顯著提高藏羊瘤胃液銨態(tài)氮(NH+4-N)、總揮發(fā)性脂肪酸(TVFA)、乙酸鹽、丁酸鹽和丙酸鹽濃度,顯著影響瘤胃液細(xì)菌菌群結(jié)構(gòu)及功能,促進(jìn)碳水化合物和氨基酸代謝相關(guān)基因功能和代謝途徑的表達(dá)和富集。Zhang等[8]研究結(jié)果表明,飼料中補(bǔ)充硒酸鈉不僅能提高瘤胃球菌、纖維桿菌等淀粉分解菌的豐度,還能促進(jìn)纖維二糖酶、羧甲基纖維素酶、木聚糖酶和蛋白酶的活性。在硒對(duì)反芻動(dòng)物溫室氣體排放的影響研究方面,Miltko等[9]研究發(fā)現(xiàn),飼料中添加硒酸鹽(無(wú)機(jī)硒)能降低綿羊瘤胃液CH4和CO2濃度,而飼料中添加酵母硒(有機(jī)硒)會(huì)增加CH4和CO2濃度。Pan等[10]報(bào)道,飼料中添加6 μg/kg硒能顯著降低綿羊的CH4排放量。這些研究結(jié)果說(shuō)明,飼料中添加的硒源類型(有機(jī)硒或無(wú)機(jī)硒)和添加量均會(huì)影響到反芻動(dòng)物瘤胃的CH4排放。在硒對(duì)陜北白絨山羊生長(zhǎng)影響方面,熊忙利[1]分析了亞硒酸鈉對(duì)陜北白絨山羊羔羊斷奶成活率的影響;馬雄等[11]討論了酵母硒對(duì)絨山羊生長(zhǎng)和組織抗氧化的影響;李托等明確了高羊毛氨酸硒對(duì)陜北白絨山羊生長(zhǎng)和瘤胃細(xì)菌群落結(jié)構(gòu)的影響[12-13]。目前,在硒對(duì)陜北白絨山羊瘤胃古菌群落結(jié)構(gòu)和組成方面的研究還鮮見報(bào)道。由于瘤胃古菌群落結(jié)構(gòu)不僅影響飼料利用率[14],還對(duì)反芻動(dòng)物的甲烷(CH4)排放有影響[15],因此,有效調(diào)控瘤胃古菌結(jié)構(gòu)對(duì)降低反芻動(dòng)物甲烷排放、提高反芻動(dòng)物飼料利用率具有重要意義。高羊毛氨酸硒(Selenohomolanthionine,SeHLan)是一種新型的水溶性有機(jī)硒[16],在動(dòng)物體內(nèi)具有較高的生物利用率和沉積率[17-18]。本研究以6月齡陜北白絨山羊羯羊?yàn)閷?duì)象,通過(guò)不同SeHLan添加水平的飼料對(duì)6月齡陜北白絨山羊羯羊瘤胃古菌群落組成和結(jié)構(gòu)的影響分析,明確適宜的飼料硒添加水平,在提高羊肉硒含量的同時(shí),減少白絨山羊瘤胃的甲烷排放,進(jìn)而實(shí)現(xiàn)優(yōu)質(zhì)養(yǎng)殖和節(jié)能減排。
1材料與方法
1.1試驗(yàn)動(dòng)物
選取體質(zhì)量相近的6月齡陜北白絨山羊羯羊32只,隨機(jī)均分為4組。試驗(yàn)羊每天飼喂2次(08:00和17:00),自由飲水。
1.2試驗(yàn)設(shè)計(jì)及樣品采集
參照新版《肉羊營(yíng)養(yǎng)需要量》(NY/T 816-2021)[19]中育肥山羊體質(zhì)量25 kg、日增質(zhì)量100 g營(yíng)養(yǎng)需要配制基礎(chǔ)飼料,加工為顆粒料?;A(chǔ)飼料的原料組成及營(yíng)養(yǎng)水平如表1?;A(chǔ)飼料硒含量為0.016 mg/kg,在每1 kg基礎(chǔ)飼料中分別添加71 mg、146 mg、296 mg的SeHLan[英聯(lián)普美欣科技(江西)有限公司產(chǎn)品,硒含量4 000 mg/kg,載體為麥芽糊精],得到硒含量分別為0.300 mg/kg、0.600 mg/kg和1.200 mg/kg的飼料。以不添加SeHLan的基礎(chǔ)飼料(硒含量為0.016 mg/kg)為對(duì)照(CK),進(jìn)行不同硒含量的飼料喂養(yǎng)試驗(yàn),飼養(yǎng)70 d后,經(jīng)過(guò)口腔采集所有試驗(yàn)羊瘤胃液[20]。
1.3樣品處理和高通量測(cè)序
采用CTAB法提取瘤胃液基因組,用NanoDrop2000和1%瓊脂糖凝膠電泳檢測(cè)基因組DNA的純度和濃度,使用古菌特異性引物Arch915F (5′-CAGCMGCCGCGGTAA-3′)和Arch519R(5′-GTGCTCCCCCGCCAATTCCT-3′),PCR擴(kuò)增古菌16S rRNA的V4-V5區(qū)。PCR擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃變性 30 s、55 ℃退火 30 s、72 ℃延伸 30 s,30個(gè)循環(huán);72 ℃延伸10 min。20.0 μl擴(kuò)增體系:4.0 μl 5×Fast Pfu緩沖液,2.0 μl 2.5 mmol/L dNTPs,0.5 μl 上游引物(5 μmol/L),0.5 μl 下游引物(5 μmol/L),0.4 μl Fast Pfu聚合酶,1.0 ng DNA,11.6 μl H2O。擴(kuò)增產(chǎn)物送北京諾禾致源生物科技有限公司用Illumina Novaseq 6000測(cè)序平臺(tái)進(jìn)行雙端高通量測(cè)序。
1.4測(cè)序數(shù)據(jù)分析
使用FLASH v1.2.7(http://ccb.jhu.edu/software/FLASH/)[21]對(duì)測(cè)序后得到的初始數(shù)據(jù)進(jìn)行拼接得到原始序列(Raw Tags);使用Fastp軟件對(duì)Raw Tags進(jìn)行過(guò)濾[22],得到高質(zhì)量序列(Clean Tags)。通過(guò)VSEARCH網(wǎng)站(https://github.com/torognes/vsearch/)[23]與物種注釋數(shù)據(jù)庫(kù)比對(duì)并去除嵌合體序列[24],得到有效序列(Effective Tags),利用Uparse v7.0.1001軟件(http://www.drive5.com/uparse/)[25]對(duì)有效序列進(jìn)行聚類,以97%相似度聚類得到操作分類單元(Operational Taxonomic Unit,OTU),同時(shí)篩選OTU中出現(xiàn)頻數(shù)最高的序列作為OTU的代表序列。設(shè)定閾值為0.8~1.0,使用Mothur方法與Silva132(http://www.arb-silva.de/)[26]的SSUrRNA古菌數(shù)據(jù)庫(kù)[27]進(jìn)行物種注釋,統(tǒng)計(jì)各樣本在門(Phylum)、科(Family)和屬(Genus)分類水平上的群落組成。使用MUSCLE v3.8.31軟件 [28](http://www.drive5.com/muscle/)進(jìn)行多序列比對(duì)。利用Qiime v1.9.1軟件計(jì)算得到Observed-otus、Chao1、Shannon、Simpson、Ace、Goods-coverage和PD_whole_tree等α多樣性指數(shù)。利用R軟件繪制稀釋曲線、等級(jí)聚類曲線、物種累積曲線及物種豐度聚類圖;利用最小顯著差異法(LSD)和單因素方差分析(One-way ANOVA),進(jìn)行不同處理α多樣性指數(shù)的差異性分析;對(duì)于符合正態(tài)分布的物種豐度數(shù)據(jù)使用單因素方差分析(One-way ANOVA)及LSD法進(jìn)行差異分析,對(duì)不符合正態(tài)分布的物種豐度數(shù)據(jù)使用Kruskal-Wallis檢驗(yàn)進(jìn)行差異分析。
2結(jié)果與分析
2.1測(cè)序數(shù)據(jù)處理和OTU分析
表2為各處理下不同樣品測(cè)序數(shù)據(jù)。本試驗(yàn)共得到2 099 399條有效序列(Effective tags),平均每個(gè)樣品含65 606條有效序列。4個(gè)處理共得到3 141個(gè)OTU,其中,4個(gè)處理的共享OTU數(shù)為1 036個(gè),0.300 mg/kg硒、0.600 mg/kg硒、1.200 mg/kg硒處理和CK獨(dú)有的OTU數(shù)分別為377個(gè)、365個(gè)、195個(gè)和280個(gè)(圖1)。
2.2不同處理對(duì)羊瘤胃液古菌多樣性影響
2.2.1α多樣性指數(shù)表3為不同處理的羯羊瘤胃液古菌α多樣性指數(shù)。從表中可以看出,隨著飼料中SeHLan添加量增加,羯羊瘤胃液古菌Chao1、ACE、Observed_otus、Shannon和Simpson等多樣性指數(shù)呈先增加后減少趨勢(shì),而PD-whole-tree指數(shù)呈現(xiàn)減少趨勢(shì),但不同處理間的多樣性指數(shù)差異均不顯著。
2.2.2物種多樣性曲線
隨著測(cè)序數(shù)量的增加,各樣品OUT的數(shù)量變化如圖2A所示。從圖中可以看出,在0~10 000個(gè)測(cè)序數(shù)量范圍內(nèi),OUT數(shù)增加迅速。當(dāng)測(cè)序序列達(dá)到30 000后,稀釋曲線逐漸平坦,說(shuō)明此時(shí)測(cè)序數(shù)據(jù)已經(jīng)涵蓋絕大多數(shù)物種。各樣本等級(jí)聚類曲線水平方向上寬度較大,垂直方向上曲線平滑,表明本研究各樣本的物種豐富度和均勻度均較好(圖2B)。
2.2.3物種累積箱形圖隨測(cè)序樣本量的增加,新物種出現(xiàn)的速率如圖3所示。從圖中可以看出,當(dāng)測(cè)序樣本量為1~25個(gè)時(shí),物種數(shù)增加較為快速。當(dāng)測(cè)序樣本量從25個(gè)增加到32個(gè),測(cè)序所能得到的物種數(shù)量逐漸變得平緩,亦即隨著樣本量的不斷增加,箱形圖上升幅度越來(lái)越平緩,說(shuō)明本研究抽樣充分,用于分析的數(shù)據(jù)可靠性較高。
2.3不同水平瘤胃液古菌物種組成
2.3.1門水平門水平上,瘤胃液的優(yōu)勢(shì)古菌主要是廣古菌門(Euryarchaeota)古菌,不同處理其相對(duì)豐度平均值為79.390%。此外,泉古菌門(Crenarchaeota)古菌、奇古菌門(Thaumarchaeota)古菌和未分類菌門(Unidentified_Archaea)古菌的相對(duì)豐度分別為0.069%、 0.055%、0.064%。子囊菌門(Asgardaeota)古菌和納米古菌門(Nanoarchaeaeota)古菌等的相對(duì)豐度均在0.010%以下(圖4A)。
2.3.2科水平科水平上瘤胃液主要的古菌為甲烷短桿菌科(Methanobacteriaceae)古菌,不同處理相對(duì)豐度均值達(dá)80.980%。 Nitrosopumilaceae、Methanomethylophilaceae、Unidentified_Bathyarchaeia、P_unidentified_Archaea+F_Methanobacteriaceae、Nitrososphaeraceae等科古菌的平均相對(duì)豐度為0.031%、0.033%、0.016%、0.018%和0.025%(圖4B)。而Methanothermobacteraceae、Methanomassiliicoccaceae、P_Euryarchaeota+F_Methanomethylophilaceae和Unidentified_Methanofastidiosales等科古菌的平均相對(duì)豐度均低于0.010%。
2.3.3屬水平屬水平上,不同處理甲烷短桿菌屬(Methanobrevibacter)古菌的相對(duì)豐度最高,平均值為81.79%。未注釋其他古菌(Others)的相對(duì)豐度次之,均值為17.43%。此外,甲烷球形菌屬(Methanosphaera)和Candidatus_Nitrosopumilus古菌的相對(duì)豐度均為0.29%。而Unidentified_Bathyarchaeia、Methanothermobacter、Candidatus_Nitrocosmicus、Methanomassiliicoccus、Candidatus_Nitrososphaera、甲烷細(xì)菌屬(Methanobacterium)、Candidatus_Methanomethylophilus、unidentified_Methanofastidiosales、Methanocalculus、Cenarchaeum、Methanimicrococcus、Candidatus_Methanomethylicus、Methanosaeta、Methanoculleus、Methanomicrobium、Methanosarcina和Methanoregula等屬古菌的平均相對(duì)豐度均低于0.10%(圖4C)。
2.4物種差異性分析
表4為不同分類水平上相對(duì)豐度存在顯著差異的古菌。從表中可以看出,0.600 mg/kg硒處理的廣古菌門(Euryarchaeota)古菌、甲烷桿菌科(Methanobacteriaceae)和甲烷短桿菌屬(Methanobrevibacter)古菌的相對(duì)豐度均顯著低于其他3個(gè)處理;而泉古菌門(Crenarchaeota)古菌和奇古菌門(Thaumarchaeota)古菌的相對(duì)豐度均顯著高于其他3個(gè)處理。0.300 mg/kg硒處理的未分類古菌(Unidentified_Archaea)和Methanothermobacteraceae科古菌的相對(duì)豐度顯著高于其他3個(gè)處理;Nitrosopumilaceae科古菌的相對(duì)豐度1.200 mg/kg硒處理顯著低于其他3個(gè)處理;1.200 mg/kg硒處理的Candidatus_Nitrosopumilus屬古菌的相對(duì)豐度顯著低于其他3個(gè)處理。
相對(duì)豐度排名前6的門和前20的屬聚類后的熱圖如圖5和圖6所示。門水平上,0.300 mg/kg硒處理和1.200 mg/kg硒處理的羯羊瘤胃液分別聚集了更多的未分類古菌(Unidentified_Archaea)和廣古菌門(Euryarchaeota)古菌;0.600 mg/kg硒處理,聚集了較多的泉古菌門(Crenarchaeota)古菌、奇古菌門(Thaumarchaeota)古菌、子囊菌門(Asgardaeota)古菌和納米古菌門(Nanoarchaeaeota)古菌。由圖6可知,屬水平上,0.300 mg/kg硒處理的陜北白絨山羊瘤胃液中聚集了較多的甲烷礫菌屬(Methanocalculus)、甲烷熱桿菌屬(Methanothermobacter)、Methanimicrococcus、甲烷囊菌屬(Methanoculleus)、甲烷細(xì)菌屬(Methanobacterium)、餐古菌屬(Cenarchaeum)和Candidatus_Methanomethylophilus等屬古菌;0.600 mg/kg硒處理,瘤胃液中聚集了較多Candidatus_Nitrososphaera、Candidatus_Nitrocosmicus、Unidentified_Bathyarchaeia、Candidatus_Nitrosopumilus、Unidentified_Methanofastidiosales、甲烷微菌屬(Methanomicrobium)、Candidatus_Methanomethylicus、Methanomassiliicoccus、甲烷八疊球菌屬(Methanosarcina)和甲烷礫菌屬(Methanocalculus)等屬古菌;CK聚集了較多的Methanosphaera和甲烷絲菌屬(Methanosaeta)等屬古菌。
3討論
揭示瘤胃古菌群落結(jié)構(gòu)是探尋反芻動(dòng)物瘤胃甲烷減排方案的重要基礎(chǔ)。以往關(guān)于反芻動(dòng)物瘤胃古菌的研究主要利用核酸分子探針雜交技術(shù)[29-30]、16S rRNA及基因克隆與序列分析技術(shù)[31-33]、限制性片段長(zhǎng)度多態(tài)性(RFLP)分析技術(shù)[34-36]和變性梯度凝膠電泳(DGGE)技術(shù)[37]等,這些研究方法不僅費(fèi)時(shí)耗力,而且很難對(duì)未知古菌進(jìn)行檢測(cè),較難全面、細(xì)致反映反芻動(dòng)物瘤胃古菌種群的實(shí)際結(jié)構(gòu)和組成情況,在數(shù)據(jù)信息通量、覆蓋度和精確度等方面均存在不足,在一定程度上限制人們對(duì)反芻動(dòng)物瘤胃古菌多樣性及結(jié)構(gòu)的全面和正確認(rèn)識(shí)。目前,隨著測(cè)序成本降低,高通量測(cè)序技術(shù)以其數(shù)據(jù)通量大、覆蓋度廣、精確度高等優(yōu)點(diǎn),被廣泛應(yīng)用于反芻動(dòng)物瘤胃微生物組成及功能分析。目前,雖有一些關(guān)于飼料中添加硒對(duì)瘤胃細(xì)菌菌群結(jié)構(gòu)和組成影響的研究報(bào)道[7-8, 15],但在飼料中添加硒對(duì)瘤胃古菌群落結(jié)構(gòu)的相關(guān)研究方面還未見報(bào)道。本研究通過(guò)利用古菌特異性引物對(duì)古菌V4-V5區(qū)進(jìn)行PCR擴(kuò)增及高通量測(cè)序,分析飼料中添加不同水平SeHLan對(duì)生長(zhǎng)期陜北白絨山羊羯羊瘤胃古菌群落結(jié)構(gòu)與組成的變化,研究結(jié)果不僅加深了人們對(duì)飼料中添加硒對(duì)羯羊瘤胃古菌多樣性和群落組成的了解,同時(shí)也為反芻動(dòng)物甲烷減排提供參考。
瘤胃古菌是反芻動(dòng)物產(chǎn)生甲烷的主要菌群[38],而甲烷短桿菌是反芻動(dòng)物瘤胃中數(shù)量最多的產(chǎn)甲烷菌[35, 39-40]。Richard等[41]研究結(jié)果表明奶牛瘤胃液中古菌占瘤胃微生物總量的2.29%[41],且大部分的產(chǎn)甲烷菌屬于廣古菌門[42]。
目前,反芻動(dòng)物瘤胃古菌多樣性特征已有較多研究。不但瘤胃的不同部位具有不同的古菌優(yōu)勢(shì)群落[43],動(dòng)物類型[35,40]、年齡[44]、季節(jié)[37]、生態(tài)環(huán)境和飼喂飼料[34-35,37,45]也均會(huì)影響反芻動(dòng)物瘤胃古菌的結(jié)構(gòu)與組成。由于微量元素硒具有改善反芻動(dòng)物機(jī)體抗氧化、促進(jìn)瘤胃微生物生長(zhǎng)和代謝等功能[8],一些學(xué)者初步開展了飼料中添加硒對(duì)反芻動(dòng)物瘤胃微生物多樣性的影響研究。但現(xiàn)有研究一般僅針對(duì)瘤胃細(xì)菌組成和結(jié)構(gòu),而對(duì)瘤胃古菌多樣性特征缺乏分析。本試驗(yàn)利用瘤胃古菌特異性引物和瘤胃古菌專用數(shù)據(jù)庫(kù),分析了不同SeHLan添加水平的飼料對(duì)陜北白絨山羊羯羊瘤胃古菌群落結(jié)構(gòu)和組成的影響,結(jié)果表明陜北白絨山羊羯羊瘤胃中優(yōu)勢(shì)古菌在門水平上為廣古菌門古菌,在科水平上為甲烷桿菌科古菌,在屬水平上為甲烷短菌屬古菌,不同硒水平處理的相對(duì)豐度均接近80%,低于山羊瘤胃液優(yōu)勢(shì)古菌的相對(duì)豐度(99%)[46-47]。已有研究結(jié)果表明飼料中添加硒的類型(有機(jī)硒和無(wú)機(jī)硒)對(duì)反芻動(dòng)物瘤胃甲烷的產(chǎn)生具有不同的影響[9]。Pan等[10]研究結(jié)果表明,不同硒添加水平的飼料對(duì)綿羊甲烷排放有顯著影響,添加中等劑量的酵母硒能減少綿羊3.5%~9.7%甲烷的排放。本研究發(fā)現(xiàn),隨著飼料中SeHLan添加水平的增加,優(yōu)勢(shì)古菌的相對(duì)豐度呈現(xiàn)先降低后升高的變化趨勢(shì),且0.600 mg/kg硒含量的飼料處理的優(yōu)勢(shì)古菌的相對(duì)豐度顯著低于其他3個(gè)處理。這與Pan等[10]的研究結(jié)果一致。硒對(duì)反芻動(dòng)物瘤胃古菌的影響,可能是適量的硒能促進(jìn)反芻動(dòng)物瘤胃產(chǎn)甲烷菌的生長(zhǎng)[48],但具體的機(jī)制還有待于進(jìn)一步研究。
4結(jié)論
本研究利用古菌特異性引物對(duì)古菌V4-V5區(qū)進(jìn)行PCR擴(kuò)增和高通量測(cè)序,分析了不同SeHLan添加水平飼料對(duì)6月齡陜北白絨山羊羯羊瘤胃古菌群落結(jié)構(gòu)與組成的影響。結(jié)果表明,不同處理間古菌α多樣性指數(shù)差異不顯著;隨著飼料中SeHLan添加量增加,陜北白絨山羊瘤胃優(yōu)勢(shì)古菌的相對(duì)豐度呈現(xiàn)出先降低后升高的變化趨勢(shì)。0.600 mg/kg硒含量的飼料處理,在門水平廣古菌門(Euryarchaeota)古菌,在科水平甲烷桿菌科(Methanobacteriaceae)古菌,在屬水平甲烷短桿菌屬(Methanobrevibacter)古菌的相對(duì)豐度均顯著低于其他3個(gè)處理,說(shuō)明該處理不僅能提高陜北白絨山羊羯羊硒含量,還可能降低瘤胃甲烷排放。
參考文獻(xiàn):
[1]熊忙利. 補(bǔ)硒對(duì)陜北白絨山羊羔羊斷奶成活率的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué),2010.
[2]劉阿云. 微量元素硒在羊生產(chǎn)中應(yīng)用的研究進(jìn)展[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2019,31(1):78-81.
[3]白雪,李飛,李發(fā)弟,等. 硒在反芻動(dòng)物中的營(yíng)養(yǎng)作用和生產(chǎn)應(yīng)用[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2021,33(4):1880-1890.
[4]HEMINGWAY R G. The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep[J]. Veterinary Research Communications,2003,27(2):159-174.
[5]SHI L, XUN W, YUE W, et al. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep[J]. Animal Feed Science and Technology,2011,163:136-142.
[6]郭元晟,張敏. 有機(jī)硒對(duì)蒙古羊生長(zhǎng)性能、抗氧化性能及免疫機(jī)能的影響[J]. 飼料工業(yè),2015,36(13):41-45.
[7]CUI X, WANG Z, TAN Y, et al. Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of tibetan sheep (Ovis aries) in alpine meadow[J]. Frontiers in Microbiology,2021,12:663945.
[8]ZHANG Z D, WANG C, DU H S, et al. Effects of sodium selenite and coated sodium selenite on lactation performance, total tract nutrient digestion and rumen fermentation in Holstein dairy cows[J]. Animal,2020,14:2091-2099.
[9]MILTKO R, ROZBICKA-WIECZOREK J A, WIESYK E, et al. The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in the rumen, and fatty acid profiles in the rumen content and muscles of lambs[J]. Acta Veterinaria-Beograd,2016,3:373-393.
[10]PAN Y, WANG Y, LOU S, et al. Selenium supplementation improves nutrient intake and digestibility, and mitigates CH4 emissions from sheep grazed on the mixed pasture of alfalfa and tall fescue[J]. Journal of Animal Physiology and Animal Nutrition,2021,105:611-620.
[11]馬雄,陳玉林. 日糧硒水平對(duì)4~6月齡絨山羊生長(zhǎng)性能和組織抗氧化能力的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2011,20(2):33-36.
[12]李托,屈雷,朱海鯨,等. 高羊毛氨酸硒對(duì)陜北白絨山羊羯羊生長(zhǎng)性能、血液指標(biāo)、瘤胃發(fā)酵、營(yíng)養(yǎng)物質(zhì)表觀消化率及氮代謝的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2022,34(12):7909-7922.
[13]LI L P, QU L, LI T. Supplemental dietary Selenohomolanthionine affects growth and rumen bacterial population of Shaanbei white cashmere wether goats[J]. Frontiers in Microbiology,2022,13:942848.
[14]JOHNSON K A, JOHNSON D E. Methane emissions from cattle[J]. Journal of Animal Science,1995,73(8):2483-2492.
[15]MCGINN S M, FLESCH T K, HARPER L A, et al. An approach for measuring methane emissions from whole farms[J]. Journal of Environmental Quality,2006,35(1):14-20.
[16]鄭謀鳳. 高羊毛氨酸硒對(duì)幼犬機(jī)體抗氧化功能和免疫應(yīng)答的影響[D]. 杭州:浙江農(nóng)林大學(xué),2021.
[17]張晉輝. 高羊毛氨酸硒提高雞肉和雞蛋中硒含量的研究[J]. 廣東飼料,2016,25(8):29-30.
[18]張晉輝. 高羊毛氨酸硒提高豬肌肉中硒沉積[J]. 廣東飼料,2016,25(7):52.
[19]刁其玉,馬濤,鄧凱東,等. 肉羊營(yíng)養(yǎng)需要量:NY/T 816-2021[S]. 北京:中華人民共和國(guó)農(nóng)業(yè)農(nóng)村部,2021.
[20]SHEN J S, CHAI Z, SONG L J, et al. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows[J]. Journal of Dairy Science,2012,95:5978-5984.
[21]MAGOC T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27(21):2957-2963.
[22]BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods,2013,10(1):57-59.
[23]ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ,2016,4:e2584.
[24]HAAS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research,2011,21(3):494-504.
[25]EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998.
[26]WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261-5267.
[27]QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucl Acids Res,2013,41:D590-D596.
[28]EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research,2004,32(5):1792-1797.
[29]SOLIVA C R, HINDRICHSEN I K, MEILE L, et al. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro[J]. Letters in Applied Microbiology,2003,37(1):35-39.
[30]SOLIVA C R, MEILE L, HINDRICHSEN I K, et al. Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release[J]. Anaerobe,2004,10(5):269-276.
[31]裴彩霞. 晉南牛和山羊瘤胃產(chǎn)甲烷菌多樣性研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2008.
[32]劉開朗,王加啟,卜登攀,等. 瘤胃古菌的多樣性研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,15(4):65-70.
[33]裴彩霞,毛勝勇,朱偉云. 山羊瘤胃產(chǎn)甲烷古菌多樣性及與其他動(dòng)物瘤胃的比較[J]. 畜牧獸醫(yī)學(xué)報(bào),2012,43(6):909-914.
[34]WRIGHT A D, TOOVEY A F, PIMM C L. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea[J]. Anaerobe,2006,12(3):134-139.
[35]WRIGHT A D, AUCKLAND C H, LYNN D H. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward island, Canada[J]. Applied and Environmental Microbiology,2007,73(13):4206-4210.
[36]成艷芬,毛勝勇,裴彩霞,等. 共存于厭氧真菌分離培養(yǎng)液中瘤胃甲烷菌的檢測(cè)及其多樣性分析[J]. 微生物學(xué)報(bào),2006,46(6):879-883.
[37]淡瑞芳,張海濤,丁學(xué)智,等. 藏系綿羊瘤胃古菌季節(jié)動(dòng)態(tài)分析[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,47(2):12-16,20.
[38]KUMAR S, INDUGU N, VECCHIARELLI B, et al. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows[J]. Frontiers in Microbiology,2015,6:781.
[39]WHITFORD M F, TEATHER R M, FORSTER R J. Phylogenetic analysis of methanogens from the bovine rumen[J]. BMC Microbiology,2001,1:5.
[40]LI L P, PENG K L, XUE M Y, et al. An age effect of rumen microbiome in dairy buffaloes revealed by metagenomics[J]. Microorganisms,2022,10(8):1491.
[41]RICHARD S, ZIEMER C J, STERN M D, et al. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system[J]. Fems Microbiology Ecology,1998,26(1):71-78.
[42]WRIGHT A D, MA X, OBISPO N E. Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela[J]. Microbial Ecology,2008,56(2):390-394
[43]SHIN E C, CHOI B R, LIM W J, et al. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence[J]. Anaerobe,2004,10(6):313-319.
[44]SKILLMAN L C, EVANS P N, NAYLOR G E, et al. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs[J]. Anaerobe,2004,10(5):277-285.
[45]KIYOSHI T, TAKAFUMI N, HIROLI M, et al. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens[J]. Fems Microbiol Lett,2001,200(1):67-72.
[46]王祿祿. 飼糧NDF水平對(duì)山羊營(yíng)養(yǎng)物質(zhì)表觀消化率及瘤胃細(xì)菌和古菌結(jié)構(gòu)與組成的影響研究[D]. 成都: 四川農(nóng)業(yè)大學(xué),2017.
[47]張雪嬌,王立志,王之盛,等. 飼糧NDF水平對(duì)山羊營(yíng)養(yǎng)物質(zhì)表觀消化率及瘤胃古菌結(jié)構(gòu)與組成的影響研究[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,36(4):542-548.
[48]PELCHEN A, PETERS K J. Methane emissions from sheep[J]. Small Ruminant Research,1998,27(2):137-150.
(責(zé)任編輯:石春林)