王季姣 潘越 王世偉 韓政偉 馬勇 虎海防 王寶慶
doi:10.6048/j.issn.1001-4330.2024.02.011
摘? 要:【目的】分析北冰紅葡萄果實(shí)營養(yǎng)品質(zhì)與土壤養(yǎng)分間的關(guān)系,為選擇北冰紅葡萄適宜栽培區(qū)提供參考依據(jù)。
【方法】選取新疆4個(gè)不同生境的8個(gè)果園樣點(diǎn),測(cè)定果實(shí)品質(zhì)和土壤養(yǎng)分因子,采用典型相關(guān)分析和冗余分析其相關(guān)性。
【結(jié)果】8個(gè)樣地的土壤養(yǎng)分與果實(shí)品質(zhì)指標(biāo)變異系數(shù)分別為6.147%~40.476%、3.674%~11.895%,其中pH與總糖的變異系數(shù)最小。土壤養(yǎng)分中速效磷、速效鉀、陽離子交換量與可溶性固形物、單寧、總糖、總酚、果穗重、單果重和單株產(chǎn)量間呈正相關(guān);土壤中速效氮和陽離子交換量與花色苷、果穗重和單果產(chǎn)量間呈正相關(guān);土壤中有機(jī)質(zhì)與總酚呈負(fù)相關(guān);果品中總酸與土壤中全氮呈正相關(guān),與速效鉀呈負(fù)相關(guān)。4對(duì)典型變量分別解釋了土壤養(yǎng)分和果實(shí)品質(zhì)組內(nèi)的75.500%和94.900%的信息,組間72.100%和92.100%的信息;焉耆縣、溫宿縣與烏魯木齊市的葡萄果實(shí)品質(zhì)綜合典型變量較高。
【結(jié)論】不同生境下,北冰紅葡萄園中土壤養(yǎng)分各指標(biāo)間含量存在較大的差異,而果實(shí)品質(zhì)各指標(biāo)間差異較小,土壤pH與果實(shí)總糖差異不顯著。新疆釀酒葡萄產(chǎn)區(qū)中焉耆縣、溫宿縣與烏魯木齊市的土壤環(huán)境更有利于北冰紅營養(yǎng)物質(zhì)的積累,對(duì)提高北冰紅果實(shí)品質(zhì)作用明顯。
關(guān)鍵詞:葡萄;土壤養(yǎng)分;果實(shí)品質(zhì);典型相關(guān)性
中圖分類號(hào):S661.1;S606+.2???? 文獻(xiàn)標(biāo)志碼:A??? 文章編號(hào):1001-4330(2024)02-0355-10
收稿日期(Received):
2023-06-21
基金項(xiàng)目:
新疆維吾爾自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022B02045-2-3);新疆維吾爾自治區(qū)“三農(nóng)”骨干人才培養(yǎng)項(xiàng)目(2022SNGGNT084)
作者簡(jiǎn)介:
王季姣(2001-),女,河南駐馬店人,碩士研究生,研究方向?yàn)樯峙嘤?,(E-mail)2419371483@qq.com
通訊作者:
潘越(1990-),男,新疆烏魯木齊人,助理研究員,碩士,研究方向?yàn)榱帜具z傳育種和果樹栽培學(xué),(E-mail)18690187637@163.com
王世偉(1984-),男,新疆烏魯木齊人,教授,博士,研究方向?yàn)樯峙嘤?,(E-mail)wsw850204@163.com
0? 引 言
【研究意義】山葡萄(Vitis amurensis)為葡萄屬中最抗寒的一個(gè)種[1],果實(shí)可釀造干型、半干和甜型葡萄酒,在極為苛刻的地理環(huán)境下可釀造冰葡萄酒[2]。北冰紅作為山葡萄雜種后代,枝條可耐-27℃低溫,具有較強(qiáng)的抗寒性和抗病性,其漿果品質(zhì)優(yōu)、含糖量較高,現(xiàn)廣泛栽培于我國東北、華北、西北等冬季較寒冷地區(qū)[3]。新疆自然條件得天獨(dú)厚,種植的釀酒葡萄品質(zhì)優(yōu)良,是我國葡萄酒釀造大區(qū),葡萄原酒年產(chǎn)量達(dá)20×104 t,占我國葡萄原酒生產(chǎn)總量的50%左右[4]。新疆已初步形成了天山北麓、焉耆盆地、伊犁河谷和吐哈盆地四大葡萄酒產(chǎn)區(qū),種植面積占到新疆釀酒葡萄種植總面積的88.47%,其中天山北麓和焉耆盆地的釀酒葡萄種植面積占全區(qū)釀酒葡萄總面積的76.39%,栽培面積在新疆占有絕對(duì)優(yōu)勢(shì)[5]。新疆釀酒葡萄品種多為歐亞種葡萄(Vitis vinifera),2019年以來,從東北陸續(xù)引進(jìn)10余個(gè)山葡萄品種,已初步篩選出4~5個(gè)適應(yīng)當(dāng)?shù)貧夂颦h(huán)境的山葡萄品種[6-7]。四大葡萄產(chǎn)區(qū)生境不同,導(dǎo)致不同產(chǎn)區(qū)山葡萄果實(shí)品質(zhì)出現(xiàn)較大差異。綜合分析果實(shí)品質(zhì)與土壤養(yǎng)分間的關(guān)系,對(duì)選擇山葡萄在新疆的適宜栽培區(qū)有重要意義。【前人研究進(jìn)展】張歡等[8]對(duì)軟籽石榴果園通過最小二乘回歸分析發(fā)現(xiàn)土壤pH值會(huì)對(duì)除單果質(zhì)量和果實(shí)VC含量外的大部分果實(shí)品質(zhì)產(chǎn)生影響,而有效磷含量對(duì)果實(shí)品質(zhì)影響較小。萬盛等[9]對(duì)新疆灰棗果品與土壤養(yǎng)分的研究發(fā)現(xiàn),棗果可溶性糖含量主要受土壤速效鉀含量和pH值的影響,總酚含量主要受土壤有機(jī)質(zhì)、堿解氮、速效磷含量和pH值的影響。李澤涵等[10]對(duì)新疆伊犁、和碩和石河子的土壤、葡萄葉、葡萄果實(shí)與葡萄酒礦物質(zhì)元素含量進(jìn)行了研究,結(jié)果發(fā)現(xiàn)可通過分析葡萄葉、果酒和果實(shí)中的礦物質(zhì)對(duì)產(chǎn)區(qū)信息加以區(qū)分。張靜文等[11]在研究赤霞珠葡萄土壤養(yǎng)分與果實(shí)品質(zhì)關(guān)系時(shí)發(fā)現(xiàn),壤土葡萄園單果質(zhì)量、總糖、可溶性固形物高于黏土葡萄園,增加土壤有機(jī)質(zhì)含量可提高果實(shí)品質(zhì)?!颈狙芯壳腥朦c(diǎn)】
果實(shí)品質(zhì)與土壤養(yǎng)分含量之間存在密切的關(guān)系,只有在養(yǎng)分含量維持在適宜的區(qū)間范圍內(nèi),才會(huì)提升果實(shí)品質(zhì),土壤養(yǎng)分偏高或偏低都對(duì)果實(shí)品質(zhì)不利。關(guān)于山葡萄的研究多集中在栽培技術(shù)對(duì)果實(shí)品質(zhì)的影響方面[12-14],對(duì)土壤養(yǎng)分含量與果實(shí)品質(zhì)間的研究未見報(bào)道。此外,多數(shù)分析方法主要針對(duì)某項(xiàng)果實(shí)品質(zhì)指標(biāo)的主要土壤養(yǎng)分指標(biāo)進(jìn)行分析和篩選,研究方法集中于相關(guān)性、回歸和主成分分析,此類方法僅考慮到多個(gè)變量同某一變量間的關(guān)系,而未分析一組變量同另一組變量的內(nèi)在聯(lián)系。因此需分析北冰紅葡萄果實(shí)營養(yǎng)品質(zhì)與土壤養(yǎng)分間的關(guān)系?!緮M解決的關(guān)鍵問題】試驗(yàn)基于典型相關(guān)性分析4個(gè)不同山葡萄產(chǎn)區(qū)土壤養(yǎng)分含量與果實(shí)品質(zhì)間的關(guān)系,研究影響山葡萄果實(shí)品質(zhì)的土壤主要養(yǎng)分因子,為新疆篩選山葡萄適宜種植區(qū)提供理論參考。
1? 材料與方法
1.1? 材 料
試驗(yàn)區(qū)設(shè)在新疆釀酒葡萄主要產(chǎn)區(qū)天山北麓生態(tài)區(qū)域?yàn)豸斈君R市、瑪納斯縣,該區(qū)域地勢(shì)平坦,屬中溫帶半干屬溫帶半干旱大陸性氣候,年平均降水量253.75~286.1 mm,地勢(shì)平坦,4~9月平均日照數(shù)1 761.44~1 841.46 h,年平均無霜期168~179 d;伊犁河谷生態(tài)區(qū)域(伊犁哈薩克自治州察布查爾縣),該區(qū)域?qū)儆诖箨懶员睖貛睾透珊禋夂?,年平均降水?06 mm,4~9月平均日照數(shù)1 801 h,無霜期182 d;焉耆盆地生態(tài)區(qū)域(巴音郭楞蒙古自治州和碩縣、焉耆縣)位于天山南麓,屬中溫帶干旱性大陸氣候,年平均降水量102.2~119.76 mm,4~9月平均日照數(shù)1 746.17~1 784.41 h,年平均無霜期176~209 d;環(huán)塔里木盆地生態(tài)區(qū)域(阿克蘇地區(qū)溫宿縣)位于塔里木盆地西北緣,屬典型的大陸性氣候,年平均降水量不足100 mm,4~9月平均日照數(shù)1 947.7 h,無霜期205~219 d。
采用單蔓傾斜龍干形(“廠”形架式),灌溉方式為溝灌,施肥方式為穴施。于2021年9月1日~30日采集不同生境果園的土壤樣品,按照對(duì)角線采集土層深度為10~30 cm的土壤樣品,將采集到的同一個(gè)果園內(nèi),相同對(duì)角線上的土樣混合均勻置于于同一自封袋內(nèi),并編號(hào)。土樣帶回試驗(yàn)室風(fēng)干、過濾后備用。表1
1.2? 方 法
1.2.1? 試驗(yàn)設(shè)計(jì)
在采集土樣的葡萄園中隨機(jī)選取15株長勢(shì)一致的北冰紅作為一組重復(fù),共設(shè)置3次重復(fù),合計(jì)45株,每株摘取陰面與陽面上、中、下部各一穗,保證所取山葡萄穗形整齊一致、無病蟲害,混合后帶皮壓榨成汁,并用紗布過濾保存,冷藏備用以釀造冰紅葡萄酒[15]。
1.2.2? 指標(biāo)測(cè)定
1.2.2.1? 土壤養(yǎng)分
土壤樣品的測(cè)定、分析均參照國家相關(guān)標(biāo)準(zhǔn),采取重鉻酸鉀容量法測(cè)定有機(jī)質(zhì)含量
;采用堿解擴(kuò)散法測(cè)定速效氮含量;采用原子吸收分光光度計(jì)法測(cè)定速效磷含量;
采用NH4OAC浸提;火焰光度法測(cè)定速效鉀含量;土壤陽離子交換量按照龐春燕[16]方法測(cè)定。表2
1.2.2.2? 北冰紅山葡萄果實(shí)品質(zhì)理化
總糖含量的測(cè)定參考葡萄酒果酒通用分析法中的斐林試劑滴定法(GB/T 15038-2006)測(cè)定,總酸含量的測(cè)定參考葡萄酒果酒通用分析法中的氫氧化鈉滴定法(GB/T15038-2006)測(cè)定;可溶性固形物含量的測(cè)定參照水果、蔬菜制品—可溶性固形物含量的測(cè)定—折射儀法(GB/T12295-1990);總花色苷測(cè)定采用HPLC液相色譜法;單寧采用甲基纖維素沉淀法測(cè)定。每個(gè)樣地隨機(jī)選取成熟度一致的9穗北冰紅葡萄,用電子天平稱量果穗質(zhì)量,取其平均值,果穗重(g);再從中隨機(jī)選取60粒葡萄,其中后取平均值,單果重以g顯示;單株產(chǎn)量=總穗數(shù)×果穗重。表3
1.3? 數(shù)據(jù)處理
采用Micosoft Excel 2016軟件進(jìn)行數(shù)據(jù)整理并制圖,使用SPSS 21.0軟件對(duì)待測(cè)數(shù)據(jù)進(jìn)行S-W正態(tài)性檢測(cè),并對(duì)數(shù)據(jù)進(jìn)行典型相關(guān)性分析和冗余分析。
對(duì)各原始數(shù)據(jù)結(jié)果進(jìn)行標(biāo)準(zhǔn)化處理,并進(jìn)行正態(tài)化轉(zhuǎn)換。因研究對(duì)象單項(xiàng)指標(biāo)的統(tǒng)計(jì)量為16個(gè)(48行<50行),即所研究的樣本為小樣本,采用S-W正態(tài)性檢測(cè)法進(jìn)行分析,P值大于0.05的土壤指標(biāo)和北冰紅果實(shí)品質(zhì)指標(biāo)共有9個(gè)。
標(biāo)準(zhǔn)化數(shù)據(jù)=(原始值-平均值)/標(biāo)準(zhǔn)差。
典型相關(guān)性:將北冰紅葡萄園土壤養(yǎng)分指標(biāo)視作一組綜合變量(u),通過有機(jī)質(zhì)(x1)、pH(x2)、全氮(x3)、速效氮(x4)、速效磷(x5)、速效鉀(x6)和陽離子交換率(x7)的測(cè)定結(jié)果構(gòu)建線性方程;同時(shí)將北冰紅果實(shí)品質(zhì)指標(biāo)視作一組綜合變量(v),通過可溶性固形物(y1)、花色苷(y2)、單寧(y3)、總酸(y4)、總糖(y5)、總酚(y6)、果穗重(y7)、單果重(y8)和單株產(chǎn)量(y9)的測(cè)定結(jié)果構(gòu)建線性方程。
2? 結(jié)果與分析
2.1? 北冰紅葡萄園土壤養(yǎng)分及果實(shí)品質(zhì)
研究表明,其變異系數(shù)范圍在5.937%~38.988%,其中,pH的變異系數(shù)較小,低于20.000%,而速效鉀的變異程度最大,速效磷和速效鉀次之,土壤養(yǎng)分各指標(biāo)間含量在不同生境葡萄園間差異較大。北冰紅葡萄果實(shí)品質(zhì),其變異系數(shù)范圍在3.674%~11.895%,其中總糖變異程度最小,不同葡萄園果實(shí)總糖含量差異不顯著。表2,表3
不同采樣地土壤各養(yǎng)分指標(biāo)之間具有較大差異,焉耆盆地生態(tài)區(qū)域的有機(jī)質(zhì)含量、pH和速效氮含量最高,分別為1.504%、8.200和96.337 mg/kg;天山北麓生態(tài)區(qū)域全氮、速效鉀和陽離子交換量含量最高,分別達(dá)830.000 mg/kg、271.754 mg/kg和7.714 cmol/kg;伊犁河谷生態(tài)區(qū)域速效磷含量最高,達(dá)28.162 mg/kg。表4
2.2? 果園土壤養(yǎng)分與葡萄品質(zhì)的典型相關(guān)性
2.2.1? 果園土壤養(yǎng)分指標(biāo)和北冰紅果實(shí)品質(zhì)指標(biāo)間典型相關(guān)系數(shù)的顯著性檢驗(yàn)
研究表明,提取出4對(duì)典型變量,其相關(guān)性達(dá)到顯著或極顯著水平,符合開展典型相關(guān)性分析的試驗(yàn)要求。表5
2.2.2? 土壤養(yǎng)分指標(biāo)和北冰紅果實(shí)品質(zhì)指標(biāo)間典型變量間的關(guān)系
研究表明,利用標(biāo)準(zhǔn)化的典型系數(shù)創(chuàng)建典型相關(guān)模型qi和si,分別表示土壤養(yǎng)分指標(biāo)和北冰紅果實(shí)品質(zhì)指標(biāo),并計(jì)算原始變量與典型變量間的相關(guān)系數(shù)ri。
第Ⅰ對(duì)典型變量如下:
u1=0.285x1+0.192x2+0.165x3+0.246x4+0.546x5+0.577x6-0.392x7.(1)
v1=0.733y1-0.399y2+0.102y3-0.281y4+0.175y5+0.530y6+0.920y7-0.506y8-0.273y9.(2)
從第Ⅰ對(duì)典型變量(u1,v1)可知,u1速效磷(x5)、速效鉀(x6)、陽離子交換量(x7)間呈正相關(guān),相關(guān)系數(shù)分別為0.739、0.784、0.621。v1與可溶性固形物、單寧、總糖、總酚、果穗重、單果重、單株產(chǎn)量均呈較高的正相關(guān)。在一定限度內(nèi),隨著土壤中速效磷、速效鉀、陽離子交換量的增加,北冰紅果品可溶性固形物、單寧、總糖、總酚、果穗重、單果重、單株產(chǎn)量增加。
第Ⅱ?qū)Φ湫妥兞咳缦拢?/p>
u2=-0.255x1-0.166x2+0.029x3+0.395x4-0.593x5-0.309x6+0.967x7.(3)
v2=-0.635y1+0.989y2+0.240y3+0.166y4+0.088y5-1.573y6-0.172y7+0.470y8+0.731y9 。(4)
從第Ⅱ?qū)Φ湫妥兞浚╱2,v2)可知,u2與速效氮(x3)、陽離子交換量有機(jī)質(zhì)(x7)間相關(guān)性呈正相關(guān),相關(guān)系數(shù)分別為0.651、0.699 9。v2與花色苷(y2)、單果重(y8)、單株產(chǎn)量(y9)呈正相關(guān)性,相關(guān)系數(shù)分別為0.596、0.496、0.501。該線性組合表明,在一定限度內(nèi),北冰紅中的花色苷含量、單果重和單株產(chǎn)量隨著土壤中速效氮、陽離子交換量的增加而增大。
第Ⅲ對(duì)典型變量如下:
u3=0.392x10.299x2-0.128x3+0.894x4-0.511x5+0.666x6-1.367x7 .(5)
v3=1.168y1-0.491y2+0.424y3+0.788y4-0.352y5-1.564y6+1.555y7-1.092y8-0.615y9.(6)
從第Ⅲ對(duì)典型變量(u3,v3)可知,u3與土壤有機(jī)質(zhì)(x1)間呈正相關(guān),相關(guān)系數(shù)為0.631。v3與總酚(y6)之間呈負(fù)相關(guān),相關(guān)系數(shù)為-0.449。該線性組合表明,在一定限度內(nèi),北冰紅中的總酚含量隨著土壤中有機(jī)質(zhì)的增加而減少。
第Ⅳ對(duì)典型變量如下:
u4=-0.117x1+0.268x2-1.026x3-0.484x4-0.813x5+0.960x6+0.602x7.(7)
v4=0.300y1+0.720y2+1.268y3-2.004y4-0.549y5-0.394y6+2.329y7-2.461y8+0.748y9 .(8)
從第Ⅳ對(duì)典型變量(u4,v4)可知,u4與土壤全氮(x3)間呈的負(fù)相關(guān),與速效鉀(x6)呈正相關(guān),相關(guān)系數(shù)分別為-0.408、0.390。v4與北冰紅中的總酸(y4)的含量呈的負(fù)相關(guān),相關(guān)系數(shù)為-0.406。在一定限度內(nèi),隨著土壤中全氮的下降,或速效鉀的增加,北冰紅中的總酸含量減少。表6,表7
2.2.3? 土壤養(yǎng)分指標(biāo)和北冰紅果實(shí)品質(zhì)指標(biāo)典型冗余
研究表明,在土壤養(yǎng)分指標(biāo)中Ⅰ、Ⅱ、Ⅲ、Ⅳ對(duì)典型變量分別解釋組內(nèi)變差34.600%、21.900%、12.400%、6.600%的信息量,并解釋另一組(果實(shí)品質(zhì))34.000%、21.300%、11.600%、5.200%的信息量。在果實(shí)品質(zhì)指標(biāo)中Ⅰ、Ⅱ、Ⅲ、Ⅳ對(duì)典型變量分別解釋組內(nèi)變差70.000%、15.500%、6.300%、3.100%,并解釋土壤養(yǎng)分68.700%、15.100%、5.800%、2.500%的信息量。土壤養(yǎng)分指標(biāo)共解釋自身變異的75.500%的信息和72.100%的果實(shí)品質(zhì)指標(biāo)信息,果實(shí)品質(zhì)指標(biāo)共解釋自身變異的94.900%的信息和92.100%的土壤養(yǎng)分指標(biāo)的信息,兩組變量組內(nèi)和組間的關(guān)系較密切。表8
2.2.4? 4對(duì)典型變量的坐標(biāo)點(diǎn)分布
研究表明,隨著土壤養(yǎng)分綜合典型變量(u)的增加,果實(shí)品質(zhì)綜合典型變量(v)逐漸上升,呈正相關(guān),土壤養(yǎng)分含量的提升有利于北冰紅根系對(duì)養(yǎng)分的吸收,進(jìn)而促進(jìn)果實(shí)品質(zhì)含量的提高。R2值均為0.267,呈現(xiàn)出較好的線性相關(guān);R2=-0.028和R2=-0.118的R2值較小,則不能很好地反應(yīng)出兩組指標(biāo)間的關(guān)系。樣點(diǎn)1果實(shí)品質(zhì)綜合典型變量最高,v1為425.536,其次為樣點(diǎn)2,樣點(diǎn)8和樣點(diǎn)7,v1分別為419.022、411.442、411.035;樣點(diǎn)8果實(shí)品質(zhì)綜合典型變量最高,v1為-723.803,其次是樣點(diǎn)1、樣點(diǎn)7和樣點(diǎn)6,v1分別為-748.142、-753.262、-771.306。天山北麓烏魯木齊(樣點(diǎn)1)、環(huán)塔里木盆地溫宿縣(樣點(diǎn)8)和焉耆盆地焉耆縣(樣點(diǎn)7)的土壤養(yǎng)分對(duì)于北冰紅果實(shí)營養(yǎng)物質(zhì)的累積與品質(zhì)的提升具有促進(jìn)作用。圖1
3? 討 論
3.1
適宜的土壤養(yǎng)分對(duì)提高釀酒葡萄的質(zhì)量有促進(jìn)作用,可以有效地促進(jìn)葡萄果實(shí)中營養(yǎng)物質(zhì)的累積,果園土壤養(yǎng)分之間關(guān)系復(fù)雜,元素間存在協(xié)同與拮抗作用[17-18]。引種到新疆的北冰紅在生長適應(yīng)過程中受風(fēng)土條件差異較為明顯,果實(shí)品質(zhì)特征會(huì)以不同形式展現(xiàn)出來,使兩者之間的關(guān)系變得復(fù)雜和更加密切[19]。試驗(yàn)結(jié)果表明,不同生境的葡萄園的土壤養(yǎng)分指標(biāo)間除pH值外,其他指標(biāo)均差異較大,變異系數(shù)在5.937%~38.988%,各果園樹體對(duì)土壤營養(yǎng)元素吸收存在一定差異。
3.2
目前,土壤養(yǎng)分與果實(shí)品質(zhì)間的研究運(yùn)用簡(jiǎn)單相關(guān)性分析和多元分析方法的較多,但分析所得的結(jié)果存在較大差異。典型相關(guān)分析可以彌補(bǔ)以上兩種分析的不足,延伸兩組變量間的相互依賴的關(guān)系,可以更好的探討多變量之間相關(guān)關(guān)系[20-22]。Szcs等[23]通過喬納金蘋果的施肥試驗(yàn)結(jié)果表明,土壤速效磷和速效鉀含量與產(chǎn)量呈正相關(guān)。Yan等[24]對(duì)蘋果園的土壤養(yǎng)分與果實(shí)品質(zhì)的研究表明土壤速效磷、鉀、鈣、鎂含量有利于蘋果果實(shí)品質(zhì)的提高。研究通過典型相關(guān)分析得出,土壤速效磷、速效鉀和陽離子交換量對(duì)果實(shí)可溶性固形物、單寧、總糖、總酚,果穗重、單果重和單株產(chǎn)量均呈較高的正相關(guān),與可溶性固形物的相關(guān)性最高,相關(guān)系數(shù)為0.930,與相關(guān)研究者在石榴[25]、柑橘[26]上的研究結(jié)果一致,土壤速效磷、速效鉀和陽離子交換量對(duì)北冰紅果實(shí)品質(zhì)的影響較大。徐麗等[27]研究表明,速效氮和速效鉀對(duì)核桃堅(jiān)果品質(zhì)的影響最明顯,合理增施氮肥和鉀肥可以明顯提高核桃果實(shí)品質(zhì)。研究結(jié)果表明,土壤速效氮對(duì)果實(shí)花色苷、單果重和單株產(chǎn)量具有促進(jìn)作用,能夠直接影響山葡萄的抗病、色澤和風(fēng)味[28-29]。土壤速效鉀能較快的被植物所吸收,增加漿果中的糖度,是反應(yīng)土壤肥力高低的指標(biāo)之一[30]。研究中,土壤速效鉀對(duì)總酸具有抑制作用,適量施用鉀肥可以降低果實(shí)酸度,提高果實(shí)品質(zhì),與前人研究結(jié)果相吻合。
汪慧等[31]將無霜期及生長季的干燥度作為新疆釀酒葡萄氣候區(qū)劃的重要指標(biāo),發(fā)現(xiàn)新疆釀酒葡萄的優(yōu)良產(chǎn)區(qū)包含天山北麓生態(tài)區(qū)域的石河子市、瑪納斯縣、呼圖壁縣、昌吉市,焉耆盆地生態(tài)區(qū)域的巴侖臺(tái)、庫米什;優(yōu)質(zhì)產(chǎn)區(qū)包括天山北麓生態(tài)區(qū)域的烏魯木齊市,焉耆盆地生態(tài)區(qū)域的察布查爾縣、和碩縣、焉耆縣,環(huán)塔里木盆地生態(tài)區(qū)域的溫宿縣,與試驗(yàn)研究中基于土壤養(yǎng)分指標(biāo)得出北冰紅果實(shí)品質(zhì)的最優(yōu)適生區(qū)為烏魯木齊市、溫宿縣和焉耆縣的結(jié)果大致相同。試驗(yàn)僅通過土壤養(yǎng)分這一要素作為北冰紅優(yōu)生區(qū)的評(píng)判依據(jù),今后應(yīng)結(jié)合有效積溫、光熱系數(shù)和活動(dòng)積溫等氣候要素對(duì)北冰紅的適宜栽培區(qū)做進(jìn)一步劃分。
4? 結(jié) 論
土壤養(yǎng)分中速效磷、速效鉀、陽離子交換量與可溶性固形物、單寧、總糖、總酚、果穗重、單果重和單株產(chǎn)量間呈正相關(guān);土壤中速效氮和陽離子交換量與花色苷、果穗重和單果產(chǎn)量間呈正相關(guān);土壤中有機(jī)質(zhì)與總酚呈負(fù)相關(guān);果品中總酸與土壤中全氮呈正相關(guān),與速效鉀呈負(fù)相關(guān)。典型冗余分析總共解釋土壤養(yǎng)分和果品自身變異的75.500%和94.900%,并解釋72.100%和92.100%對(duì)另一組(果實(shí)品質(zhì))的信息量,兩組指標(biāo)內(nèi)部與指標(biāo)間密切相關(guān)。焉耆縣、環(huán)塔里木盆地溫宿縣與天山北麓烏魯木齊的土壤養(yǎng)分環(huán)境更適宜北冰紅的種植。
參考文獻(xiàn)(References)
[1]
Dong C, Zhang Z, Ren J P, et al.Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco[J]. Plant Phgsiology and Biochemistry, 2013, 71:212-217.
[2]周曉梅, 張彪.山葡萄栽培與選育研究進(jìn)展[J]. 吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 40(3):84-91.
ZHOU Xiaomei, ZHANG Biao.Research progress in viticulture and breeding of Vitis amurensis[J]. Jilin Normal University Journal(Natural Science Edition), 2019, 40(3):84-91.
[3]李昌禹, 劉迎雪, 范書田, 等.北冰紅葡萄栽培研究現(xiàn)狀與展望[J]. 特產(chǎn)研究, 2019, 41(2):125-128.
LI Changyu, LIU Yingxue, FAN Shutian, et al.Current situation and preview of ‘beibinghong's cultivation [J]. Special Wild Economic Animal and Plant Research, 2019, 41(2):125-128.
[4]趙書成, 孫軍利, 趙寶龍, 等.不同砧木對(duì)赤霞珠葡萄種子內(nèi)源激素和多胺含量的影響[J]. 果樹學(xué)報(bào), 2022,39(8):1422-1431.
ZHAO Shucheng, SUN Junli, ZHAO Baolong, et al.Effects of different rootstocks on contents of endogenous hormones and polyamines in Cabernet Sauvignon grape seeds [J]. Journal of Fruit Science, 2022,39(8):1422-1431.
[5]佚名.國產(chǎn)葡萄酒產(chǎn)區(qū)"知多少"[J]. 中國商界, 2019:62-63.
Unknown author.Domestic wine regions "Know how much"[J]. Business China, 2019:62-63.
[6]劉陽陽. 阿克蘇地區(qū)4個(gè)山葡萄引進(jìn)品種生長適應(yīng)性及抗寒性比較[D].? 烏魯木齊:新疆農(nóng)業(yè)大學(xué), 2022.
LIU Yang. Growth adaptability and cold resistance comparison of four introduced Vitis amurensis Rupr varieties in Aksu Region[D]. Urumqi:Xinjiang Agricultural University, 2022.
[7]武運(yùn), 田歌, 陳新軍, 等.新疆葡萄酒產(chǎn)業(yè)發(fā)展趨勢(shì)新視角探析[J]. 中國釀造, 2018, 37(10):195-199.
WU Yun, TIAN Ge, CHEN Xinjun, et al.A new perspective on the development trend of Xinjiang wine industry [J].China Brewing, 2018, 37(10):195-199.
[8]張歡, 高小峰, 雷夢(mèng)瑤, 等.軟籽石榴果園土壤養(yǎng)分與果實(shí)品質(zhì)關(guān)系的多元分析及其優(yōu)化方案[J]. 河南農(nóng)業(yè)科學(xué), 2022, 51(4):111-119.
ZHANG Huan, GAO Xiaofeng, LEI Mengyao, et al.Multivariate analysis of the relationship between soil nutrients and fruit quality and optimization of soil nutrients in soft-seed pomegranate orchards[J]. Journal of Henan Agricultural Sciences, 2022, 51(4):111-119.
[9]萬勝, 劉偉鋒,于婷, 等.土壤養(yǎng)分與新疆灰棗果實(shí)品質(zhì)的多元分析及優(yōu)化方案[J]. 經(jīng)濟(jì)林研究, 2021, 39(4):168-176.
WAN Sheng, LIU Weifeng, YU Ting, et al.Multivariate analysis and optimization scheme of soil nutrients and nutritional quality of Xinjiang grey jujube [J]. Non-wood Forest Research, 2021, 39(4):168-176.
[10]李澤涵, 李函倫, 彭昕, 等.新疆葡萄酒產(chǎn)區(qū)土壤、葡萄葉、葡萄果實(shí)和葡萄酒中礦物質(zhì)元素含量及其相關(guān)性分析[J]. 中國釀造, 2022, 41(10):30-35.
LI Zehan, LI Hanlun, PENG Xin, et al.Mineral contents in soil, grape leaves, grape and wine in Xinjiang wine producing area and their correlation analysis [J]. China Brewing, 2022, 41(10):30-35.
[11]張靜文, 岳朝陽, 劉愛華, 等.新疆瑪納斯葡萄土壤養(yǎng)分與果實(shí)品質(zhì)關(guān)系多元分析[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2017, 30(7):1606-1611.
ZHANG Jingwen, YUE Chaoyang, LIU Aihua, et al.Multivariate analysis of relationship between soil nutrients and grape qualities for grapery in Xinjiang Manasi [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7):1606-1611.
[12]潘越, 楊璐, 杜林峰, 等.簡(jiǎn)易覆蓋對(duì)新疆阿克蘇北冰紅葡萄果實(shí)品質(zhì)的影響[J]. 中國果樹, 2022,(11):6-11.
PAN Yue, YANG Lu, DU Linfeng, et al.Effects of simple mulch on fruit quality of Beibinghong' grape in Aksu, Xinjiang[J].China Fruits, 2022,(11):6-11.
[13]楊穎瓊.‘北國藍(lán)山葡萄延遲采收果實(shí)品質(zhì)及釀酒特性研究[D]. 長春:吉林農(nóng)業(yè)大學(xué), 2016.
YANG Yingqiong.The study on impacts of delaying harvest time on ‘Beiguo lan fruit quality and oenological characteristics [D]. Changchun:Jilin Agricultural University, 2016.
[14]李曉紅, 曲炳章, 劉雅坤, 等.山葡萄新品種“雪蘭紅”不同株行距和架式對(duì)果實(shí)品質(zhì)及產(chǎn)量的影響[J]. 特產(chǎn)研究, 2013.35(3):31-34.
LI Xiaohong, QU Bingzhang, LIU Yakun, et al.Effect of different plantrow spacing and posture on fruit quality and yield of Vitis Amurensis Rupr.Xuelanhong [J]. Special Wild Economic Animal and Plant Research, 2013, 35(3):31-34.
[15]崔長偉, 劉麗媛, 王華, 等.山葡萄綜合開發(fā)利用研究進(jìn)展[J]. 食品科學(xué), 2015, 36(13):276-282.
CUI Changwei, LIU Liyuan, WANG Hua, et al.Progress in comprehensive utilization of Vitis amurensis rupr.[J]. Food Science, 2015, 36(13):276-282.
[16]龐春燕, 蔡伊莎, 夏亮, 等.分光光度法測(cè)定石灰性土壤陽離子交換量的相關(guān)探討[J]. 綠色科技, 2022, 24(18):206-210.
PANG Chunyan, CAI Yisha, XIA Liang, et al.Related Discussion of Determination of Cation Exchange Capacity(CEC)in Calcareous Soil by Spectrophotometry[J]. Journal of Green Science and Technology, 2022, 24(18):206-210.
[17]Guo K B, Guo Z, Guo Y,et al.The effects of soil nutrient on fruit quality of 'Hayward' kiwifruit(Actinidia chinensis)in Northwest China [J]. European Journal of Horticultural Science, 2020, 85(6):471-476.
[18]Vos C A N. Soil and plant nutrient management and fruit production of papaya(Carica papaya)in Keaau, Hawaii[J]. Journal of Plant Nutrition, 2020, 43(3):384-395.
[19]鄭立陽. 新疆不同小產(chǎn)區(qū)釀酒葡萄品質(zhì)特性的研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2015.
ZHENG Liyang. Research on the quality of the wine grape in subregions of Xinjiang[D]. Yangling:Northwest A & F University, 2015.
[20]Cargnin A.Canonical correlations among grapevine agronomic and processing characteristics[J]. Acta Scientiarum Agronomy, 2019, 41(1)42619.
[21]Gulsoy E, Simsek M, Kara M K, et al.Assessment of Relationship Between Fruit Characteristics of Almond Selections from Aydin Region Using Canonical Correlation Analysis Method [J]. Fresenius Environmental Bulletin, 2018, 27(7).
[22]逯曉萍, 張先煉, 李元清, 等.典型相關(guān)分析在高粱遺傳育種中的應(yīng)用研究[J]. 華北農(nóng)學(xué)報(bào), 2002,(3):46-51.
LU Xiaoping, ZHANG Xianlian, LI Yuanqing, et al.Application Research of Canonical Correlation Analysis in Sorghum Breeding [J]. Acta Agriculturae Boreali-Sinica, 2002,(3):46-51.
[23]Szcs E, T Kállay.Interaction of nutrient supply and crop load of apple trees(Malus domestica Borkh.)[J]. International Journal of Horticultural Science, 2008, 14(112).
[24] Yan M, Zeng X, Zhang B, et al.Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network[J].Phyton-International Journal of Experimental Botany, 2023, 92(1):193-208.
[25]孔婷婷, 劉愛華, 張靜文, 等.石榴園土壤養(yǎng)分與果實(shí)品質(zhì)的多元分析[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 51(3):318-323.
KONG Tingting, LIU Aihua, ZHANG Jingwen, et al.Multivariate analysis between boil nutrients and fruit qualities in pomegranate orchard [J]. Journal of Henan Agricultural University, 2017, 51(3):318-323.
[26]曹勝, 周衛(wèi)軍, 劉沛, 等.冰糖橙果園土壤養(yǎng)分與果實(shí)品質(zhì)關(guān)系的多元分析及優(yōu)化方案[J]. 土壤, 2021, 53(1):97-104.
CAO Sheng, ZHOU Weijun, LIU Pei, et al.Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis(L.)Osbeck Orchard [J]. Soils, 2021, 53(1):97-104.
[27]徐麗, 張海燕, 辛國, 等.核桃土壤養(yǎng)分水平與果實(shí)品質(zhì)相關(guān)性分析[J]. 經(jīng)濟(jì)林研究, 2022, 40(1):74-81.
XU Li, ZHANG Haiyan, XIN Guo, et al.Correlation analysis between soil nutrient and fruit quality of walnut [J]. Non-wood Forest Research, 2022, 40(1):74-81.
[28]劉海峰.山葡萄花色苷生物合成相關(guān)結(jié)構(gòu)基因克隆與表達(dá)[D].哈爾濱:東北林業(yè)大學(xué), 2010.
LIU Haifeng.Cloning and Expression of Anthocyanin Biosynthesis Related Structure Genes in Vitis amurensis [D]. Harbin:Northeast Forestry University, 2010.
[29]He Y, Wen L K, Yu H S, et al.Isolation and structural identification of the main anthocyanin monomer in Vitis amurensis Rupr [J]. Natural Product Research, 2018, 32(7):867-870.
[30]張麗瓊.長期輪作與施肥對(duì)土壤肥力的影響及其綜合評(píng)價(jià)[D]. 楊凌:西北農(nóng)林科技大學(xué), 2016.
ZHANG Liqiong.Effect of Long-Term Rotation and Fertilization to Soil Fertility and Its Comprehensive evaluation [D]. Yangling:Northwest A&F University, 2016.
[31] 汪慧.新疆釀酒葡萄氣候區(qū)劃與品種區(qū)域化研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2010.
WANG Hui.Study on the climatic zoning of viticulture and grapevine variety zoning of Xinjiang [D]. Yangling:Northwest A&F University, 2020.
Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice
WANG Jijiao1,2, PAN Yue2, WANG Shiwei1, HAN Zhengwei2,MA Yong1,2,HU Haifang3, WANG Baoqing4
(1.? College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; 2. Institute of Landscaping, Xinjiang Academy of Forestry, Urumqi 830000, China; 3. Jiamu National Key Forest Seed Breeding Base in Wensu, Xinjiang Academy of Forestry Sciences, Wensu Xinjiang 843100, China; 4. Aksu National Observation and Research Station of Chinese Forest Ecosystem, Wensu Xinjiang 843100, China)
Abstract:【Objective】 To analyze the relationship between soil nutrients and fruit quality of Vitis amurensis Rupr.Beibinghong vineyard in the hope of providing reference for selecting suitable cultivation areas for the grage Beibinghong.
【Methods】? Eight sample sites representing four different habitats of Vitis amurensis Rupr.orchard in Xinjiang were selected to determine fruit quality and soil nutrient factors, and the relationships between them were analyzed using typical correlation and redundancy analyses.
【Results】? The overall coefficients of variation for each indicator of soil nutrients and fruit quality in the eight sample plots ranged from 6.147% to 40.476% and 3.674% to 11.895%, respectively, with the smallest coefficients of variation for pH and total sugar.The relationship between soil available P, available K, cation exchange capacity and fruit total soluble, tannin, totan sugar, total phenols, panicle weight, single fruit weight, individual yield were positively correlated;the relationship between soil alkali-hydrolyzable、cation exchange capacity and fruit anthocyanin,Single fruit weight, individual yield were positively correlated;the relationship between soil organic matter and fruittotal phenols was negatively correlated; Fruit total acids was significantly and positively correlated with soil total nitrogen, and negatively correlated with available K.4 pairs of typical variables explained 75.500% and 94.900% of the information within the soil nutrient and fruit quality groups and 72.100% and 92.100% of the information between the groups; Combined with the coordinate map of typical variables, the ecological area distribution of Yanqi Basin and the northern foot of Tianshan Mountains were relatively concentrated.
【Conclusion】 There were significant differences in the content of soil nutrients between the different 'Beibinghong' fruit orchards, while the differences between the indicators of fruit quality were small, and the differences between soil pH and total fruit candies were not significant; the effect of soil nutrients on fruit quality was significant and correlated with it. The soil environment in Yanqi County、Wensu County and in Urumqi in the wine grape producing areas of Xinjiang is more favourable to the accumulation of nutrients in Beibinghong, which has a significant effect on improving the quality of the 'Beibinghong' fruit.
Key words:grape; soil nutrients; fruit quality; canonical correlation analysis
Fund projects:Key R & D Project of Xinjiang Uygur Autonomous Region(2022B02045-2-3);Autonomous Region "Three Rural" Backbone Talent Training Project(2022SNGGNT084)
Correspondence author: PAN Yue(1990-), male, from Urumqi, Xinjiang. research associate, M.D, research field:tree genetic breeding and fruit cultivation(E-mail)18690187637@163.com
WANG Shiwei(1984-), male, from Urumqi Xinjiang, professor, Ph.D, research field:forest cultivation research(E-mail)wsw850204@163.com