• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of the electron cyclotron emission diagnostic on EXL-50 spherical torus

    2024-04-06 07:16:00YuminWANG王嵎民QifengXIE謝奇峰RenyiTAO陶仁義HuiZHANG張輝XiaokunBO薄曉坤TiantianSUN孫恬恬XiuchunLUN倫秀春LinCHEN陳琳WeiqiangTAN譚偉強(qiáng)DongGUO郭棟BiheDENG鄧必河MinshengLIU劉敏勝andtheEXL50Team
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:奇峰陳琳張輝

    Yumin WANG (王嵎民) ,Qifeng XIE (謝奇峰) ,Renyi TAO (陶仁義) ,Hui ZHANG (張輝) ,Xiaokun BO (薄曉坤) ,Tiantian SUN (孫恬恬) ,Xiuchun LUN (倫秀春),Lin CHEN (陳琳),Weiqiang TAN (譚偉強(qiáng)),Dong GUO (郭棟),Bihe DENG (鄧必河),Minsheng LIU (劉敏勝) and the EXL-50 Team

    1 Hebei Key Laboratory of Compact Fusion,Langfang 065001,People’s Republic of China

    2 ENN Science and Technology Development Co.,Ltd.,Langfang 065001,People’s Republic of China

    Abstract The electron cyclotron emission (ECE) diagnostic system has been developed on the ENN spherical torus (EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band (4-8 GHz),X-band (8-12 GHz),Ku-band (12-18 GHz),K-band (18-26.5 GHz) and K α-band (26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and K α-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system’s performance and capabilities.

    Keywords: electron cyclotron emission,spherical torus (ST),EXL-50,energetic electrons

    1.Introduction

    The measurement of electron cyclotron emission (ECE) is a valuable technique for evaluating plasma parameters in magnetic confinement devices.The ECE system provides a high spatial and temporal resolution of the electron temperature profile,provided that the optical thickness condition is met [1].In typical magnetic confinement devices,the magnetic field ranges from several Tesla.The frequency of the ECE radiation,which is proportional to the magnetic field,falls in the millimeter wave range.Over the past several decades,various techniques have been developed to measure ECE radiation,including Fourier transform spectrometry [2],Fabry-Pérot interferometry [3],grating polychromators [4] and heterodyne radiometers [5,6].Heterodyne radiometry is a commonly used technique for ECE measurements as it offers high temporal and spatial resolution.This technique has been developed and applied to various fusion devices,for example JET [7],DIII-D [8],JT-60U[9],HL-2A [10] and EAST [6].

    Future fusion devices will require steady-state operation with a high plasma current,where a significant fraction of the total plasma current will be generated by the bootstrap current and non-inductive current driven by auxiliary systems.In the lower density domain,lower hybrid current drive (LHCD) is a highly efficient method for generating non-inductive current [11].The use of LHCD generates a non-Maxwellian electron velocity distribution function with high-energy tails.The presence of these superthermal electrons breaks the optical thickness assumption and enables the ECE diagnostic for measuring the energetic electron distribution perpendicular to the magnetic field [12,13].

    Fundamental X-mode electron cyclotron resonance heating (ECRH) is a highly efficient current drive method during the start-up regime and has the potential to enhance the design of solenoid-free fusion reactors [14].In EXL-50 ECRH,O-mode operation is used during the plasma start-up phase.During the plasma low-density regime,energetic electrons can be generated by the high power ECRH.The optical depth,τ,could be less than 1 for the energetic electrons,i.e.,the optical thin condition is satisfied.However,the strong relativistic frequency down-shift will affect the interpretation of data [15].A forward model with a fully relativistic absorption coefficient including the non-thermal distribution has been used to interpret the ECE data with high power ECRH in ASDEX Upgrade [16].The non-thermal electrons produced by electron cyclotron current drive could severely distort the ECE temperature profile measured calculated by the NOTEC code [17].ECE can still be a powerful tool for evaluating the emission of energetic electrons.

    The paper is structured as follows.In section 2,the system design of the ECE system,as well as an introduction to the EXL-50 device,is presented.Section 3 showcases the experimental results obtained from the ECE system.Finally,section 4 provides a summary of the findings and conclusions drawn from the study.

    2.System design

    This section will introduce the EXL-50 ST device,providing essential background information on the tokamak and its operation.After presenting the properties of the EXL-50 device,the section focuses on the design and installation of the ECE diagnostic system.

    2.1.The EXL-50 spherical torus

    Compared to conventional tokamaks,the spherical torus(ST) has a lower aspect ratio of around 1.5,which is defined as the ratio between the major radiusRand the minor radiusaof the device [18].Experiments on ST devices,such as START [19],NSTX [20] and MAST [21],have shown that they can achieve higher plasma beta compared to conventional tokamaks.The compact design of ST devices also makes them a potential better candidate device for commercial fusion.

    The EXL-50 device is based on the concept of the ST but with the central solenoid (CS) coils removed to address the limitation of space in the central post.The device is designed to achieve a plasma current,Ip,of 500 kA,with a magnetic field of 0.41 T at a distance of 0.5 m from the device’s center.The major and minor radii of EXL-50 are 0.58 m and 0.39 m,respectively.In the absence of the CS coils,the plasma current in the EXL-50 device is driven and maintained solely by ECRH.In the EXL-50 experiments,the plasma current can reach as high as 80-100 kA at the lineintegrated density at 0.8×1019m-2[22].The EXL-50 device is equipped with five gyrotrons,which are used to generate high-power microwaves for ECRH.One of the gyrotrons has a power output of 50 kW at a frequency of 28 GHz,operating in O-mode.Three of the gyrotrons generate microwaves at a frequency of 28 GHz and the output power of 200 kW,and two of them operating in O-mode and one in X-mode.The fifth gyrotron generates microwaves at a frequency of 50 GHz and a power output of 200 kW,operating in X-mode.Experimental results from the EXL-50 device have shown that the plasma current is primarily carried by energetic electrons both inside and outside the separatrix [23].The energetic electrons inside the last closed-flux surface (LCFS)with energy range from 20 keV to 600 keV have been detected using a hard X-ray diagnostic array [24].Given this energetic electron distribution,there is a need for energetic particle diagnostics.

    2.2.Frequency of the ECE diagnostics

    The frequency of the ECE is determined by the magnetic field,given by equation

    wheremis the electron mass,Bis the magnetic field andn=1,2,3 is the harmonic number. γ=is the relativistic factor,which is very important for energetic electrons.The frequency of the ECE diagnostics for EXL-50 is shown in figure 1.The frequency of the ECRH is indicated by the vertical dashed line in the graph,while the radial profile of the energetic electrons,given by the three-fluid equilibrium,is shown by the dashed curve.The three-fluid equilibrium consists of two electron fluids with different temperatures and one ion fluid has been successfully applied to the TST-2 spherical tokamak [25].The ECE diagnostic system,which operates at frequencies ranging from 4 to 40 GHz,is composed of five frequency bands: C-band (4-8 GHz),X-band (8 -12 GHz),Ku-band (12 -18 GHz),Kband (18 -26.5 GHz) and K α-band (26.5 -40 GHz).

    The ECE diagnostic system is composed of five subsystems,each designed to operate within a specific frequency band.On the EXL-50 device,the ECE diagnostic system uses the K-and K α-bands for horizontal detection from the low-field side,while the C-,X-and Ku-bands are used for vertical detection from the bottom of the device.This configuration is shown by the vertical dashed line in figure 1.

    Figure 1.The frequency of the ECE diagnostics on the EXL-50 ST.The dashed curve shows the profile of the energetic electrons given by three-fluid equilibrium.The solid curves show the ECE with the from fundamental to its fifth harmonics.The triangles and circles denote the radial locations of the K-and K α-band subsystems.

    The ECE diagnostic system on the EXL-50 device can detect both fundamental and higher frequencies of ECE microwaves from the low-field side in the mid-plane.It is important to note that,on the EXL-50 device,the ECE microwaves emitted by the energetic electrons at fundamental and higher harmonics are optically thin.Therefore,these microwaves cannot be used to accurately calculate the temperature of the energetic electrons.The subsystems operating in the K-and K α-band frequencies are employed for ECE measurements from the low-field side and for determining the entire emission power spectrum within this frequency range.The radial and poloidal locations of the ECE subsystems are shown in figure 2.

    ECE measurements at lower frequencies are utilized to detect the vertical region around the magnetic axis,i.e.,R=0.7 m,with the objective of tracking the time evolution of energetic electrons.The detection frequencies of the ECE subsystems are summarized in table 1.The receiving bandwidth after the amplifiers for every channel is 250 kHz.

    2.3.Subsystems

    The system layout,integration and installation will be given in detail in this section.

    2.3.1.K-and Kα-band subsystemsAs mentioned above,when the heating and current drive on EXL-50 use ECRH alone,the components of the K-and K α-band subsystems can be damaged by the stray radiation from the ECRH collected by the antennas.For each subsystem,a notch filter with a bandwidth of 100 MHz and high attenuation of 60 dB is employed.A Gens oscillator at the frequency of 28 GHz,same as the frequency of ECRH,is used as a local oscillator to lower the frequency of the detected ECE signals.The output power of the oscillator is 20 dBm and phase-locking is applied.Low-pass and band-pass filters are employed to enhance the system’s signal-to-noise ratio,and their parameters presented as shown in figure 3.Low-noise amplifiers with a noise figure of 2.5 are used after the mixer and filters.After the detector,the detected signals are amplified using amplifiers with four selectable gains of 10 dB,13 dB,17 dB and 20 dB,each with a noise figure of 3.0.The maximum power of the stray electron cyclotron radiation is estimated to be several Watts after being received by the antennas.A power limiter with a working frequency range of 4 -40 GHz is employed to protect the system from strong stray electron cyclotron radiation.The power limiter has a maximum leakage power of 13 dBm and a maximum peak power of 2 W.A photograph of the two subsystems is shown in figure 4.

    Figure 2.The detection location of the ECE subsystems.(a) Vertical view of the detection location of the ECE subsystems.The K-and K αband subsystems detect horizontally from the low-field side,and the C-,X-and Ku-band subsystems detect vertically at R=0.7 m.(b) Birds-eye view of the detection location of the subsystems.The vertical detection is located at 210° and the horizontal detection is located at 270° ports.

    Figure 3.The layout of the subsystems.(a) The K-band and (b) the K α-band.

    A quasi-optical system has been designed and installed for horizontal detection,sharing the same detection port as a hard X-ray array.Two convex lenses at the diameter of 150 mm are used to adjust the beam waist location,as shown in figure 5(a).The quasi-optical system is used to redirect the ECE emitted from the plasma with K α-and K-band at the top and bottom,respectively.A photograph of the quasioptical systems is shown in figure 5(b) .It should be mentioned that the radius of the detection window for horizontal detection is 75 mm,so the beam waist is located at 1210 mm away from central post,i.e.,outside the separatrix of the plasma.The lead shielding of the hard X-ray array detectors restricts the distance of the plane reflector to the detection port to less than 10 mm,making it challenging to place the beam waist at the magnetic axis.The location of the beam is moved away from the magnetic axis,so the maximum ECE power of the energetic electrons can be collected by the antennas.The beam profile at each location is given in figure 5(c).A Gaussian beam approximation is utilized based on the specific pattern of the horn antenna implemented in each subsystem.The antennas have a gain exceeding 20 dBi,a side-lobe suppression greater than 12 dB and a 3 dB bandwidth less than 18° for both the K α-and Kband subsystems.

    Figure 4.Photograph of the integrated K-and K α-band subsystems.

    Figure 5.The layout of the subsystems.(a) Schematic of the quasi-optical system for horizontal observation and (b) photograph of the installed optical system.(c) The beam profile at each location.

    2.3.2.C-,X-and Ku-band systemsThree ECE systems operating at lower frequencies are developed on EXL-50.The schematic of the subsystems is shown in figure 6.Table 1 provides the detection frequencies of the subsystems.The integrated subsystems are shown in figure 7.As the lowerfrequency ECE systems do not require notch filters or local oscillators,the system can be made more compact.Low-loss cables with the cut-off frequency at 18.5 GHz are used to connect the antenna and other parts of the subsystems,which isolate the stray electron cyclotron radiation.

    Table 1.Physical objective and frequencies of the ECE subsystem.

    Figure 6.The schematic of the X-,C-and Ku-band subsystems.The width of the band-pass filter is 1 GHz,i.e.,Δ f=500 MHz.

    Figure 7.Photograph of the integrated X-,C-and Ku-band subsystems.

    The detection horns and lenses are suspended vertically from the bottom of the vacuum vessel for the lowerfrequency ECE systems.Due to the limitations of the detection space,only one subsystem can be used during experiments.The Ku-and X-band subsystems utilize antennas with a gain greater than 20 dBi and a 3 dB bandwidth less than 19°.In contrast,the C-band subsystem employs an antenna with a gain of 15 dBi and a 3 dB bandwidth of approximately 30°.This results in more significant non-localized measurements that require improvement in future updates.

    3.Experimental results

    This section presents the preliminary experimental results,which are aimed at evaluating the performance of the ECE diagnostics.

    3.1.ECE signals at high plasma densities

    The time traces of EXL-50 shot No.19813 are shown in figure 8.In this shot,the plasma is ionized by ECRH at 50 kW,shown by the solid curves in figure 8(c),and maintained by ECRH at 170 kW,shown in the broken curves in figure 8(c).The electron density increases abruptly by gas puffing at 2.5 s,as shown in figure 8(b).The ion temperature remains almost unchanged,as shown in figure 8(d).Both the plasma current and the ECE intensity decrease sharply as the electron density increases,which indicates the cutoff of the ECE at high density.The time evolutions of ECE signals measured by the K-and K α-band subsystems are shown in figure 9.It is found that the cutoff of ECE signals is observed in every channel of the K-and K α-bands subsystems.It is worth noting that the time evolutions of the plasma current and the ECE intensity for each channel exhibit the same trend.A large noise level can be found in the low-density phase,i.e.,at the time range from 0 s to 2.5 s,possibly due to stray electron cyclotron radiation.No significant changes were observed in the last two channels,with detection frequencies at 37 GHz and 39 GHz,of the K αband subsystem,mainly because their cold resonance locations of the detection go further into the center post at this magnetic field.It can be seen that the amplitudes of the detected ECE signals of the two subsystems is quite different,as shown in figure 9.The difference in amplitude could be attributed to the separation in the antenna systems used in the two subsystems.To accurately measure the spectrum of ECE produced by energetic electrons,absolute calibration of the subsystems is necessary.

    Figure 8.The waveforms of the EXL-50 shot No.19813.(a) The plasma current,(b) the line averaged plasma density,(c) the ECRH signals,(d) the ion temperature and (e) the ECE intensity in the Kband subsystem with the frequency at 25.5 GHz,which detects horizontally from the low-field side in the mid-plane.

    3.2.Modulation of ECE during SMBI

    The density can be modulated by supersonic molecular beam injection (SMBI) and the time evolution of shot No.20667 with SMBI can be found in figure 10.The results indicate that the intensity of the ECE signals for both K-and Kuband subsystems changes in correlation with the plasma current,while the intensity of ECE signals is inversely correlated with the plasma density.The observed behavior of the signals suggests that the number of energetic electrons decreases at higher density due to increased collisionality,while it increases at lower density due to lower collisionality.The ECE signals for the K-and K α-band subsystems display significant fluctuations,including spikes,which could be attributed to stray ECRH radiation.

    3.3.X-and C-band subsystems

    Figure 10.Time traces of the ECE intensities for K-and Ku-band subsystems during density modulation experiments using SMBI.(a) and(b) Plasma current and density,respectively.(c1)-(h1) The detected signals from the K-band subsystem.(c2)-(h2) The detected signals from the Ku-band subsystem.

    The X-and C-band subsystems are also tested on EXL-50,and the signals are shown in figure 11.It is clearly found that the intensity of the ECE correlates with the plasma current,which is similar to other subsystems.Two channels of Cband subsystems saturated at high plasma current due to the high gain of amplifier,which will be addressed in the future.It should be pointed out that the C-,X-and Ku-band subsystems use one vertical port,so only one subsystem can be used in one shot.

    4.Summary and prospect

    Figure 11.Time traces of shot Nos.21202 and 21215.The X-band subsystem is used in shot No.21202 and shown in subpanels (c)-(f),and the C-band subsystem used in shot No.21215 is shown in (h)-(k).

    The ECE diagnostic system for energetic electrons has been developed and installed on the EXL-50 ST.The system consists of five subsystems,i.e.,the C-,X,Ku-,K and K αband subsystems.The K-and K α-band subsystems detect horizontally to measure the radiation spectrum for energetic electrons with energy ranging from 20 keV to 600 keV.These subsystems share the same diagnostic ports as high Xray array diagnostics and use quasi-optical systems to redirect the ECE signals.The C-,X-and Ku-band subsystems detect vertically from the bottom of the device and will eventually be used to evaluate the time evolution of the energetic electrons.Preliminary results show that the amplitude of the ECE signals correlate with the plasma current.

    Future updates of the system are needed.Firstly,the absolute calibration of the subsystem using hot sources is needed to measure the spectrum of the ECE from energetic electrons.Currently,the intensity of ECE measured by two separate subsystems cannot be used to evaluate the ECE spectrum.Secondly,the gain of the amplifier needs to be optimized since the signal saturated at higher plasma current.An update to the quasi-optical system is required in terms of diagnostic port arrangement,which will enable the beam waist to be set within the plasma region.Fluctuations are observed in the K-and K α-band subsystems when ECRH is applied and further investigation is required to identify methods for resolving this issue.One potential solution is to use a power limiter with a higher maximum peak power.After these updates,the velocity distribution of the energetic electrons could be also estimated together with ray-tracing models such as SPECE [26].A significant part of the detected radiation could be directed synchrotron radiation,which needs further simulation and experiments to interpretate the measured ECE signals.

    Acknowledgments

    The authors would like to express their gratitude to Dr.Y.-K.Martin Peng for his valuable suggestions and assistance in improving the overall language of this paper.This work is performed under the auspices of National Natural Science Foundation of China (No.11605244).This work is supported by the High-End Talents Program of Hebei Province,Innovative Approaches towards Development of Carbon-Free Clean Fusion Energy (No.2021HBQZYCSB006).

    猜你喜歡
    奇峰陳琳張輝
    The Effects of θ on Stability in the θ-Milstein Method for Stochastic Differential Equations
    陳琳作品《一口清茶,板栗飄香》
    大眾文藝(2022年16期)2022-09-07 03:07:44
    張輝名師工作室
    奇峰出云含美意——天柱山掠影
    中老年保健(2021年2期)2021-08-22 07:30:56
    《中國畫鑒賞》之搜盡奇峰打草稿
    張輝
    書香兩岸(2020年3期)2020-06-29 12:33:45
    陶刻“奇峰疊翠四方瓶”的創(chuàng)作感悟
    山東陶瓷(2020年5期)2020-03-19 01:35:46
    張輝
    沒有絕對的天分,也沒有絕對的天才——指揮家陳琳專訪
    喜鵲 “驚魂”
    国产主播在线观看一区二区| 禁无遮挡网站| 欧美成人免费av一区二区三区| 日日夜夜操网爽| 日韩精品中文字幕看吧| 人人妻,人人澡人人爽秒播| 亚洲精品色激情综合| 麻豆av在线久日| 久久久久国产一级毛片高清牌| 脱女人内裤的视频| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 搡老妇女老女人老熟妇| 国产单亲对白刺激| 老司机深夜福利视频在线观看| 91字幕亚洲| 久久中文看片网| 一个人观看的视频www高清免费观看 | 国产欧美日韩一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 黄片小视频在线播放| cao死你这个sao货| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 国产黄色小视频在线观看| 可以在线观看的亚洲视频| 黄色a级毛片大全视频| 在线观看66精品国产| 在线观看一区二区三区| 国产成人精品无人区| 久久精品国产99精品国产亚洲性色| 亚洲成av人片在线播放无| 精品电影一区二区在线| 长腿黑丝高跟| 别揉我奶头~嗯~啊~动态视频| 精品欧美一区二区三区在线| 久久热在线av| 久久午夜综合久久蜜桃| 一级毛片精品| 在线十欧美十亚洲十日本专区| 午夜激情av网站| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 国产蜜桃级精品一区二区三区| 天堂动漫精品| 国产伦人伦偷精品视频| 高清毛片免费观看视频网站| 两人在一起打扑克的视频| 人妻久久中文字幕网| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 欧美又色又爽又黄视频| 国产精品久久久人人做人人爽| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 国产精品自产拍在线观看55亚洲| 美女 人体艺术 gogo| 麻豆一二三区av精品| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 亚洲成人免费电影在线观看| av有码第一页| 精品无人区乱码1区二区| 久久久久久久久中文| 此物有八面人人有两片| 亚洲精品中文字幕一二三四区| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 亚洲欧美日韩无卡精品| 日本 欧美在线| 日本在线视频免费播放| 久热爱精品视频在线9| 99久久精品热视频| 欧美色视频一区免费| 脱女人内裤的视频| 18禁观看日本| 18禁美女被吸乳视频| 老司机午夜福利在线观看视频| 日本熟妇午夜| 1024香蕉在线观看| 两性夫妻黄色片| 国内精品久久久久精免费| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 久久久水蜜桃国产精品网| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| www日本黄色视频网| 日韩av在线大香蕉| 成人18禁在线播放| 色哟哟哟哟哟哟| 日韩三级视频一区二区三区| 久久久国产成人精品二区| 日本熟妇午夜| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 国产精品电影一区二区三区| 美女大奶头视频| 亚洲av熟女| 亚洲国产精品久久男人天堂| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 天堂影院成人在线观看| 国产高清视频在线播放一区| 日韩欧美免费精品| 老司机福利观看| 欧美精品亚洲一区二区| 国产黄a三级三级三级人| 午夜老司机福利片| 无限看片的www在线观看| 亚洲国产看品久久| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 国产av在哪里看| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 亚洲精品在线美女| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 黄片大片在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人中文字幕在线播放| 欧美色视频一区免费| 在线国产一区二区在线| 男女下面进入的视频免费午夜| 免费看十八禁软件| netflix在线观看网站| 五月伊人婷婷丁香| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 午夜两性在线视频| 99国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 国产av麻豆久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利18| 欧美黑人欧美精品刺激| 欧美黑人巨大hd| 国产成人欧美在线观看| 一级毛片高清免费大全| 日本黄大片高清| 亚洲激情在线av| 亚洲精品中文字幕一二三四区| 免费在线观看成人毛片| 免费观看精品视频网站| 在线a可以看的网站| 99re在线观看精品视频| 又大又爽又粗| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 亚洲成av人片免费观看| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 日本a在线网址| 欧美久久黑人一区二区| 色在线成人网| 一本久久中文字幕| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 成人手机av| 国产v大片淫在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 日本a在线网址| 日韩大码丰满熟妇| 欧美3d第一页| 看黄色毛片网站| 午夜视频精品福利| 中文字幕人妻丝袜一区二区| a在线观看视频网站| 国产激情久久老熟女| 欧美 亚洲 国产 日韩一| 99国产极品粉嫩在线观看| 九九热线精品视视频播放| 操出白浆在线播放| 亚洲av成人精品一区久久| 变态另类丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 国内少妇人妻偷人精品xxx网站 | 久99久视频精品免费| 在线观看舔阴道视频| 亚洲美女视频黄频| 国产69精品久久久久777片 | 国产精品久久久人人做人人爽| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 在线观看美女被高潮喷水网站 | avwww免费| 久久久国产成人免费| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 男人的好看免费观看在线视频 | 99riav亚洲国产免费| 成人精品一区二区免费| 黄片小视频在线播放| 女人被狂操c到高潮| 精品国产亚洲在线| 岛国在线免费视频观看| 99久久99久久久精品蜜桃| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 免费观看精品视频网站| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 午夜福利免费观看在线| 黄色a级毛片大全视频| 丁香欧美五月| 中文字幕精品亚洲无线码一区| 又紧又爽又黄一区二区| 69av精品久久久久久| 国产av麻豆久久久久久久| 久久这里只有精品中国| 少妇的丰满在线观看| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 日韩欧美国产在线观看| 久久国产乱子伦精品免费另类| 91国产中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 男女下面进入的视频免费午夜| 无人区码免费观看不卡| 悠悠久久av| 欧美黑人巨大hd| 9191精品国产免费久久| 88av欧美| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 久久性视频一级片| 黑人巨大精品欧美一区二区mp4| 香蕉丝袜av| 亚洲在线自拍视频| 一区福利在线观看| 性欧美人与动物交配| 少妇粗大呻吟视频| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| 中文字幕熟女人妻在线| 天堂av国产一区二区熟女人妻 | 国产精品久久电影中文字幕| 日韩欧美精品v在线| 欧美人与性动交α欧美精品济南到| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 黑人欧美特级aaaaaa片| 久久这里只有精品中国| 欧美日韩亚洲国产一区二区在线观看| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 啪啪无遮挡十八禁网站| 超碰成人久久| 国产精品一及| 久久久国产成人免费| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 好看av亚洲va欧美ⅴa在| 亚洲熟妇熟女久久| 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜| 97超级碰碰碰精品色视频在线观看| 久久婷婷成人综合色麻豆| 一级片免费观看大全| 亚洲国产日韩欧美精品在线观看 | 搡老岳熟女国产| 国产成人影院久久av| 成人国语在线视频| 日日干狠狠操夜夜爽| 国产精品美女特级片免费视频播放器 | 大型av网站在线播放| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 后天国语完整版免费观看| 窝窝影院91人妻| 亚洲乱码一区二区免费版| 亚洲一码二码三码区别大吗| 国产久久久一区二区三区| 午夜两性在线视频| 天堂√8在线中文| 很黄的视频免费| 国产精品国产高清国产av| 国产欧美日韩一区二区三| 真人一进一出gif抽搐免费| 成年版毛片免费区| 两个人视频免费观看高清| 中文资源天堂在线| 淫秽高清视频在线观看| 一级毛片高清免费大全| 久久精品综合一区二区三区| 精品国产乱子伦一区二区三区| 国产av一区二区精品久久| 精品久久蜜臀av无| 人人妻,人人澡人人爽秒播| 国产真实乱freesex| 在线a可以看的网站| 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 国产精品爽爽va在线观看网站| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 麻豆成人午夜福利视频| 最近最新免费中文字幕在线| svipshipincom国产片| 在线观看www视频免费| 国产成人精品久久二区二区91| netflix在线观看网站| 床上黄色一级片| 欧美久久黑人一区二区| 国产成年人精品一区二区| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 美女午夜性视频免费| 亚洲免费av在线视频| 午夜福利在线在线| 成年免费大片在线观看| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| aaaaa片日本免费| 色哟哟哟哟哟哟| 青草久久国产| 亚洲人成网站在线播放欧美日韩| 午夜福利视频1000在线观看| 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 久久婷婷成人综合色麻豆| 香蕉国产在线看| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 动漫黄色视频在线观看| 久久久国产成人免费| 国产一区二区三区视频了| 两性夫妻黄色片| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区色噜噜| 成年人黄色毛片网站| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 老司机靠b影院| 99在线视频只有这里精品首页| 亚洲一区二区三区色噜噜| 成年人黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看 | 18禁美女被吸乳视频| 欧美 亚洲 国产 日韩一| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 听说在线观看完整版免费高清| 国产成人精品久久二区二区免费| 嫩草影院精品99| 99久久99久久久精品蜜桃| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 亚洲精品中文字幕一二三四区| 亚洲最大成人中文| 啪啪无遮挡十八禁网站| 欧美成人午夜精品| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2| 香蕉国产在线看| 妹子高潮喷水视频| 国产成人aa在线观看| 好男人电影高清在线观看| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 色综合欧美亚洲国产小说| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 一a级毛片在线观看| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 亚洲天堂国产精品一区在线| 久久中文看片网| 亚洲人成网站高清观看| 亚洲精品粉嫩美女一区| 香蕉久久夜色| 男女视频在线观看网站免费 | 欧美日韩一级在线毛片| 大型黄色视频在线免费观看| 欧美3d第一页| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 亚洲av成人精品一区久久| 十八禁网站免费在线| 国产激情偷乱视频一区二区| 少妇裸体淫交视频免费看高清 | 久久精品综合一区二区三区| 成人永久免费在线观看视频| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 免费看日本二区| 国产又色又爽无遮挡免费看| 高清在线国产一区| 天堂√8在线中文| 亚洲中文日韩欧美视频| а√天堂www在线а√下载| 国产乱人伦免费视频| 黄片大片在线免费观看| 亚洲 国产 在线| 亚洲免费av在线视频| 日韩 欧美 亚洲 中文字幕| 国产片内射在线| 欧美黑人欧美精品刺激| 日韩欧美在线乱码| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 久久性视频一级片| 波多野结衣高清无吗| 免费看日本二区| 亚洲男人的天堂狠狠| 精品熟女少妇八av免费久了| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 日日夜夜操网爽| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 在线看三级毛片| 久久久久久九九精品二区国产 | 在线国产一区二区在线| 哪里可以看免费的av片| 最近最新中文字幕大全电影3| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产午夜福利久久久久久| 国模一区二区三区四区视频 | 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 一本大道久久a久久精品| 午夜福利免费观看在线| 日日爽夜夜爽网站| 天天一区二区日本电影三级| 国产精品久久久久久亚洲av鲁大| 日韩高清综合在线| 精品福利观看| а√天堂www在线а√下载| 香蕉久久夜色| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| 日韩欧美在线二视频| 日韩 欧美 亚洲 中文字幕| 精品久久蜜臀av无| 久久人人精品亚洲av| 狂野欧美白嫩少妇大欣赏| 成人av一区二区三区在线看| 禁无遮挡网站| 成人特级黄色片久久久久久久| 国产精品 国内视频| 婷婷亚洲欧美| 亚洲一码二码三码区别大吗| 少妇熟女aⅴ在线视频| 一夜夜www| 一本大道久久a久久精品| 淫秽高清视频在线观看| 脱女人内裤的视频| 亚洲av美国av| 国产精品久久电影中文字幕| 99热这里只有是精品50| 男人舔女人下体高潮全视频| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 久久香蕉精品热| 免费看十八禁软件| 在线a可以看的网站| 中国美女看黄片| 手机成人av网站| 免费搜索国产男女视频| 一边摸一边做爽爽视频免费| 久久久久国内视频| 熟女电影av网| 青草久久国产| 色哟哟哟哟哟哟| 欧美人与性动交α欧美精品济南到| 国产高清视频在线观看网站| 国产精品 欧美亚洲| 男女做爰动态图高潮gif福利片| 亚洲一区高清亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品欧美一区二区三区在线| 亚洲欧美日韩无卡精品| 免费看日本二区| 国产精品香港三级国产av潘金莲| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 中文字幕最新亚洲高清| 听说在线观看完整版免费高清| 三级男女做爰猛烈吃奶摸视频| 国产麻豆成人av免费视频| 一区福利在线观看| 看片在线看免费视频| 69av精品久久久久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影不卡..在线观看| 国产一区二区在线av高清观看| 欧美激情久久久久久爽电影| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲乱码一区二区免费版| 91大片在线观看| 国产精品精品国产色婷婷| 国产亚洲av高清不卡| aaaaa片日本免费| 欧美午夜高清在线| 亚洲av成人一区二区三| 久久久久国内视频| 亚洲精品一区av在线观看| 中文在线观看免费www的网站 | 国产精品一区二区免费欧美| 国产黄色小视频在线观看| 不卡一级毛片| 亚洲第一欧美日韩一区二区三区| 国产av不卡久久| 婷婷亚洲欧美| 无人区码免费观看不卡| 国产欧美日韩一区二区三| 韩国av一区二区三区四区| 嫁个100分男人电影在线观看| 国产av在哪里看| 国产人伦9x9x在线观看| 欧美日韩亚洲综合一区二区三区_| 中文亚洲av片在线观看爽| 国产69精品久久久久777片 | 国产成人精品无人区| 亚洲精品中文字幕在线视频| 色av中文字幕| av有码第一页| 精品少妇一区二区三区视频日本电影| 非洲黑人性xxxx精品又粗又长| 亚洲激情在线av| 91九色精品人成在线观看| 禁无遮挡网站| 美女午夜性视频免费| 高潮久久久久久久久久久不卡| 国产成人精品无人区| 一区二区三区高清视频在线| 熟女少妇亚洲综合色aaa.| 长腿黑丝高跟| 国产精品乱码一区二三区的特点| 桃红色精品国产亚洲av| 欧美又色又爽又黄视频| 男女那种视频在线观看| 听说在线观看完整版免费高清| 动漫黄色视频在线观看| 成熟少妇高潮喷水视频| 久久久久久大精品| 全区人妻精品视频| 狂野欧美激情性xxxx| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 女人被狂操c到高潮| 亚洲熟妇熟女久久| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 变态另类丝袜制服| 久热爱精品视频在线9| 亚洲一区高清亚洲精品| 日韩三级视频一区二区三区| 久热爱精品视频在线9| 国产69精品久久久久777片 | av福利片在线| 色综合亚洲欧美另类图片| 国产亚洲精品av在线| 国产av又大| 一区福利在线观看| 亚洲国产日韩欧美精品在线观看 | 制服丝袜大香蕉在线| 一进一出抽搐gif免费好疼| 精品久久久久久久久久久久久| 国产伦人伦偷精品视频| 久久久久久人人人人人| 级片在线观看| 狠狠狠狠99中文字幕| 久久久久久九九精品二区国产 | 免费av毛片视频| 亚洲专区字幕在线| 免费在线观看黄色视频的| 宅男免费午夜| 99国产精品一区二区三区| 无人区码免费观看不卡| 男女床上黄色一级片免费看| 欧美精品亚洲一区二区| 女人被狂操c到高潮| 亚洲中文av在线| 日本黄色视频三级网站网址| 精品久久久久久成人av|