• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory observation of electron energy distribution near three-dimensional magnetic nulls

    2024-04-06 07:16:00RenchuanHE何任川TianchaoXU徐田超XiaoyiYANG楊肖易ChijieXIAO肖池階ZuyuZHANG張祖煜RuixinYUAN袁瑞鑫XiaogangWANG王曉鋼ZhibinGUO郭志彬XiumingYU余修銘andYueGE蓋躍
    Plasma Science and Technology 2024年3期

    Renchuan HE (何任川) ,Tianchao XU (徐田超),* ,Xiaoyi YANG (楊肖易), ,Chijie XIAO (肖池階),* ,Zuyu ZHANG (張祖煜) ,Ruixin YUAN (袁瑞鑫) ,Xiaogang WANG (王曉鋼),Zhibin GUO (郭志彬),Xiuming YU (余修銘) and Yue GE (蓋躍)

    1 State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,People’s Republic of China

    2 Department of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    Abstract The acceleration of electrons near three-dimensional (3D) magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test (PPT) device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions (EDFs) at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(ve~7vAlfvén-e) and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.

    Keywords: electron acceleration,EEDF,3D magnetic null,magnetic reconnection(Some figures may appear in colour only in the online journal)

    1.Introduction

    Magnetic reconnection is a ubiquitous phenomenon that extends across various scales and dimensions,during which magnetic energy is quickly transformed into kinetic and thermal energy of plasma [1-6].Evidenced by observations of solar flares,reconnection-driven acceleration has proved to be an effective medium for the conversion of magnetic energy into electron kinetic energy [7].As a result,magnetic reconnection accounts for numerous astrophysical phenomena.The most notable of these are characterized by the generation of high-energy particles,including stellar flares[2] and gamma-ray bursts [8].According to previous studies on 3D magnetic nulls and reconnection in space plasmas,the reversal of magnetic field direction is related to the distribution of high-speed flows,which provides a useful criterion for the occurrence of reconnection [6,8-10].Local observations in space cannot effectively reflect the macroscopic properties of magnetic null topology,and remote sensing of magnetic nulls on the solar surface cannot perform high spatial resolutions [1,5,6,11,12].Laboratory observations can compensate for the aforementioned shortcomings.There are many laboratory observations on particle acceleration under two-dimensional magnetic null topology [9,13].For example,observed in the experiment on the Magnetic Reconnection Experiment (MRX) device,electrons are accelerated to several times the local Alfvén velocity near two-dimensional magnetic nulls [13].The scale of the region where accelerated electrons exist is in the order of electron skin depth.Previous studies manifest a Quasi-separatrix Layer (QSL) with hyperbolic flux tube (HFT) geometry between magnetic flux ropes has been experimentally observed in the Large Plasma Device (LAPD) at UCLA [14]and in the linear device VINETA II at the Max-Planck-Institute [15].The Madison Plasma Dynamo Experiment(MPDX) and the Terrestrial Reconnection Experiment(TREX) are designed to study plasma processes related to astrophysics including antiparallel reconnection,strong guide-field reconnection and 3D reconnection [16].However,there is a paucity of research on electron acceleration in 3D magnetic null points in laboratory settings.Such experiments have the potential to offer not only precise diagnosis of localized electron distribution functions but also insight into the relationship between accelerated electron distribution and macroscopic magnetic topology structures[17-19].

    In the 3D magnetic null experiment conducted on the PPT device,an electric field was observed along the axis in an area approximately 4deaway from a magnetic null.Considering that electrons in the vicinity of magnetic nulls are decoupled from magnetic field lines,electrons in demagnetized plasma may be accelerated by electric fields.In subsequent experiments,utilizing Mach probes with scanning bias voltage,electron flows with velocityv=7vAlfvénnear the magnetic nulls were observed to exist in an area about 4delong inside the separatrix.

    2.Experimental method

    In order to study the plasma in 3D magnetic null configurations,we constructed the magnetic configuration shown in figure 1(a) on the PPT device [20-22].As illustrated in figure 1(c),a hollow cylindrical permanent magnet is placed on the central axis of the PPT device,with an outer diameter of 152 mm,an 88 mm inner diameter and a length of 140 mm.The magnetic field of this permanent magnet is superimposed with the magnetic field generated by the Helmholtz coils to form the magnetic configuration shown in figure 1(a).The white straight line in the middle is the γ-line of this magnetic null configuration,and the white closed curve is the separatrix connecting two magnetic nulls.The size of the closed field line area in the 3D magnetic null configuration can be adjusted by the current of the Helmholtz coils.When the current of the Helmholtz coils is adjusted from 100 A to 200 A,the background magnetic field changes from 260 G to 525 G,and the maximum distance from the separatrix to the central axis decreases from 130 mm to 90 mm,which is shown in figure 2.

    In the magnetic null experiment,the discharge power of the helicon plasma source is 1500 W.The working pressure is 0.5 Pa,and the plasma density can reach up to 1012cm-3when the argon gas is discharged.In the same experimental configuration,previous studies have observed ion Bernstein waves on the separatrix [20].This paper employs the same electrostatic probe diagnosis as in previous work.Nine electrostatic probes placed side by side formed a 9-probe array.The radial measurement range of this probe array is 32 mm.Two nine-probe measurements with different magnet suspension positions can be combined to obtain a wider axial range of the measurement,which is increased to 48 mm.The 2D profiles of density and floating potential are shown in figure 2.

    In this paper,a scanning voltage probe is used to measure the electron distribution function of plasma.As shown in figure 3,theI-Ucharacteristic curve of plasma can be obtained using voltage scanning probes.For plasma in which the electrons satisfy the Maxwell distribution,the reciprocal of the first derivative of electron current with respect to the probe voltage is proportional to the electron temperature.The electron distribution function can be calculated by equation (1),and the calculation method of electron currentIein this formula refers to previous work [23,24].

    In equation (1),V=Vplasma-Uprobe>0,Spis the effective area of the probe in contact with the plasma,andUis the probe voltage.f0is the electron distribution function(EDF),Fis the electron energy distribution function(EEDF) andfpis the electron energy probability function.According to the physical meaning of EEDF,it can be used to calculate plasma density,effective temperature,and total energy of electrons [23,24]:

    The effective electron temperatureTeffrepresents the electron energy of unit density.For electrons following the Maxwell distribution,Te=TeffandEtotal=Te.When electrons deviate from the Maxwell distribution,the total electron energy cannot be represented byTe,and it should be calculated by integrating the EEDF [23,25].However,the measurement of the electron distribution function needs to overcome the interference on probes from the RF source and the overheating problem of probes.Since theI-Ucharacteristic curve is non-linear,data smoothing cannot remove the influence of the RF source and the measured characteristic curve is still distorted.Previous studies demonstrate that the above-mentioned distortion is most noticeable in the interval where electron currents and bias voltages are exponentially related,which will seriously affect the measurement of EDFs [24].In the actual measurement,the overheating of probes will also cause the distortion of characteristic curves,which will also affect the calculation of EDFs.In order to address the above problems,the measurement signal ground of the PPT device is isolated from the RF source,and a passive filter voltage divider circuit is used to collect the signal of the scanning voltage probes.There is a sufficient time interval (about 10 min)between each probe measurement to prevent the tungsten rod of the probes from overheating.Based on the above methods,the characteristic curves can thus be measured more accurately.The energy resolution of the EDF on the PPT device can reach 0.5 eV.Therefore,further studies near magnetic nulls have been performed on the PPT device.

    3.3D magnetic null experiments

    The nine-tip probe array measured the plasma density and floating potential profiles in the 3D magnetic null region.As shown in figure 2,the peak of ion density and the potential well of the floating potential exist near the separatrix of the 3D magnetic null configuration.The electric field near the magnetic null can be calculated based on the profile of the floating potential.It can be seen that significant electric fields are present not only in the separatrix region but also near the magnetic null region.The electric field is likely to change the kinetic energy of the electrons near the magnetic null point for the demagnetization of the electrons.It is necessary to measure the variation of EDF near magnetic null points.

    In the PPT device,the probes move in the radial direction at a certain axial position,so the variation of physical quantities in the axial direction cannot be measured directly.However,the variation in the axial direction relative to the magnetic null position can be obtained by changing the position of the magnetic null.The magnetic field of the permanent magnet remains constant and the position of magnetic nulls changes as the magnetic field generated by Helmholtz coils changes.When the background magnetic field generated by Helmholtz coils changes from 260 G to 525 G,the null position gradually moves outwards about 20 mm in theZ-direction (axial direction of the PPT device).Therefore,the axial variation of the EDF can be measured by changing the current,namely changing the relative position between the probes and the magnetic null point,which is shown in figure 4(d).However,this method also changes the background magnetic field of the device,and the errors caused by this method will be discussed in the final section.

    As indicated in figure 4(d),the electron distribution function changes from a single-peak distribution to a doublepeak distribution near the magnetic null point.The axial position of the probe platform center when=150 A is taken as the zero point of theZaxis.The axial profile of the electron distribution function from the zero point to the area inside the separatrix can be obtained,as shown in figure 4(d).The positive direction of the horizontal axis points to the plasma source.The measurement results in figure 4(d) show two peaks at~1 eV and~4 eV in a region about 18 mm long from the magnetic null point to the separatrix.

    Figures 5(b) and (c) are the radial profiles of the EDF for different axial positions when background magnetic fieldBBack=395G.Figure 5(b) has a measuring range of 0-150 mm and figure 5(c) has a measuring range of 0-100 mm.In the central region of figure 5(c),the energy distribution function of electrons has higher energy than that at the edges.Considering figures 4 and 5 comprehensively,the EDF in the central region of the device has two peaks at~ 1 eV and~ 4 eV,which no longer follows the Maxwell distribution.In summary,the electron distribution function of the plasma near the magnetic nulls exhibits a bimodal distribution.The region where electrons have higher energy has an axial length of about 17 mm and a radial length of 20 mm.In the next section,we discuss whether the excess electron energy is isotropic thermal energy or anisotropic kinetic energy,and further explore its causes.

    4.Electron acceleration near the magnetic null

    In order to explore the relationship between the direction of electron motion with different energies and the direction of the electric field on the central axis,we used a Mach probe with biased scanning voltage,as shown in figure 6 [26].In order to reduce the mutual interference between these two probes,one probe is not connected to bias voltages when the other scanning probe is measuring.The axial distribution of the EEPF on the upstream and downstream surfaces is obtained,as shown in figures 7(a) and (b).Figure 7(c) indicates the EEPF difference between upstream and downstream.The results show that the electrons with higher energy mainly come from the direction of the upstream side,which coincides with the direction in which the axial electric field accelerates electrons,as shown in figures 8(c) and (d).

    Figure 8(a) is the EEDF measured by a single probe.Equation (2) shows the relationship between EEDFs and EDFs.The total energy of electrons and electron density can be calculated by integrating the EEDF.The calculation results in figures 8(c) and (d) show that the total energy of the electrons increases significantly in the region where the axial electric field is larger.Electrons in the Maxwell distribution may form a drift-Maxwell distribution under the action of an electric field [25,27]:

    The kinetic energy of electrons can be obtained by fitting the results of the upstream probe.Figure 9 shows the fit of the EEDF calculated from the upstream probe to the drift-Maxwell distribution,and table 1 shows the fitting parameters and the goodness of fit obtained using the Curve Fitting Toolbox in MATLAB.The fitting uses the Levenberg-Marquardt algorithm in the Curve Fitting module in MATLAB.The results show that the kinetic energy of electrons accelerated by the electric field is 6 eV.

    In this section,we found that electrons with directional motion velocity are generated by the axial electric field near the magnetic null region.The region where accelerated electrons (ΔEk=6 eV) exist has an axial length of about 4deand a radial length of about 8de(considering the axisymmetric nature).The velocity of electron directed motion is calculated to be 1026 km/s (~7vAlfvén-e).The normalized size of the region where the accelerated electrons exist is similar to the size of the electron diffusion region in the reconnection experiments of the MRX device[13],and so is the velocity of electrons.Figure 8(b) shows the electron density calculated using the integration over EEDF.

    Table 1.The fitting parameters and the goodness of fit.

    The electron density near the 3D magnetic null point has a maximum compared with the nearby density,which means that special magnetic topology near nulls may trap electrons.This is similar to the previous space observation study [28].As shown in figure 2,there is no such significant change in ion density near the null point.Therefore,this indicates that the formation of electric field is caused by charge separation,which could be related to the trapping effect on electrons of the magnetic topology near the 3D magnetic null point.

    5.Discussion and conclusion

    We measured the axial profile of the electron distribution function near the null point by changing the position of the null point through adjusting the coil magnetic field.However,the change of the magnetic field may affect the floating potential and electron distribution function of the plasma generated by the helicon source.Figure 10 shows the variation of the EDF and floating potential in the center of the PPT device with the magnetic field in cylinder configuration.When Helmholtz coil currentIcoil∈[100 A,200 A],adjusting the magnetic field will not cause significant changes in the potential and electron distribution functions.This also proves the feasibility of the axial profile measurement method adopted in the experiment.

    Figure 1.Schematic diagram of the magnetic field for the experiments in this paper.Experimental conditions were the same as in previous ion Bernstein wave (IBW) research work.The red circle in the figure indicates the window for probe diagnosis,and permanent magnets are suspended in the middle of the device [20].(a) The diagram of a magnetic null configuration,and the nine-probe array in the helicon plasma of the PPT device,(b) during the experiment,a nine-tip probe array was extended into the separatrix and (c)schematic diagram of the PKU plasma test device for the experiments.

    Figure 2.Ion density and floating potential profiles near the magnetic null,when the current of the Helmholtz coils is 100 A,150 A and 200 A.The magnetic field of the permanent magnet remains constant when the applied magnetic field changes.Therefore,the separatrix and magnetic null change their positions in different Helmholtz coil currents.

    Figure 3.The I-U curve measured in the experiment and the first and second derivatives calculated based on it.The black dashed line represents the peak of the first derivative.

    Figure 4.Magnetic field shown in (a) and (b) is calculated through CST based on experiment measurements.(a) Diagram of the ninetip probe’s diagnostic area.The black dashed line in the figure indicates the area where the 9-tip probe diagnoses,(b) variation of the magnetic field intensity in the magnetic null region with axial position Z on the central axis,(c) vector diagram of the electric field calculated from the floating potential profile when background magnetic field BBack=395 G and (d) axial profile of the EDF measured by the probe along the axial (Z-direction) position.The vertical axis represents the intensity of electron energy in units of eV.The colors in figure 4(d) represent the electron distribution functions at different axial positions.

    Figure 5.(a) Black bidirectional arrows on the floating potential profile are the scan probe trajectories for the measurement of the EDF under a 3D magnetic null-point configuration,(b) radial profile of the EDF at the axial position far from the null point and(c) radial profile of the EDF near the magnetic null point.

    Figure 6.Schematic diagram of the Mach probe.The Mach probe head consists of two tungsten rods and an alumina ceramic plate spacer between them.The side close to the plasma source is the upstream side of the Mach probe,and the other side is the downstream side.

    Figure 7.EDF measured at r=0 mm.(a) EDF measured by upstream probe in figure 5,(b) downstream EDF and (c) difference between upstream EDF and downstream EDF.

    Figure 8.(a) EEDF of the plasma near the magnetic null,(b) electron density calculated by EEDF near the magnetic null,(c) axial profiles of plasma potential (left black y-axis) and total electron energy in plasma (right blue y-axis) and (d) axial profiles of the axial electric field calculated by the plasma potential (left red yaxis) and the total electron energy in plasma (right blue y-axis).

    Figure 9.The fit of the EEDF calculated from the upstream probe data to the drift-Maxwell distribution.The black line is the EEDF measured by the upstream scanning probe,and the red dashed line shows the fitting results using the drift-Maxwell distribution.

    Figure 10.(a) EEDF in cylinder plasma with different uniform magnetic fields,which exhibits a Maxwell distribution and (b) floating potential in a cylinder plasma in a uniform magnetic field shows no significant change when compared to the plasma near the magnetic null point.

    This paper first introduces the measurement of plasma density and floating potential profile in the 3D magnetic nullpoint experiment.The experimental results found that the interface of different magnetic topological regions,that is,the separatrix surface region,has a density change and an electric field exists.Then,using the scanning voltage probe,we found that there is a region with double-peak distribution of electrons in the 3D magnetic null region.

    Using a Mach probe with scanning voltage bias to enable directional measurement of EDF,we found that the source of the accelerated electrons may be closely related to the electric field in the magnetic null region.The kinetic energy of the accelerated electrons found in the experiment is 6 eV,and the area with accelerated electrons is about 8de×4de.Through qualitative calculations,we found that the electron density in the magnetic null region is high,and the magnetic field topology is likely to confine the electrons.Considering that the attachment depth of electrons is much smaller than that of ions,the magnetic null-point configuration has a strong confinement effect on electrons.The formation of the electric field may be related to the electrons trapped by the topology of the magnetic nulls.Similar properties of 3D magnetic nulls have also been found in space satellite observation studies.Although no definite evidence of 3D magnetic reconnection has been identified in this experiment,the special magnetic field topology of magnetic nulls can cause changes in the distribution function of plasma.Our experimental results prove that the macroscopic properties of the 3D magnetic null topology have a direct impact on the EDF.The special EDF may be closely related to the instability in the 3D magnetic nulls and separatrix [20],and may also be associated with the triggering of 3D magnetic reconnection and related energy conversion mechanism.The precise mechanism of the electric field generation in the magnetic null region still requires accurate measurement of ion distribution functions and electron densities.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.11975038) and the National Key Research and Development Program of China (No.2022YFA1604600).

    精品久久久久久电影网| 国产精品蜜桃在线观看| 成年女人在线观看亚洲视频| 色网站视频免费| 亚洲熟女精品中文字幕| 国产精品女同一区二区软件| 99久久精品国产国产毛片| 国产精品久久久久成人av| 国产精品熟女久久久久浪| 欧美亚洲日本最大视频资源| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 97在线视频观看| 国内精品宾馆在线| 亚洲欧美色中文字幕在线| 老司机影院毛片| 精品国产乱码久久久久久小说| 久久热在线av| 麻豆乱淫一区二区| 国产av一区二区精品久久| 午夜福利在线观看免费完整高清在| 视频区图区小说| 欧美性感艳星| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 国产精品无大码| 亚洲欧洲精品一区二区精品久久久 | 精品人妻一区二区三区麻豆| 色94色欧美一区二区| 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 久久av网站| 久久免费观看电影| 在线观看国产h片| 午夜激情av网站| 国产xxxxx性猛交| 熟女电影av网| 国产精品人妻久久久影院| 一级毛片我不卡| 韩国精品一区二区三区 | 一级毛片我不卡| 日韩制服丝袜自拍偷拍| 精品酒店卫生间| 男的添女的下面高潮视频| 波多野结衣一区麻豆| 成人国语在线视频| 最近中文字幕高清免费大全6| 久久精品国产综合久久久 | 宅男免费午夜| 韩国高清视频一区二区三区| 婷婷成人精品国产| 免费看不卡的av| 亚洲精品乱码久久久久久按摩| 美女国产视频在线观看| 精品国产国语对白av| 女人被躁到高潮嗷嗷叫费观| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| videossex国产| 久久精品国产鲁丝片午夜精品| 国产成人精品在线电影| 国产成人91sexporn| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 国产成人精品福利久久| 99视频精品全部免费 在线| 男女边摸边吃奶| 日本wwww免费看| 黄色怎么调成土黄色| 婷婷色av中文字幕| 色94色欧美一区二区| 极品人妻少妇av视频| 大片免费播放器 马上看| 亚洲国产精品国产精品| 男女免费视频国产| av一本久久久久| 国产成人aa在线观看| 久热这里只有精品99| 伊人亚洲综合成人网| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 有码 亚洲区| 久久久精品94久久精品| 国国产精品蜜臀av免费| 一级毛片电影观看| 午夜福利视频精品| 久久精品国产综合久久久 | 国产av一区二区精品久久| 国产成人午夜福利电影在线观看| a级片在线免费高清观看视频| www.av在线官网国产| 日本色播在线视频| 日日摸夜夜添夜夜爱| 亚洲婷婷狠狠爱综合网| 午夜福利影视在线免费观看| 国产老妇伦熟女老妇高清| 久热久热在线精品观看| 99精国产麻豆久久婷婷| 精品一区二区免费观看| 久久久久网色| 国产一区有黄有色的免费视频| 午夜免费观看性视频| 99视频精品全部免费 在线| 亚洲色图 男人天堂 中文字幕 | 草草在线视频免费看| 日本猛色少妇xxxxx猛交久久| 亚洲四区av| 亚洲少妇的诱惑av| 久久av网站| 纵有疾风起免费观看全集完整版| 日韩伦理黄色片| 精品一区在线观看国产| 亚洲欧美清纯卡通| 国产精品蜜桃在线观看| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 免费在线观看黄色视频的| 中国国产av一级| 久久久久精品性色| 亚洲第一av免费看| 日韩熟女老妇一区二区性免费视频| av在线app专区| 国产精品久久久久久av不卡| 成人国产av品久久久| 婷婷色综合大香蕉| 女人久久www免费人成看片| 高清视频免费观看一区二区| 宅男免费午夜| 精品亚洲成国产av| 一边摸一边做爽爽视频免费| 99热6这里只有精品| 亚洲人与动物交配视频| 大香蕉97超碰在线| 日本欧美国产在线视频| 女性被躁到高潮视频| 久久青草综合色| 丰满乱子伦码专区| 成人影院久久| 亚洲成国产人片在线观看| av片东京热男人的天堂| 一本—道久久a久久精品蜜桃钙片| 亚洲高清免费不卡视频| 欧美日韩av久久| 97在线人人人人妻| 国产精品不卡视频一区二区| 免费观看在线日韩| 婷婷色麻豆天堂久久| 成人18禁高潮啪啪吃奶动态图| 天堂8中文在线网| 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 国产在线免费精品| 只有这里有精品99| av一本久久久久| 高清欧美精品videossex| 自线自在国产av| 捣出白浆h1v1| 国产免费一级a男人的天堂| 又大又黄又爽视频免费| 91在线精品国自产拍蜜月| 女性被躁到高潮视频| 韩国精品一区二区三区 | 色婷婷久久久亚洲欧美| 亚洲欧美成人精品一区二区| a级毛片在线看网站| 国产av精品麻豆| 久久人人爽人人爽人人片va| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 宅男免费午夜| av在线观看视频网站免费| 欧美国产精品一级二级三级| 亚洲人与动物交配视频| 宅男免费午夜| 亚洲美女黄色视频免费看| 天美传媒精品一区二区| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 最新中文字幕久久久久| 亚洲精品国产色婷婷电影| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 视频区图区小说| 国产亚洲最大av| 欧美人与性动交α欧美软件 | 亚洲激情五月婷婷啪啪| 一级a做视频免费观看| 婷婷色综合www| 成年av动漫网址| 内地一区二区视频在线| 制服人妻中文乱码| 热re99久久国产66热| 国产精品久久久久久精品古装| 午夜视频国产福利| 午夜av观看不卡| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看 | 国产成人精品福利久久| 99热网站在线观看| 男人爽女人下面视频在线观看| av视频免费观看在线观看| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 日日摸夜夜添夜夜爱| 国产片特级美女逼逼视频| 日日啪夜夜爽| 成年动漫av网址| 久久99蜜桃精品久久| 日日爽夜夜爽网站| 伊人久久国产一区二区| 国产精品.久久久| 国产麻豆69| 美国免费a级毛片| 日韩视频在线欧美| 蜜臀久久99精品久久宅男| www.熟女人妻精品国产 | 亚洲精品,欧美精品| 国产国拍精品亚洲av在线观看| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡 | 日本av手机在线免费观看| 在线观看www视频免费| 精品一品国产午夜福利视频| 国产免费福利视频在线观看| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 欧美国产精品va在线观看不卡| 18禁动态无遮挡网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 97超碰精品成人国产| 一级片免费观看大全| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 亚洲国产精品999| 欧美日韩一区二区视频在线观看视频在线| 日韩三级伦理在线观看| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲 | 午夜激情av网站| 亚洲精品美女久久av网站| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 久久久久久久久久成人| 日日撸夜夜添| 少妇人妻精品综合一区二区| 久久久久久久久久久免费av| 国产亚洲欧美精品永久| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 精品久久国产蜜桃| 国产精品一二三区在线看| 久久国产精品大桥未久av| 精品久久国产蜜桃| 香蕉精品网在线| 天堂中文最新版在线下载| 在线观看国产h片| 高清在线视频一区二区三区| 成年美女黄网站色视频大全免费| 9色porny在线观看| 乱码一卡2卡4卡精品| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 热99久久久久精品小说推荐| 国产欧美日韩综合在线一区二区| 亚洲婷婷狠狠爱综合网| 少妇人妻精品综合一区二区| 成年女人在线观看亚洲视频| 亚洲色图 男人天堂 中文字幕 | 少妇被粗大的猛进出69影院 | 男人爽女人下面视频在线观看| 伦精品一区二区三区| xxx大片免费视频| 欧美日韩亚洲高清精品| 男女下面插进去视频免费观看 | 亚洲人成77777在线视频| 激情五月婷婷亚洲| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 99热6这里只有精品| 熟女电影av网| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| av线在线观看网站| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 国产av精品麻豆| 欧美性感艳星| 午夜影院在线不卡| 91国产中文字幕| 欧美国产精品va在线观看不卡| 免费看光身美女| 久久人人爽人人爽人人片va| 日韩制服丝袜自拍偷拍| 欧美亚洲 丝袜 人妻 在线| av电影中文网址| 欧美激情国产日韩精品一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产一级毛片在线| 精品福利永久在线观看| 国产精品久久久久久av不卡| 国产午夜精品一二区理论片| 色婷婷av一区二区三区视频| 久久99热6这里只有精品| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩卡通动漫| 蜜桃在线观看..| 国产麻豆69| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 一区二区三区四区激情视频| 一级爰片在线观看| 中文欧美无线码| 欧美 亚洲 国产 日韩一| 日韩成人伦理影院| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 插逼视频在线观看| 男女国产视频网站| 三上悠亚av全集在线观看| 寂寞人妻少妇视频99o| 色视频在线一区二区三区| 午夜影院在线不卡| 这个男人来自地球电影免费观看 | 成人手机av| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 一级毛片 在线播放| 久久久精品区二区三区| 天堂中文最新版在线下载| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 在线 av 中文字幕| 国产精品.久久久| 成人影院久久| 国产日韩欧美亚洲二区| 国产精品偷伦视频观看了| 亚洲欧美清纯卡通| 91精品三级在线观看| 欧美精品国产亚洲| 男人舔女人的私密视频| 一级,二级,三级黄色视频| 国产免费视频播放在线视频| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 久久国产精品大桥未久av| 久久人人爽av亚洲精品天堂| 精品一区二区三卡| 久久99精品国语久久久| 午夜免费鲁丝| 黄色 视频免费看| 在线观看免费视频网站a站| 1024视频免费在线观看| 中文字幕最新亚洲高清| 丝袜美足系列| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 在线亚洲精品国产二区图片欧美| 亚洲性久久影院| 只有这里有精品99| 色视频在线一区二区三区| 又黄又爽又刺激的免费视频.| 免费在线观看黄色视频的| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 免费黄频网站在线观看国产| 高清av免费在线| 免费人成在线观看视频色| 国产成人精品婷婷| 午夜福利乱码中文字幕| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 精品国产国语对白av| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 亚洲一区二区三区欧美精品| 欧美3d第一页| 搡女人真爽免费视频火全软件| 黑人巨大精品欧美一区二区蜜桃 | 巨乳人妻的诱惑在线观看| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 天堂8中文在线网| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 少妇高潮的动态图| 人妻人人澡人人爽人人| 人成视频在线观看免费观看| 在线免费观看不下载黄p国产| 日本与韩国留学比较| 国产无遮挡羞羞视频在线观看| 婷婷色综合大香蕉| 97在线人人人人妻| 黑人高潮一二区| 久久这里有精品视频免费| 精品第一国产精品| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 91成人精品电影| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 久久精品91无色码中文字幕| 999精品在线视频| 别揉我奶头~嗯~啊~动态视频| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9 | 18禁裸乳无遮挡动漫免费视频| 精品一区二区三卡| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 女人爽到高潮嗷嗷叫在线视频| 男女之事视频高清在线观看| 麻豆成人av在线观看| 黄色女人牲交| 欧美精品av麻豆av| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 国产成人精品久久二区二区91| 亚洲精品成人av观看孕妇| 制服诱惑二区| 久久精品国产a三级三级三级| 老司机午夜福利在线观看视频| 一区二区日韩欧美中文字幕| 国产在线精品亚洲第一网站| 国产成人精品在线电影| 国产精品国产高清国产av | 国产在线一区二区三区精| 可以免费在线观看a视频的电影网站| 黄片大片在线免费观看| 久99久视频精品免费| 999久久久精品免费观看国产| 久久九九热精品免费| 激情视频va一区二区三区| 18禁美女被吸乳视频| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 亚洲自偷自拍图片 自拍| 亚洲五月天丁香| 欧美亚洲日本最大视频资源| e午夜精品久久久久久久| 国产精品香港三级国产av潘金莲| 黄色a级毛片大全视频| 91成年电影在线观看| 国产精品久久久久成人av| 亚洲精品自拍成人| 999久久久国产精品视频| 国产成人欧美在线观看 | 欧美另类亚洲清纯唯美| 亚洲久久久国产精品| 亚洲av片天天在线观看| 母亲3免费完整高清在线观看| 亚洲熟女毛片儿| 人人妻人人澡人人看| 国产又爽黄色视频| 91老司机精品| 精品国产乱码久久久久久男人| 欧美精品亚洲一区二区| 日韩有码中文字幕| 国产一区在线观看成人免费| 淫妇啪啪啪对白视频| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 日本wwww免费看| 国产精品香港三级国产av潘金莲| 一级毛片女人18水好多| 免费观看人在逋| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 两个人免费观看高清视频| 亚洲欧美日韩高清在线视频| 久久人妻熟女aⅴ| 中文亚洲av片在线观看爽 | 日韩欧美一区视频在线观看| 亚洲 欧美一区二区三区| 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片 | av在线播放免费不卡| 人人澡人人妻人| 99国产综合亚洲精品| 一级黄色大片毛片| 国产麻豆69| 国产av一区二区精品久久| 免费一级毛片在线播放高清视频 | 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 黄色女人牲交| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 欧美日韩黄片免| 免费不卡黄色视频| 国产91精品成人一区二区三区| 国产成人精品久久二区二区免费| 色精品久久人妻99蜜桃| 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩中文字幕国产精品一区二区三区 | 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 免费观看a级毛片全部| 91字幕亚洲| 欧美丝袜亚洲另类 | 国产欧美日韩一区二区三| 男女高潮啪啪啪动态图| 两个人免费观看高清视频| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 看免费av毛片| 69av精品久久久久久| 国产欧美日韩一区二区三区在线| 欧美中文综合在线视频| 色94色欧美一区二区| 欧美乱色亚洲激情| 69av精品久久久久久| 欧美日韩福利视频一区二区| av不卡在线播放| 一级片免费观看大全| 侵犯人妻中文字幕一二三四区| 欧美成狂野欧美在线观看| 乱人伦中国视频| 婷婷丁香在线五月| 亚洲第一青青草原| 一级毛片高清免费大全| 国产亚洲精品久久久久5区| 在线观看舔阴道视频| 一夜夜www| 亚洲精品成人av观看孕妇| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 久久中文看片网| 国产精品电影一区二区三区 | 国产亚洲欧美精品永久| 欧美黑人精品巨大| xxx96com| 国产亚洲欧美在线一区二区| 成人永久免费在线观看视频| 亚洲精品自拍成人| 亚洲专区中文字幕在线| 国产区一区二久久| 日韩欧美一区二区三区在线观看 | 亚洲国产毛片av蜜桃av| 国内久久婷婷六月综合欲色啪| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 亚洲性夜色夜夜综合| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡动漫免费视频| 亚洲精品久久成人aⅴ小说| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 两性午夜刺激爽爽歪歪视频在线观看 | 身体一侧抽搐| 美女 人体艺术 gogo| avwww免费| av国产精品久久久久影院| 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 黄片大片在线免费观看| 久久人人97超碰香蕉20202| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 高清av免费在线| 亚洲av美国av| 一区二区三区国产精品乱码| 欧美在线一区亚洲| 激情视频va一区二区三区| aaaaa片日本免费| 黄色女人牲交| 一区二区三区国产精品乱码| 交换朋友夫妻互换小说| 建设人人有责人人尽责人人享有的| 老司机午夜十八禁免费视频| avwww免费| 日日夜夜操网爽| 满18在线观看网站| 国产99白浆流出| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 一级毛片女人18水好多| 日本a在线网址| 国产无遮挡羞羞视频在线观看| 少妇的丰满在线观看|