• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Q-homotopy analysis method for timefractional Newell-Whitehead equation and time-fractional generalized Hirota-Satsuma coupled KdV system

    2024-04-02 07:47:24DiLiuQiongyaGuandLizhenWang
    Communications in Theoretical Physics 2024年3期

    Di Liu,Qiongya Gu and Lizhen Wang

    Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi’an,710127,China

    Abstract In this paper,two types of fractional nonlinear equations in Caputo sense,time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS),are investigated by means of the q-homotopy analysis method (q-HAM).The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions.Due to the presence of the auxiliary parameter h in this method,just a few terms of the series solution are required in order to obtain better approximation.For the sake of visualization,the numerical results obtained in this paper are graphically displayed with the help of Maple.

    Keywords: fractional Newell–Whitehead equation,fractional generalized Hirota–Satsuma coupled KdV system,approximate solution,q-homotopy analysis method

    1.Introduction

    Fractional calculus,a generalization of classical calculus,was proposed by L’Hospital in 1695 and is more suitable than classical calculus for simulating some real-world problems.The advantages of the fractional differential operator are its nonlocality and ability to describe the memory effects of the system.Therefore,fractional calculus has attracted more and more attention in many applied fields,such as biology,physics,rheology,signal processing,electrochemistry [1–6],etc.It is well known that the construction of the exact solutions of fractional partial differential equations(FPDEs)is an important problem.Consequently,many scholars have introduced numerous methods to seek the solutions,such as the Lie symmetry analysis method [7–9],Adomian decomposition method [10],homotopy analysis transform method [11],Laplace transform collocation method [12],functional separation variables method[13],residual power series method[14],sub-equation method [15],homotopy perturbation method[16,17],invariant subspace method [18],auxiliary function method [19,20] and the classical Mittag-Leffler kernel [21].

    An approach called the homotopy analysis method(HAM) was first proposed by Liao [22,23] in 1992.The HAM forms a continuous mapping from the initial conjecture to the exact solution after selecting auxiliary linear operators.The HAM contains the auxiliary parameter to determine the convergence of the solution.Later,in 2012,the q-homotopy analysis method (q-HAM) was introduced by El-Tawil and Huseen in[24]and it is one of the most effective methods for solving nonlinear PDEs.It is actually an improvement of the embedding parameterq∈[0,1] in the HAM ton≥1 appearing in the q-HAM.Moreover,the q-HAM contains the fractional factor that gives better convergence than the HAM.Recently,the method has been generalized and applied to some fractional PDEs,such as time-space fractional Fokker–Planck equations [25],time-fractional Ito equation and Sawada–Kotera equation [26],time-fractional Korteweg–de Vries and Korteweg–de Vries–Burgers equations [27] and time-space fractional gas dynamics equation [28].

    In this paper,on the one hand,we consider the timefractional Newell–Whitehead equation (FNWE) [29],

    where 0 <α ≤1 is a parameter describing the order of the time-fractional derivative.Here and hereafter,is the Caputo fractional differential operator with order α.Physically,to solve FPDEs,we need to specify additional conditions in order to produce a solution.Compared with other fractional operators,Caputo fractional operator has many advantages.First,its initial conditions have physical meaning.Second,the lower limit of integration in its definition can be arbitrarily selected and does not necessarily start from 0,which means that the reference interval can be freely regulated to make the equation have short-term memory.Third,the Caputo fractional derivative of a constant is 0.Equation(1)can be considered as a generalization of the Newell–Whitehead equation (NWE).The NWE can simulate the interaction between the effect of the diffusion term and the nonlinear effect of the reaction term.Functionuis denoted as the distribution of temperature in an infinitely thin and long rod or as the flow rate of a fluid in an infinitely long pipe with a small diameter [30,31].The NWE has been widely used in mechanical,chemical and bio-engineering.Furthermore,some approaches,such as the reduced differential transform method [32],Adomian decomposition methods[33] and variational iteration method [34],have been developed to solve the FNWE.

    On the other hand,we consider the following timefractional generalized Hirota–Satsuma coupled KdV system(HS-cKdVS):

    The generalized HS-cKdVS describes the interaction between long waves with different dispersion relations [35].In this system,u(x,t),v(x,t) andw(x,t) are the amplitude of the wave modes as functions of space variablexand time variablet.Recently,some researchers have investigated this system using different methods.Abbasbandy studied the approximate analytical solution of the generalized HS-cKdVS via the homotopy analysis method [36].Prakash and Verma[37] employed q-homotopy analysis Sumudu transform method and residual power series method to find the analytical solution of system (2).Some exact solutions of system(2)were constructed by Saberi and Hejazi using the invariant subspace method with Caputo sense [38].Martínez,Reyes and Sosa [39] obtained the analytical solutions by applying the sub-equation method for the time-space fractional generalized HS-cKdVS.

    In this paper,we have applied the q-HAM to solve the time FNWE and the time-fractional generalized HS-cKdVS with different initial conditions,because it is too difficult to find the exact solution of the two equations,and the proposed method can be used to find the approximate solution of these two equations,which is helpful for a deeper understanding of the proposed equations at a later stage.Keeping the above facts in mind,this paper is the first study to investigate the approximate solutions of the time FNWE and the time-fractional generalized HS-cKdVS with the help of the q-HAM.

    The rest of the study is set out as follows.Some basic definitions and formulas related to fractional calculus are provided in section 2.The basic definition of the q-HAM is introduced in section 3.In section 4,we intend to use the q-HAM to solve equation (1) and system (2).We conclude this paper in section 5.

    2.Preliminaries

    In this section,we introduce some definitions and formulas related to fractional calculus,which will be used throughout the paper.

    Definition 2.1.[1] The Riemann–Liouville fractional integral operator of order α of functionf(t) is given as,

    Definition 2.2.[1] Forn∈Nandn-1 <α<n,the Caputo fractional derivative of order α of functionf(t) is defined by,

    Lemma 2.1.[1]Letγ>0andt> 0.Then,

    3.Description of the q-homotopy analysis method

    Consider the nonlinear fractional differential equation of the form,

    where N is a nonlinear operator,denotes the Caputo fractional derivative,(x,t)are independent variables,f(x,t)is the given function,whileu(x,t) is an unknown function.Construct the zeroth-order deformation equation as follows:

    wheren≥1,is called an embedded parameter,h≠0 is an auxiliary parameter,H(x,t)is a non-zero auxiliary function,L is an auxiliary linear operator andu0(x,t) is the initial guess ofu(x,t).Clearly,whenq=0 and,we can obtain the following result:

    respectively.Thus,asqrises from 0 to,the solution φ(x,t;q)ranges from the initial guessu0(x,t)to the solutionu(x,t).Assume thatu0(x,t),L,handH(x,t) are appropriately selected so that the solution φ(x,t;q)of equation(6)exists forThe expansion of the function φ(x,t;q) in Taylor series form gives:

    Differentiating zeroth-order deformation equation(6)mtimes with respect to the embedding parameterq,settingq=0 and dividing them bym!,we can derive the followingmth-order deformation equation:

    Applying the inverse operator-L1to both sides of equation (12) and after simplification,um(x,t) can be presented by,

    Remark 1.It needs to be emphasized thatum(x,t)form≥1 is controlled by the linear equation (12)with linear boundary conditions from the original problem.The presence of factorcan produce more opportunities for convergence and even better and faster convergence than the standard HAM.In particular,whenα=1 andn=1 in equation(6),the standard HAM can be achieved.

    The convergence and error analysis of the q-HAM are discussed in the following theorems,which shows that the convergence of the q-HAM is more accurate than the convergence of the HAM.

    Theorem 3.1.[40]Ifthenonlinearoperatorispreservedon thepowerseriesinq,thesolutionofequation(6)together withequation(5)existsasapowerseriesinthefollowing:

    Theorem 3.2.[40]ConsideraBanachspace(A,‖·‖)with

    A?R.Supposethattheinitialestimationu0(x,t)remainsinsidetheballofthesolutionu(x,t).Letrbeaconstant,thenforaprescribedvalueofhand0 <r<n,ifforallk,

    4.Applications of the q-HAM

    In this section,the q-HAM is used to construct the analytical solutions of time FNWEs and time-fractional generalized HScKdVS to verify the effectiveness of the previous q-HAM algorithm.The results of this study are graphed by Maple.

    4.1.The time-fractional Newell-Whitehead equation

    In this section,we construct the series solutions of time FNWE (1) with two different initial conditions with the help of the q-HAM.

    Example 4.1.Consider the time FNWE (1) and its initial condition is given as follows:

    which was derived in [33].

    Choose the linear operator:

    with the propertyL [r]=0,whereris a constant.Then,we define a nonlinear operator as,

    We construct the zeroth-order deformation equation as follows:

    TakingH(x,t)=1,the so-calledmth-order deformation equation is:

    with initial condition form≥1,um(x,0)=0,where

    The simple transformation of equation (21) yields that,

    From (19) to (23) and lemma 2.1,we arrive at the components of the solution of equations (1) and (17) form≥1:

    and

    Proceeding in similar steps,the remaining iterationsum(x,t)(m=3,4,5,…) can be obtained.Therefore,the series solution of equations (1) and (17) obtained by the q-HAM is

    Equation(26)is the appropriate solution to equations(1)and (17) in terms of convergence parametershandn.Moreover,choosingn=1,α=1 andh=-1,the series solutionof equations (1) and (17) converges to its exact solution [34] asN→∞:

    With the help of the 3D plots,we demonstrate the wave propagation pattern of the wave along thex-axis.Figure 1 presents the plots of the approximate solution,exact solution and absolute error whenh=-0.44,n=1 and α=1 for equations (1) and (17).It is worth pointing out that the numerical solution obtained by the q-HAM and the exact solutionu(x,t) are almost identical in figures 1(a) and (b).Figure 2 displays the behavior of the flow velocityu(x,t) for distinct values of α atx=1,h=-1 andn=1.We note that the q-HAM solution increases with the increase intin figure 2.Figure 3 exhibits the behavior of the flow velocityu(x,t)for different values ofnatx=1,h=-1 and α=0.2.It can be seen from figure 3 that as the values ofhincrease,the q-HAM solutionu(x,t) decreases.In figure 4,different values of the convergence control parameterhare selected to minimize residual error and guarantee the convergence of the series solution by choosing the appropriate value ofh.

    Figure 1.(a).q-HAM solution for Ex.4.1.(b).Exact solution for Ex.4.1.(c).Abs.error=|uexa.-uq-HAM| for Ex.4.1.

    Figure 2.Plot of u(x,t) versus time for different values of α for Ex.4.1.

    Figure 3.Plot of h curves for Ex.4.1.with fixed x=1 and α=0.2 at different values of n.

    Figure 4.Plot of h curves for Ex.4.1.with fixed n=1 and x=1 at different values of h.

    Example 4.2.Consider equation (1) with another initial condition given in [34] listed as follows:

    Applying (19) to (23),we derive the components of the solution of equations (1) and (28) using the q-HAM successively as follows:

    The rest ofum(x,t) (m=3,4,5,…) follows the same approach.Then,the series solution of equations (1) and (28)is,

    Equation(31)is the appropriate solution to equations(1)and(28) in terms of convergence parametershandn.Moreover,whenn=1,α=1 andh=-1,the series solutionof equations(1)and(28)converges to its exact solution [34] asN→∞:

    The wave propagation pattern of the wave along thexaxis can be seen from the 3D plots.Figure 5 gives the plots of the approximate solution,exact solution and absolute error whenh=-0.45,n=1 and α=1 for equations(1)and(28).It can be observed that the numerical solution obtained by the q-HAM and the exact solutionu(x,t)are consistent with each other in figures 5(a) and (b).Figure 6 demonstrates the behavior of the flow velocityu(x,t)for distinct values of α atx=1,h=-1 andn=1 and indicates that the q-HAM solution increases with the increase in α.Figure 7 displays the behavior of the flow velocityu(x,t)for different values ofnatx=1,h=-1 and α=0.2.It is clear from figure 7 that as the values ofhincrease,the q-HAM solutionu(x,t)decreases.In figure 8,different values of the convergence control parameterhare selected to minimize residual error.

    Figure 5.(a).q-HAM solution for Ex.4.2.(b).Exact solution for Ex.4.2.(c).Abs.error=|uexa.-uq-HAM| for Ex.4.2.

    Figure 6.Plot of u(x,t) versus time for different values of α for Ex.4.2.

    Figure 7.Plot of h curves for Ex.4.2.with fixed x=1 and α=0.2 at different values of n.

    Figure 8.Plot of h curves for Ex.4.2.with fixed n=1 and x=1 at different values of h.

    Figure 9.Plots of q-HAM solutions for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 10.Plots of the exact solutions for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 11.Plots of Abs.error for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    4.2.The time-fractional generalized HS-cKdVS

    This section is dedicated to the construction of the approximate solution of system (2) with two different initial conditions through the q-HAM.

    Example 4.3.Discuss the time-fractional generalized HScKdVS (2) subject to the following initial conditions introduced in [35]:

    wherek,c0,c1≠0and β are arbitrary constants.

    Introduce the following linear operators:

    wherei=1,2,3.Let φi?φi(x,t;q) and the nonlinear operators can be provided as,

    Construct the zeroth-order deformation equations as,

    ChoosingH(x,t)=1,themth-order deformation equations can be given by,

    The simple transformation of equation (37) yields that,

    Combining(15),(37),(38)and(39)with lemma 2.1,the components of the solution can be obtained by continuous application of the q-HAM:

    Moreover,we can repeat the above process to deduce the formulas ofum(x,t),vm(x,t)andwm(x,t)(m=3,4,5,…)and deduce the following series solution of system (2):

    Figures 9–11 show the plots of the approximate solution,exact solution and absolute error whenh=-1,n=1,α=1,c0=β=1.2 andc1=k=0.1 for system (2)with the initial conditions (33),respectively.The numerical solution obtained by the q-HAM is almost similar to the exact solution,as observed in figures 9 and figure 10.The effect of the various parameters and variables on the amplitude of the wave modes is shown from figures 12–14.Figure 12 presents the behavior of the numerical solution for distinct values of α atx=2,h=-1 andn=2.It is easy to see that the q-HAM solution increases with increasingtin figure 12.Figure 13 exhibits the behavior for different values ofnatx=2 and α=0.3.We note from figure 13 that as the values ofhincrease,the q-HAM solution decreases.In figure 14,diverse values of the convergence control parameterhare selected to lessen the error.

    Figure 12.Plots of u(x,t),v(x,t),and w(x,t) for Ex.4.3 with fixed c0=β=1.2,c1k=0.1,x=2n=2 and h=1 at different values of α.

    Figure 13.Plots of h curves for Ex.4.3 at different values of n when c0=β=1.2,c1=k=0.1,x=2 and α=0.3.

    Figure 14.Plots of h curves for Ex.4.3 at c0=β=1.2,c1=k=0.1,x=n=2 and α=0.3 with increasing values of t.

    Figure 15.Plots of q-HAM solutions for Ex.4.4.when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 16.Plots of the exact solutions for Ex.4.4.when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 17.Plots of Abs.error for Ex.4.4.when c0=β=1.2 and c1=k=0.1.

    Example 4.4.For system (2),we take the new initial conditions introduced in [42]:

    wherek,c0,c2≠0and β are arbitrary constants.

    Similarly,from(37)to(39),we derive the components of the solution as follows:

    In the same way,um(x,t),vm(x,t)andwm(x,t)(m=3,4,5,…) can be derived.Accordingly,the series solution of system(2) by the q-HAM in series form is provided as follows:

    Figures 15–17 display the plots of the approximate solution,exact solution and absolute error whenh=-1,n=1,α=1,c0=β=1.2 andc1=k=0.1 for system (2)with the initial conditions(44),respectively.As can easily be discovered from figures 15 and 16,the numerical solution obtained by the q-HAM coincides with the exact solution.Figures 18–20.show the effect of the various parameters and variables on the amplitude of the wave modes.Figure 18 depicts the behavior of the numerical solution for distinct values of α atx=2,h=-1 andn=2.It is realized that the q-HAM solution increases with the increase intin figure 18.Figure 19 exhibits the behavior of the numerical solution for diverse values ofnatx=2 and α=0.3.It can be seen from figure 19 that as the values ofhincrease,the q-HAM solution decreases.In figure 20,different values of the convergence control parameterhare selected to minimize residual error and guarantee the convergence of the series solution by choosing the appropriate value ofh.

    Figure 19.Plots of h curves for Ex.4.4.at different values of n when c0=β=1.2,c1=k=0.1,x=2 and α=0.3.

    Figure 20.Plots of h curves for Ex.4.4.at c0=β=1.2,c1=k=0.1,x=n=2 and α=0.3 with increasing values of t.

    5.Conclusion

    In this present study,the new approximate solutions of the time FNWE and the time-fractional generalized HS-cKdVS are successfully constructed by means of the q-HAM.The results show that the q-HAM gives the solution in the form of a convergent series without using linearization and perturbation.In addition,it is shown from the absolute truncated error image that the results of the present method are in excellent agreement with the exact solution.The auxiliary parameterhandn(n≥1) used in the proposed method describe the nonlocal convergence.Therefore,the investigation of this paper shows that the q-HAM is an effective and powerful tool to solve nonlinear FPDEs with the sense of Caputo derivative.

    Funding

    This study is supported by the National Natural Science Foundation of China (Grant No.12 271 433).

    Conflict of Interest

    The authors declare that they have no conflicts of interest.

    ORCID iDs

    最近中文字幕2019免费版| 性色av一级| 纵有疾风起免费观看全集完整版| 人妻 亚洲 视频| 男人狂女人下面高潮的视频| 男插女下体视频免费在线播放| 久久影院123| 自拍欧美九色日韩亚洲蝌蚪91 | 青青草视频在线视频观看| 精品国产乱码久久久久久小说| 日本-黄色视频高清免费观看| 真实男女啪啪啪动态图| 韩国av在线不卡| 啦啦啦中文免费视频观看日本| 久久人人爽人人爽人人片va| av播播在线观看一区| 欧美xxⅹ黑人| 国产成人精品福利久久| 日韩欧美一区视频在线观看 | 自拍偷自拍亚洲精品老妇| 三级经典国产精品| av黄色大香蕉| 秋霞在线观看毛片| 2022亚洲国产成人精品| 久久鲁丝午夜福利片| 国产精品一二三区在线看| 久久99热这里只频精品6学生| 亚洲av二区三区四区| 观看免费一级毛片| 97精品久久久久久久久久精品| 欧美性猛交╳xxx乱大交人| 日韩av不卡免费在线播放| 内射极品少妇av片p| 久久精品国产a三级三级三级| 国产在视频线精品| 午夜激情久久久久久久| 午夜日本视频在线| 黄色配什么色好看| 亚洲av在线观看美女高潮| 高清欧美精品videossex| 国产成人福利小说| 亚洲精品,欧美精品| 国产伦在线观看视频一区| 国产大屁股一区二区在线视频| 老司机影院成人| 成人特级av手机在线观看| 亚洲欧洲国产日韩| 成年女人看的毛片在线观看| 久久精品熟女亚洲av麻豆精品| 色视频www国产| 欧美性猛交╳xxx乱大交人| 全区人妻精品视频| 国产一区二区三区av在线| 色网站视频免费| 新久久久久国产一级毛片| 国产亚洲最大av| 国产 一区精品| 欧美老熟妇乱子伦牲交| 亚洲精品456在线播放app| 天天躁日日操中文字幕| 一级毛片 在线播放| 男的添女的下面高潮视频| 搞女人的毛片| 在线观看人妻少妇| 亚洲欧美日韩另类电影网站 | 肉色欧美久久久久久久蜜桃 | 菩萨蛮人人尽说江南好唐韦庄| 交换朋友夫妻互换小说| 国产精品99久久久久久久久| 亚洲精品国产av蜜桃| 男插女下体视频免费在线播放| 舔av片在线| 日本wwww免费看| 中文天堂在线官网| 内射极品少妇av片p| 精品99又大又爽又粗少妇毛片| 国产老妇伦熟女老妇高清| 国产男人的电影天堂91| 久久久久久伊人网av| 久久久久久久午夜电影| 成人国产麻豆网| 亚洲第一区二区三区不卡| 在线播放无遮挡| 18禁动态无遮挡网站| 午夜老司机福利剧场| 精品久久国产蜜桃| 蜜臀久久99精品久久宅男| av天堂中文字幕网| 天堂网av新在线| 欧美日韩亚洲高清精品| 欧美成人a在线观看| av一本久久久久| 国产精品一及| 亚洲av国产av综合av卡| 久久久久久久久久久免费av| 欧美潮喷喷水| 欧美丝袜亚洲另类| 国内精品宾馆在线| av卡一久久| 舔av片在线| 亚洲内射少妇av| 国产成人91sexporn| 国内少妇人妻偷人精品xxx网站| 一级爰片在线观看| 简卡轻食公司| 女人十人毛片免费观看3o分钟| 超碰av人人做人人爽久久| 亚洲国产欧美人成| 国内少妇人妻偷人精品xxx网站| 欧美高清成人免费视频www| 中文在线观看免费www的网站| 人妻系列 视频| 大香蕉97超碰在线| 午夜亚洲福利在线播放| 久久久国产一区二区| 亚洲自拍偷在线| 日本黄大片高清| 高清视频免费观看一区二区| 又爽又黄a免费视频| 嘟嘟电影网在线观看| 色婷婷久久久亚洲欧美| 亚洲,一卡二卡三卡| 又粗又硬又长又爽又黄的视频| 日韩精品有码人妻一区| 成人毛片60女人毛片免费| 看免费成人av毛片| 精品久久久久久久人妻蜜臀av| 高清毛片免费看| 免费黄色在线免费观看| 日韩亚洲欧美综合| 香蕉精品网在线| 国产乱人偷精品视频| 人妻一区二区av| 国产免费又黄又爽又色| 亚洲图色成人| 一级av片app| 国产亚洲一区二区精品| 水蜜桃什么品种好| 99久国产av精品国产电影| 一区二区三区四区激情视频| 一级毛片久久久久久久久女| 国产黄a三级三级三级人| 一级毛片 在线播放| 亚洲av成人精品一二三区| 精品国产三级普通话版| 亚洲天堂av无毛| 免费高清在线观看视频在线观看| 午夜福利高清视频| 天堂中文最新版在线下载 | 波野结衣二区三区在线| 色5月婷婷丁香| 国产精品99久久久久久久久| 国产欧美亚洲国产| 人妻制服诱惑在线中文字幕| 国产精品99久久久久久久久| 高清视频免费观看一区二区| 亚洲国产精品999| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3| 久久精品国产鲁丝片午夜精品| 欧美日韩亚洲高清精品| 久热久热在线精品观看| 高清在线视频一区二区三区| 国产欧美日韩一区二区三区在线 | 最后的刺客免费高清国语| 欧美国产精品一级二级三级 | 爱豆传媒免费全集在线观看| 男女边摸边吃奶| 久久久久久九九精品二区国产| 中文天堂在线官网| 亚洲第一区二区三区不卡| 日本-黄色视频高清免费观看| 欧美日韩一区二区视频在线观看视频在线 | 女人十人毛片免费观看3o分钟| 啦啦啦中文免费视频观看日本| 99九九线精品视频在线观看视频| 久久ye,这里只有精品| 国产精品精品国产色婷婷| 一级毛片电影观看| 久久精品综合一区二区三区| 亚洲欧洲日产国产| 色哟哟·www| 在线观看三级黄色| 中国三级夫妇交换| 欧美国产精品一级二级三级 | 中文字幕亚洲精品专区| 免费黄网站久久成人精品| 日本三级黄在线观看| 久久精品国产亚洲av天美| 免费看av在线观看网站| 少妇人妻精品综合一区二区| 有码 亚洲区| 一边亲一边摸免费视频| 激情 狠狠 欧美| av一本久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲av涩爱| 日韩欧美一区视频在线观看 | 亚洲熟女精品中文字幕| 日韩一本色道免费dvd| 欧美精品人与动牲交sv欧美| 1000部很黄的大片| 久久久久久九九精品二区国产| 永久免费av网站大全| 永久免费av网站大全| 欧美精品人与动牲交sv欧美| 亚洲精品自拍成人| 午夜日本视频在线| 美女主播在线视频| 精品久久久久久久久亚洲| 亚洲精品久久久久久婷婷小说| 蜜臀久久99精品久久宅男| 国产午夜精品久久久久久一区二区三区| 国产精品成人在线| 国产精品国产三级专区第一集| 午夜福利在线在线| 成人黄色视频免费在线看| 99久久精品热视频| 美女国产视频在线观看| 国产精品人妻久久久影院| 久久久精品94久久精品| 青青草视频在线视频观看| 好男人视频免费观看在线| 色婷婷久久久亚洲欧美| 99热这里只有是精品在线观看| 18禁动态无遮挡网站| 亚洲三级黄色毛片| 国产精品国产av在线观看| 国产精品一区二区三区四区免费观看| 在线看a的网站| 婷婷色麻豆天堂久久| 少妇丰满av| 2018国产大陆天天弄谢| 美女xxoo啪啪120秒动态图| 精品少妇久久久久久888优播| 能在线免费看毛片的网站| 最近的中文字幕免费完整| 九九爱精品视频在线观看| 免费看不卡的av| 老司机影院毛片| 午夜日本视频在线| 美女国产视频在线观看| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文乱码字字幕精品一区二区三区| 国产精品一区www在线观看| a级毛色黄片| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看| www.色视频.com| 最新中文字幕久久久久| 少妇人妻 视频| 日日啪夜夜撸| 中文字幕av成人在线电影| 国产免费一级a男人的天堂| 身体一侧抽搐| 亚洲av国产av综合av卡| 美女cb高潮喷水在线观看| 免费观看的影片在线观看| 女人十人毛片免费观看3o分钟| 欧美成人a在线观看| 最近2019中文字幕mv第一页| 久久97久久精品| 2018国产大陆天天弄谢| 天堂中文最新版在线下载 | 久久久久久久久久人人人人人人| 国产精品久久久久久久久免| 亚洲欧美一区二区三区国产| 99热全是精品| 国产v大片淫在线免费观看| 久热久热在线精品观看| 亚洲国产精品国产精品| 丝袜脚勾引网站| 国产老妇伦熟女老妇高清| 51国产日韩欧美| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜爱| 亚洲在久久综合| 国产精品久久久久久av不卡| 一级片'在线观看视频| 午夜激情久久久久久久| 欧美一区二区亚洲| 69人妻影院| 亚洲国产最新在线播放| 大片免费播放器 马上看| 国产淫片久久久久久久久| 国产亚洲一区二区精品| 蜜桃久久精品国产亚洲av| 亚洲人成网站高清观看| av在线app专区| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 精品熟女少妇av免费看| 成人毛片a级毛片在线播放| 欧美日韩在线观看h| 亚洲综合色惰| 欧美少妇被猛烈插入视频| 亚洲一级一片aⅴ在线观看| 精品久久国产蜜桃| 久久6这里有精品| 日本一二三区视频观看| 秋霞在线观看毛片| 欧美高清性xxxxhd video| 成人美女网站在线观看视频| 久久这里有精品视频免费| 一个人看视频在线观看www免费| 久久久久久久久久久丰满| 亚洲精品一二三| 国产伦理片在线播放av一区| a级一级毛片免费在线观看| 一个人看视频在线观看www免费| 成人亚洲欧美一区二区av| 男女啪啪激烈高潮av片| 欧美亚洲 丝袜 人妻 在线| 中文欧美无线码| 只有这里有精品99| 欧美亚洲 丝袜 人妻 在线| av在线观看视频网站免费| 草草在线视频免费看| 亚洲国产精品专区欧美| 免费电影在线观看免费观看| 精品久久久久久久久av| 男女边吃奶边做爰视频| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区视频在线| 三级国产精品片| 蜜桃亚洲精品一区二区三区| 亚洲天堂国产精品一区在线| 国产久久久一区二区三区| tube8黄色片| 亚洲丝袜综合中文字幕| 尾随美女入室| 成人午夜精彩视频在线观看| 人人妻人人看人人澡| 人人妻人人看人人澡| 免费av观看视频| 国产白丝娇喘喷水9色精品| 制服丝袜香蕉在线| 蜜臀久久99精品久久宅男| 国产伦精品一区二区三区视频9| 高清av免费在线| 精品久久久精品久久久| 亚洲精品国产av蜜桃| 久久久精品免费免费高清| 久久这里有精品视频免费| 寂寞人妻少妇视频99o| 免费高清在线观看视频在线观看| 久久久成人免费电影| 日本av手机在线免费观看| 国产v大片淫在线免费观看| 免费看av在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 尾随美女入室| 亚洲人成网站高清观看| 人妻 亚洲 视频| 人人妻人人澡人人爽人人夜夜| 中文字幕av成人在线电影| 视频区图区小说| 91久久精品国产一区二区三区| 麻豆国产97在线/欧美| 久久久久久久精品精品| 国产亚洲精品久久久com| 韩国高清视频一区二区三区| 蜜桃久久精品国产亚洲av| 精品视频人人做人人爽| 国产伦在线观看视频一区| 熟女电影av网| 亚洲精品自拍成人| 中国三级夫妇交换| 久久99热这里只频精品6学生| 成人欧美大片| 亚洲在久久综合| 全区人妻精品视频| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 中国国产av一级| 18禁裸乳无遮挡免费网站照片| 干丝袜人妻中文字幕| 久久精品国产鲁丝片午夜精品| 精品久久久久久久人妻蜜臀av| 精品酒店卫生间| 中文字幕av成人在线电影| 久久精品久久久久久噜噜老黄| 午夜激情久久久久久久| 国产视频首页在线观看| 婷婷色综合www| 国产精品一区www在线观看| 一级二级三级毛片免费看| 成人无遮挡网站| 亚洲精品日本国产第一区| 最近的中文字幕免费完整| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区四那| 色综合色国产| 久久久久精品久久久久真实原创| 欧美zozozo另类| 狠狠精品人妻久久久久久综合| 18禁在线无遮挡免费观看视频| 亚洲精品日本国产第一区| 男人爽女人下面视频在线观看| 三级国产精品片| 超碰97精品在线观看| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| 18禁裸乳无遮挡动漫免费视频 | 国产av码专区亚洲av| 一边亲一边摸免费视频| 超碰av人人做人人爽久久| 最后的刺客免费高清国语| 国产精品麻豆人妻色哟哟久久| 午夜免费男女啪啪视频观看| 国产熟女欧美一区二区| 亚洲性久久影院| 黄色配什么色好看| 国产高潮美女av| 亚洲美女视频黄频| 偷拍熟女少妇极品色| 国产亚洲精品久久久com| 欧美日韩亚洲高清精品| 80岁老熟妇乱子伦牲交| 成年版毛片免费区| 男女啪啪激烈高潮av片| 最近最新中文字幕免费大全7| 久久97久久精品| 亚洲va在线va天堂va国产| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 久久久久国产网址| 最近中文字幕2019免费版| 国产精品成人在线| 国产男女内射视频| 精品久久久久久久末码| 国产精品蜜桃在线观看| 国产成人午夜福利电影在线观看| 日本黄大片高清| 国产午夜精品久久久久久一区二区三区| 国产男女内射视频| 天天躁日日操中文字幕| 国产精品久久久久久精品古装| 亚洲av二区三区四区| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区 | 久久久国产一区二区| 亚洲欧美精品专区久久| 成年版毛片免费区| 精品久久久久久久末码| 国产精品一及| 国产成人91sexporn| 精品少妇久久久久久888优播| 韩国av在线不卡| 赤兔流量卡办理| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 高清毛片免费看| 波野结衣二区三区在线| 日韩制服骚丝袜av| 欧美zozozo另类| 高清毛片免费看| 亚洲真实伦在线观看| 啦啦啦在线观看免费高清www| 国产亚洲av嫩草精品影院| 在线观看一区二区三区激情| 全区人妻精品视频| 一本色道久久久久久精品综合| 欧美xxxx黑人xx丫x性爽| 极品教师在线视频| 国产毛片在线视频| 91午夜精品亚洲一区二区三区| 日韩大片免费观看网站| 一区二区三区乱码不卡18| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 最近的中文字幕免费完整| 日韩视频在线欧美| 寂寞人妻少妇视频99o| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 国产男女超爽视频在线观看| 日韩不卡一区二区三区视频在线| 男人爽女人下面视频在线观看| 成人一区二区视频在线观看| 日韩欧美 国产精品| 欧美另类一区| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人综合色| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 国产成人精品婷婷| 国产老妇伦熟女老妇高清| 在线亚洲精品国产二区图片欧美 | 国产亚洲91精品色在线| 国产视频首页在线观看| 色播亚洲综合网| 久久久久精品性色| 日日摸夜夜添夜夜添av毛片| 国产精品av视频在线免费观看| 亚洲欧美日韩另类电影网站 | 欧美三级亚洲精品| 18禁裸乳无遮挡动漫免费视频 | 如何舔出高潮| 国产黄片美女视频| 国产欧美另类精品又又久久亚洲欧美| 简卡轻食公司| 国产精品人妻久久久久久| 日韩国内少妇激情av| 日韩制服骚丝袜av| 午夜福利视频1000在线观看| 免费人成在线观看视频色| 国产极品天堂在线| 超碰av人人做人人爽久久| 男人狂女人下面高潮的视频| 国产精品.久久久| 七月丁香在线播放| 亚洲最大成人手机在线| 美女被艹到高潮喷水动态| 自拍偷自拍亚洲精品老妇| 日日摸夜夜添夜夜爱| 久久久久久久亚洲中文字幕| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 日本三级黄在线观看| 在线观看av片永久免费下载| 卡戴珊不雅视频在线播放| tube8黄色片| 国产乱人视频| 免费观看无遮挡的男女| 91精品国产九色| 一个人看视频在线观看www免费| 99热国产这里只有精品6| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 五月伊人婷婷丁香| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 国产乱人视频| 欧美zozozo另类| 大又大粗又爽又黄少妇毛片口| 视频区图区小说| 少妇人妻精品综合一区二区| 99久久九九国产精品国产免费| 中文精品一卡2卡3卡4更新| 青春草国产在线视频| 免费观看av网站的网址| 久久综合国产亚洲精品| 99热这里只有精品一区| 免费观看av网站的网址| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| 三级男女做爰猛烈吃奶摸视频| 久久久国产一区二区| 一级av片app| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| 亚洲久久久久久中文字幕| 免费观看av网站的网址| 激情 狠狠 欧美| 成年女人在线观看亚洲视频 | 久久精品久久精品一区二区三区| 男女那种视频在线观看| av在线观看视频网站免费| 国产老妇伦熟女老妇高清| 九草在线视频观看| 国产成人福利小说| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 久久精品久久精品一区二区三区| 日韩欧美一区视频在线观看 | 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 日韩成人伦理影院| 美女国产视频在线观看| 又爽又黄无遮挡网站| 在线看a的网站| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 国产欧美另类精品又又久久亚洲欧美| 一级av片app| 日本午夜av视频| 春色校园在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲天堂av无毛| 好男人在线观看高清免费视频| 九草在线视频观看| 日韩强制内射视频| 又爽又黄a免费视频| 街头女战士在线观看网站| 国内精品宾馆在线| 91狼人影院| 亚洲内射少妇av| 久久精品国产亚洲av天美| 日日啪夜夜撸| 最近手机中文字幕大全| 成人高潮视频无遮挡免费网站| 大片电影免费在线观看免费| 97在线人人人人妻| 婷婷色综合大香蕉| 51国产日韩欧美| 九九在线视频观看精品| 国产综合精华液| 一级毛片aaaaaa免费看小| 免费av毛片视频| 特大巨黑吊av在线直播| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 国产精品福利在线免费观看| 国产精品久久久久久精品古装| 精华霜和精华液先用哪个| 国产精品蜜桃在线观看|