• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Q-homotopy analysis method for timefractional Newell-Whitehead equation and time-fractional generalized Hirota-Satsuma coupled KdV system

    2024-04-02 07:47:24DiLiuQiongyaGuandLizhenWang
    Communications in Theoretical Physics 2024年3期

    Di Liu,Qiongya Gu and Lizhen Wang

    Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi’an,710127,China

    Abstract In this paper,two types of fractional nonlinear equations in Caputo sense,time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS),are investigated by means of the q-homotopy analysis method (q-HAM).The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions.Due to the presence of the auxiliary parameter h in this method,just a few terms of the series solution are required in order to obtain better approximation.For the sake of visualization,the numerical results obtained in this paper are graphically displayed with the help of Maple.

    Keywords: fractional Newell–Whitehead equation,fractional generalized Hirota–Satsuma coupled KdV system,approximate solution,q-homotopy analysis method

    1.Introduction

    Fractional calculus,a generalization of classical calculus,was proposed by L’Hospital in 1695 and is more suitable than classical calculus for simulating some real-world problems.The advantages of the fractional differential operator are its nonlocality and ability to describe the memory effects of the system.Therefore,fractional calculus has attracted more and more attention in many applied fields,such as biology,physics,rheology,signal processing,electrochemistry [1–6],etc.It is well known that the construction of the exact solutions of fractional partial differential equations(FPDEs)is an important problem.Consequently,many scholars have introduced numerous methods to seek the solutions,such as the Lie symmetry analysis method [7–9],Adomian decomposition method [10],homotopy analysis transform method [11],Laplace transform collocation method [12],functional separation variables method[13],residual power series method[14],sub-equation method [15],homotopy perturbation method[16,17],invariant subspace method [18],auxiliary function method [19,20] and the classical Mittag-Leffler kernel [21].

    An approach called the homotopy analysis method(HAM) was first proposed by Liao [22,23] in 1992.The HAM forms a continuous mapping from the initial conjecture to the exact solution after selecting auxiliary linear operators.The HAM contains the auxiliary parameter to determine the convergence of the solution.Later,in 2012,the q-homotopy analysis method (q-HAM) was introduced by El-Tawil and Huseen in[24]and it is one of the most effective methods for solving nonlinear PDEs.It is actually an improvement of the embedding parameterq∈[0,1] in the HAM ton≥1 appearing in the q-HAM.Moreover,the q-HAM contains the fractional factor that gives better convergence than the HAM.Recently,the method has been generalized and applied to some fractional PDEs,such as time-space fractional Fokker–Planck equations [25],time-fractional Ito equation and Sawada–Kotera equation [26],time-fractional Korteweg–de Vries and Korteweg–de Vries–Burgers equations [27] and time-space fractional gas dynamics equation [28].

    In this paper,on the one hand,we consider the timefractional Newell–Whitehead equation (FNWE) [29],

    where 0 <α ≤1 is a parameter describing the order of the time-fractional derivative.Here and hereafter,is the Caputo fractional differential operator with order α.Physically,to solve FPDEs,we need to specify additional conditions in order to produce a solution.Compared with other fractional operators,Caputo fractional operator has many advantages.First,its initial conditions have physical meaning.Second,the lower limit of integration in its definition can be arbitrarily selected and does not necessarily start from 0,which means that the reference interval can be freely regulated to make the equation have short-term memory.Third,the Caputo fractional derivative of a constant is 0.Equation(1)can be considered as a generalization of the Newell–Whitehead equation (NWE).The NWE can simulate the interaction between the effect of the diffusion term and the nonlinear effect of the reaction term.Functionuis denoted as the distribution of temperature in an infinitely thin and long rod or as the flow rate of a fluid in an infinitely long pipe with a small diameter [30,31].The NWE has been widely used in mechanical,chemical and bio-engineering.Furthermore,some approaches,such as the reduced differential transform method [32],Adomian decomposition methods[33] and variational iteration method [34],have been developed to solve the FNWE.

    On the other hand,we consider the following timefractional generalized Hirota–Satsuma coupled KdV system(HS-cKdVS):

    The generalized HS-cKdVS describes the interaction between long waves with different dispersion relations [35].In this system,u(x,t),v(x,t) andw(x,t) are the amplitude of the wave modes as functions of space variablexand time variablet.Recently,some researchers have investigated this system using different methods.Abbasbandy studied the approximate analytical solution of the generalized HS-cKdVS via the homotopy analysis method [36].Prakash and Verma[37] employed q-homotopy analysis Sumudu transform method and residual power series method to find the analytical solution of system (2).Some exact solutions of system(2)were constructed by Saberi and Hejazi using the invariant subspace method with Caputo sense [38].Martínez,Reyes and Sosa [39] obtained the analytical solutions by applying the sub-equation method for the time-space fractional generalized HS-cKdVS.

    In this paper,we have applied the q-HAM to solve the time FNWE and the time-fractional generalized HS-cKdVS with different initial conditions,because it is too difficult to find the exact solution of the two equations,and the proposed method can be used to find the approximate solution of these two equations,which is helpful for a deeper understanding of the proposed equations at a later stage.Keeping the above facts in mind,this paper is the first study to investigate the approximate solutions of the time FNWE and the time-fractional generalized HS-cKdVS with the help of the q-HAM.

    The rest of the study is set out as follows.Some basic definitions and formulas related to fractional calculus are provided in section 2.The basic definition of the q-HAM is introduced in section 3.In section 4,we intend to use the q-HAM to solve equation (1) and system (2).We conclude this paper in section 5.

    2.Preliminaries

    In this section,we introduce some definitions and formulas related to fractional calculus,which will be used throughout the paper.

    Definition 2.1.[1] The Riemann–Liouville fractional integral operator of order α of functionf(t) is given as,

    Definition 2.2.[1] Forn∈Nandn-1 <α<n,the Caputo fractional derivative of order α of functionf(t) is defined by,

    Lemma 2.1.[1]Letγ>0andt> 0.Then,

    3.Description of the q-homotopy analysis method

    Consider the nonlinear fractional differential equation of the form,

    where N is a nonlinear operator,denotes the Caputo fractional derivative,(x,t)are independent variables,f(x,t)is the given function,whileu(x,t) is an unknown function.Construct the zeroth-order deformation equation as follows:

    wheren≥1,is called an embedded parameter,h≠0 is an auxiliary parameter,H(x,t)is a non-zero auxiliary function,L is an auxiliary linear operator andu0(x,t) is the initial guess ofu(x,t).Clearly,whenq=0 and,we can obtain the following result:

    respectively.Thus,asqrises from 0 to,the solution φ(x,t;q)ranges from the initial guessu0(x,t)to the solutionu(x,t).Assume thatu0(x,t),L,handH(x,t) are appropriately selected so that the solution φ(x,t;q)of equation(6)exists forThe expansion of the function φ(x,t;q) in Taylor series form gives:

    Differentiating zeroth-order deformation equation(6)mtimes with respect to the embedding parameterq,settingq=0 and dividing them bym!,we can derive the followingmth-order deformation equation:

    Applying the inverse operator-L1to both sides of equation (12) and after simplification,um(x,t) can be presented by,

    Remark 1.It needs to be emphasized thatum(x,t)form≥1 is controlled by the linear equation (12)with linear boundary conditions from the original problem.The presence of factorcan produce more opportunities for convergence and even better and faster convergence than the standard HAM.In particular,whenα=1 andn=1 in equation(6),the standard HAM can be achieved.

    The convergence and error analysis of the q-HAM are discussed in the following theorems,which shows that the convergence of the q-HAM is more accurate than the convergence of the HAM.

    Theorem 3.1.[40]Ifthenonlinearoperatorispreservedon thepowerseriesinq,thesolutionofequation(6)together withequation(5)existsasapowerseriesinthefollowing:

    Theorem 3.2.[40]ConsideraBanachspace(A,‖·‖)with

    A?R.Supposethattheinitialestimationu0(x,t)remainsinsidetheballofthesolutionu(x,t).Letrbeaconstant,thenforaprescribedvalueofhand0 <r<n,ifforallk,

    4.Applications of the q-HAM

    In this section,the q-HAM is used to construct the analytical solutions of time FNWEs and time-fractional generalized HScKdVS to verify the effectiveness of the previous q-HAM algorithm.The results of this study are graphed by Maple.

    4.1.The time-fractional Newell-Whitehead equation

    In this section,we construct the series solutions of time FNWE (1) with two different initial conditions with the help of the q-HAM.

    Example 4.1.Consider the time FNWE (1) and its initial condition is given as follows:

    which was derived in [33].

    Choose the linear operator:

    with the propertyL [r]=0,whereris a constant.Then,we define a nonlinear operator as,

    We construct the zeroth-order deformation equation as follows:

    TakingH(x,t)=1,the so-calledmth-order deformation equation is:

    with initial condition form≥1,um(x,0)=0,where

    The simple transformation of equation (21) yields that,

    From (19) to (23) and lemma 2.1,we arrive at the components of the solution of equations (1) and (17) form≥1:

    and

    Proceeding in similar steps,the remaining iterationsum(x,t)(m=3,4,5,…) can be obtained.Therefore,the series solution of equations (1) and (17) obtained by the q-HAM is

    Equation(26)is the appropriate solution to equations(1)and (17) in terms of convergence parametershandn.Moreover,choosingn=1,α=1 andh=-1,the series solutionof equations (1) and (17) converges to its exact solution [34] asN→∞:

    With the help of the 3D plots,we demonstrate the wave propagation pattern of the wave along thex-axis.Figure 1 presents the plots of the approximate solution,exact solution and absolute error whenh=-0.44,n=1 and α=1 for equations (1) and (17).It is worth pointing out that the numerical solution obtained by the q-HAM and the exact solutionu(x,t) are almost identical in figures 1(a) and (b).Figure 2 displays the behavior of the flow velocityu(x,t) for distinct values of α atx=1,h=-1 andn=1.We note that the q-HAM solution increases with the increase intin figure 2.Figure 3 exhibits the behavior of the flow velocityu(x,t)for different values ofnatx=1,h=-1 and α=0.2.It can be seen from figure 3 that as the values ofhincrease,the q-HAM solutionu(x,t) decreases.In figure 4,different values of the convergence control parameterhare selected to minimize residual error and guarantee the convergence of the series solution by choosing the appropriate value ofh.

    Figure 1.(a).q-HAM solution for Ex.4.1.(b).Exact solution for Ex.4.1.(c).Abs.error=|uexa.-uq-HAM| for Ex.4.1.

    Figure 2.Plot of u(x,t) versus time for different values of α for Ex.4.1.

    Figure 3.Plot of h curves for Ex.4.1.with fixed x=1 and α=0.2 at different values of n.

    Figure 4.Plot of h curves for Ex.4.1.with fixed n=1 and x=1 at different values of h.

    Example 4.2.Consider equation (1) with another initial condition given in [34] listed as follows:

    Applying (19) to (23),we derive the components of the solution of equations (1) and (28) using the q-HAM successively as follows:

    The rest ofum(x,t) (m=3,4,5,…) follows the same approach.Then,the series solution of equations (1) and (28)is,

    Equation(31)is the appropriate solution to equations(1)and(28) in terms of convergence parametershandn.Moreover,whenn=1,α=1 andh=-1,the series solutionof equations(1)and(28)converges to its exact solution [34] asN→∞:

    The wave propagation pattern of the wave along thexaxis can be seen from the 3D plots.Figure 5 gives the plots of the approximate solution,exact solution and absolute error whenh=-0.45,n=1 and α=1 for equations(1)and(28).It can be observed that the numerical solution obtained by the q-HAM and the exact solutionu(x,t)are consistent with each other in figures 5(a) and (b).Figure 6 demonstrates the behavior of the flow velocityu(x,t)for distinct values of α atx=1,h=-1 andn=1 and indicates that the q-HAM solution increases with the increase in α.Figure 7 displays the behavior of the flow velocityu(x,t)for different values ofnatx=1,h=-1 and α=0.2.It is clear from figure 7 that as the values ofhincrease,the q-HAM solutionu(x,t)decreases.In figure 8,different values of the convergence control parameterhare selected to minimize residual error.

    Figure 5.(a).q-HAM solution for Ex.4.2.(b).Exact solution for Ex.4.2.(c).Abs.error=|uexa.-uq-HAM| for Ex.4.2.

    Figure 6.Plot of u(x,t) versus time for different values of α for Ex.4.2.

    Figure 7.Plot of h curves for Ex.4.2.with fixed x=1 and α=0.2 at different values of n.

    Figure 8.Plot of h curves for Ex.4.2.with fixed n=1 and x=1 at different values of h.

    Figure 9.Plots of q-HAM solutions for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 10.Plots of the exact solutions for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 11.Plots of Abs.error for Ex.4.3 when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    4.2.The time-fractional generalized HS-cKdVS

    This section is dedicated to the construction of the approximate solution of system (2) with two different initial conditions through the q-HAM.

    Example 4.3.Discuss the time-fractional generalized HScKdVS (2) subject to the following initial conditions introduced in [35]:

    wherek,c0,c1≠0and β are arbitrary constants.

    Introduce the following linear operators:

    wherei=1,2,3.Let φi?φi(x,t;q) and the nonlinear operators can be provided as,

    Construct the zeroth-order deformation equations as,

    ChoosingH(x,t)=1,themth-order deformation equations can be given by,

    The simple transformation of equation (37) yields that,

    Combining(15),(37),(38)and(39)with lemma 2.1,the components of the solution can be obtained by continuous application of the q-HAM:

    Moreover,we can repeat the above process to deduce the formulas ofum(x,t),vm(x,t)andwm(x,t)(m=3,4,5,…)and deduce the following series solution of system (2):

    Figures 9–11 show the plots of the approximate solution,exact solution and absolute error whenh=-1,n=1,α=1,c0=β=1.2 andc1=k=0.1 for system (2)with the initial conditions (33),respectively.The numerical solution obtained by the q-HAM is almost similar to the exact solution,as observed in figures 9 and figure 10.The effect of the various parameters and variables on the amplitude of the wave modes is shown from figures 12–14.Figure 12 presents the behavior of the numerical solution for distinct values of α atx=2,h=-1 andn=2.It is easy to see that the q-HAM solution increases with increasingtin figure 12.Figure 13 exhibits the behavior for different values ofnatx=2 and α=0.3.We note from figure 13 that as the values ofhincrease,the q-HAM solution decreases.In figure 14,diverse values of the convergence control parameterhare selected to lessen the error.

    Figure 12.Plots of u(x,t),v(x,t),and w(x,t) for Ex.4.3 with fixed c0=β=1.2,c1k=0.1,x=2n=2 and h=1 at different values of α.

    Figure 13.Plots of h curves for Ex.4.3 at different values of n when c0=β=1.2,c1=k=0.1,x=2 and α=0.3.

    Figure 14.Plots of h curves for Ex.4.3 at c0=β=1.2,c1=k=0.1,x=n=2 and α=0.3 with increasing values of t.

    Figure 15.Plots of q-HAM solutions for Ex.4.4.when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 16.Plots of the exact solutions for Ex.4.4.when c0=1.2,c1=0.1,β=1.2 and k=0.1.

    Figure 17.Plots of Abs.error for Ex.4.4.when c0=β=1.2 and c1=k=0.1.

    Example 4.4.For system (2),we take the new initial conditions introduced in [42]:

    wherek,c0,c2≠0and β are arbitrary constants.

    Similarly,from(37)to(39),we derive the components of the solution as follows:

    In the same way,um(x,t),vm(x,t)andwm(x,t)(m=3,4,5,…) can be derived.Accordingly,the series solution of system(2) by the q-HAM in series form is provided as follows:

    Figures 15–17 display the plots of the approximate solution,exact solution and absolute error whenh=-1,n=1,α=1,c0=β=1.2 andc1=k=0.1 for system (2)with the initial conditions(44),respectively.As can easily be discovered from figures 15 and 16,the numerical solution obtained by the q-HAM coincides with the exact solution.Figures 18–20.show the effect of the various parameters and variables on the amplitude of the wave modes.Figure 18 depicts the behavior of the numerical solution for distinct values of α atx=2,h=-1 andn=2.It is realized that the q-HAM solution increases with the increase intin figure 18.Figure 19 exhibits the behavior of the numerical solution for diverse values ofnatx=2 and α=0.3.It can be seen from figure 19 that as the values ofhincrease,the q-HAM solution decreases.In figure 20,different values of the convergence control parameterhare selected to minimize residual error and guarantee the convergence of the series solution by choosing the appropriate value ofh.

    Figure 19.Plots of h curves for Ex.4.4.at different values of n when c0=β=1.2,c1=k=0.1,x=2 and α=0.3.

    Figure 20.Plots of h curves for Ex.4.4.at c0=β=1.2,c1=k=0.1,x=n=2 and α=0.3 with increasing values of t.

    5.Conclusion

    In this present study,the new approximate solutions of the time FNWE and the time-fractional generalized HS-cKdVS are successfully constructed by means of the q-HAM.The results show that the q-HAM gives the solution in the form of a convergent series without using linearization and perturbation.In addition,it is shown from the absolute truncated error image that the results of the present method are in excellent agreement with the exact solution.The auxiliary parameterhandn(n≥1) used in the proposed method describe the nonlocal convergence.Therefore,the investigation of this paper shows that the q-HAM is an effective and powerful tool to solve nonlinear FPDEs with the sense of Caputo derivative.

    Funding

    This study is supported by the National Natural Science Foundation of China (Grant No.12 271 433).

    Conflict of Interest

    The authors declare that they have no conflicts of interest.

    ORCID iDs

    一个人看的www免费观看视频| 亚洲国产色片| 欧美成人性av电影在线观看| 午夜福利视频1000在线观看| 国产欧美日韩一区二区精品| 久久久久久久精品吃奶| 国产高清有码在线观看视频| 综合色av麻豆| 日韩高清综合在线| 日本黄色片子视频| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 久久久久免费精品人妻一区二区| 日本成人三级电影网站| 又粗又爽又猛毛片免费看| 嫩草影视91久久| 久久国产乱子免费精品| 久久精品久久久久久噜噜老黄 | 乱人视频在线观看| 精品人妻视频免费看| 日本免费一区二区三区高清不卡| 欧美又色又爽又黄视频| 亚洲成人中文字幕在线播放| 免费电影在线观看免费观看| 色综合站精品国产| 欧美zozozo另类| 久久久久久大精品| 我要看日韩黄色一级片| 国产亚洲91精品色在线| 欧美黑人欧美精品刺激| 精品久久久久久久久av| 嫩草影院精品99| 色播亚洲综合网| 国产亚洲av嫩草精品影院| 亚洲最大成人手机在线| 在线看三级毛片| 老司机福利观看| 久久人妻av系列| 精品一区二区三区av网在线观看| 中文字幕高清在线视频| 欧美人与善性xxx| 亚洲精品一卡2卡三卡4卡5卡| 久久精品91蜜桃| 成人三级黄色视频| 国产成年人精品一区二区| 日日干狠狠操夜夜爽| 午夜激情欧美在线| 国产精品永久免费网站| 成年版毛片免费区| 国产91精品成人一区二区三区| 一边摸一边抽搐一进一小说| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 丰满人妻一区二区三区视频av| 欧美在线一区亚洲| bbb黄色大片| bbb黄色大片| 天堂网av新在线| 国产伦在线观看视频一区| av.在线天堂| eeuss影院久久| 麻豆国产97在线/欧美| 春色校园在线视频观看| 中文字幕精品亚洲无线码一区| 日本三级黄在线观看| 最近最新中文字幕大全电影3| 黄色配什么色好看| 黄色一级大片看看| 亚洲真实伦在线观看| 精品乱码久久久久久99久播| 听说在线观看完整版免费高清| 中文字幕熟女人妻在线| 久久久久国内视频| 如何舔出高潮| 麻豆一二三区av精品| 国产精品亚洲一级av第二区| 3wmmmm亚洲av在线观看| 久久婷婷人人爽人人干人人爱| 国产精品国产三级国产av玫瑰| 波多野结衣高清作品| 舔av片在线| www.www免费av| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 全区人妻精品视频| 草草在线视频免费看| 亚洲七黄色美女视频| 国产真实乱freesex| 级片在线观看| 欧美激情国产日韩精品一区| 亚洲国产高清在线一区二区三| 91av网一区二区| 欧美一区二区国产精品久久精品| a在线观看视频网站| 久久久国产成人精品二区| av黄色大香蕉| 日日夜夜操网爽| 欧美+日韩+精品| 悠悠久久av| 久久这里只有精品中国| 99在线人妻在线中文字幕| 精品久久久久久久久亚洲 | 18禁黄网站禁片午夜丰满| 亚洲男人的天堂狠狠| 少妇的逼水好多| 亚洲成人免费电影在线观看| 日韩欧美精品v在线| 久久中文看片网| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 国模一区二区三区四区视频| 美女 人体艺术 gogo| 女人被狂操c到高潮| 亚洲天堂国产精品一区在线| 亚洲国产日韩欧美精品在线观看| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 88av欧美| 日本免费a在线| 成人av在线播放网站| 亚洲av电影不卡..在线观看| 在线国产一区二区在线| 一区二区三区高清视频在线| 国产亚洲91精品色在线| 老司机午夜福利在线观看视频| 免费av不卡在线播放| 深夜精品福利| 久久九九热精品免费| bbb黄色大片| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 国产黄a三级三级三级人| 国产日本99.免费观看| 久久久久久久久久成人| 在线观看一区二区三区| 精品一区二区三区视频在线| 欧美日韩瑟瑟在线播放| 精品一区二区免费观看| aaaaa片日本免费| 搞女人的毛片| 免费电影在线观看免费观看| 很黄的视频免费| 欧美绝顶高潮抽搐喷水| 99热只有精品国产| 成人鲁丝片一二三区免费| 黄色一级大片看看| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 国产精品一区二区三区四区久久| 老司机午夜福利在线观看视频| 欧美日韩综合久久久久久 | 欧美高清性xxxxhd video| 欧美三级亚洲精品| 制服丝袜大香蕉在线| 别揉我奶头 嗯啊视频| 国产午夜福利久久久久久| 琪琪午夜伦伦电影理论片6080| 国产单亲对白刺激| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 啪啪无遮挡十八禁网站| 成人欧美大片| 国产伦精品一区二区三区视频9| 国产亚洲av嫩草精品影院| netflix在线观看网站| 少妇丰满av| 毛片女人毛片| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 国产成人aa在线观看| 久久精品国产亚洲av涩爱 | 3wmmmm亚洲av在线观看| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| a级毛片a级免费在线| 人妻久久中文字幕网| 国产一级毛片七仙女欲春2| 狂野欧美激情性xxxx在线观看| 色av中文字幕| 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜亚洲精品久久| 熟妇人妻久久中文字幕3abv| 99在线人妻在线中文字幕| 男人狂女人下面高潮的视频| 国产高清视频在线播放一区| 亚洲五月天丁香| 看片在线看免费视频| 精华霜和精华液先用哪个| 久久国内精品自在自线图片| 欧美日韩瑟瑟在线播放| 亚洲最大成人av| 性欧美人与动物交配| 国产欧美日韩精品一区二区| 99久久精品热视频| 很黄的视频免费| 亚洲专区国产一区二区| 丰满乱子伦码专区| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦精品一区二区三区视频9| 搡老妇女老女人老熟妇| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 亚洲国产日韩欧美精品在线观看| 国产国拍精品亚洲av在线观看| 最新在线观看一区二区三区| 久久久久久九九精品二区国产| 欧美在线一区亚洲| 成人欧美大片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲专区国产一区二区| 动漫黄色视频在线观看| 日韩欧美一区二区三区在线观看| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 国产av麻豆久久久久久久| 欧美日韩黄片免| 97超视频在线观看视频| 高清毛片免费观看视频网站| 免费人成在线观看视频色| 日韩精品青青久久久久久| 深爱激情五月婷婷| 99热这里只有精品一区| 国产视频内射| 在线观看美女被高潮喷水网站| 色视频www国产| 精品日产1卡2卡| 黄色配什么色好看| 亚洲乱码一区二区免费版| 成人特级av手机在线观看| aaaaa片日本免费| a级一级毛片免费在线观看| 成人毛片a级毛片在线播放| 九九热线精品视视频播放| 麻豆av噜噜一区二区三区| 国产伦一二天堂av在线观看| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 国产欧美日韩一区二区精品| 人妻丰满熟妇av一区二区三区| 成人特级黄色片久久久久久久| 久久精品国产亚洲av香蕉五月| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播| 欧美日韩瑟瑟在线播放| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 99热这里只有精品一区| 婷婷精品国产亚洲av| 少妇丰满av| a在线观看视频网站| 十八禁国产超污无遮挡网站| 国产爱豆传媒在线观看| 一个人免费在线观看电影| 99热这里只有精品一区| 国产三级在线视频| 欧美xxxx性猛交bbbb| 国产老妇女一区| 国产黄色小视频在线观看| 欧美潮喷喷水| eeuss影院久久| 色播亚洲综合网| 好男人在线观看高清免费视频| 性色avwww在线观看| 欧美一级a爱片免费观看看| 日本黄大片高清| 中文字幕熟女人妻在线| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 国产亚洲91精品色在线| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 亚洲图色成人| 三级国产精品欧美在线观看| 成人特级av手机在线观看| 午夜激情欧美在线| 日韩欧美在线乱码| 国产精品久久久久久亚洲av鲁大| 亚洲性夜色夜夜综合| 极品教师在线视频| 日韩国内少妇激情av| 午夜a级毛片| 久久亚洲真实| 乱码一卡2卡4卡精品| 身体一侧抽搐| a级毛片a级免费在线| x7x7x7水蜜桃| 久久久久国产精品人妻aⅴ院| 在线观看一区二区三区| 深爱激情五月婷婷| 亚州av有码| 久久国内精品自在自线图片| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 免费搜索国产男女视频| 淫妇啪啪啪对白视频| 国产精品av视频在线免费观看| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 日韩高清综合在线| av天堂中文字幕网| 极品教师在线免费播放| 日韩欧美国产在线观看| 久久久成人免费电影| 色av中文字幕| 午夜a级毛片| 亚洲精品456在线播放app | 亚洲av熟女| 亚洲在线自拍视频| 亚洲精华国产精华液的使用体验 | 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 国产精品日韩av在线免费观看| 久久久久久久久久久丰满 | 日韩强制内射视频| 中文字幕免费在线视频6| 欧美+亚洲+日韩+国产| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 深夜精品福利| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 蜜桃久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 97碰自拍视频| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 成人国产一区最新在线观看| 夜夜爽天天搞| 小蜜桃在线观看免费完整版高清| 精品一区二区免费观看| 一级av片app| 午夜福利高清视频| 天美传媒精品一区二区| av专区在线播放| avwww免费| 1024手机看黄色片| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 一级黄片播放器| 尾随美女入室| 国产成人一区二区在线| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 三级国产精品欧美在线观看| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 小说图片视频综合网站| 五月玫瑰六月丁香| 亚洲不卡免费看| 在线观看午夜福利视频| av专区在线播放| 久久亚洲精品不卡| 99热6这里只有精品| 久久香蕉精品热| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 日韩中字成人| 简卡轻食公司| 在线观看66精品国产| av在线天堂中文字幕| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 国产人妻一区二区三区在| 看十八女毛片水多多多| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 亚洲精品日韩av片在线观看| 亚洲国产色片| 国产亚洲精品久久久久久毛片| 九九热线精品视视频播放| 国产又黄又爽又无遮挡在线| av中文乱码字幕在线| 欧美成人一区二区免费高清观看| 免费av观看视频| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 波多野结衣高清无吗| 俺也久久电影网| 日本熟妇午夜| 淫秽高清视频在线观看| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久电影| 成人午夜高清在线视频| 日韩在线高清观看一区二区三区 | 深爱激情五月婷婷| 联通29元200g的流量卡| 婷婷六月久久综合丁香| 性欧美人与动物交配| 成人毛片a级毛片在线播放| 欧美黑人巨大hd| 欧美人与善性xxx| 国国产精品蜜臀av免费| 老女人水多毛片| www日本黄色视频网| 一级黄片播放器| 我的老师免费观看完整版| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 亚洲18禁久久av| 色尼玛亚洲综合影院| 久久久午夜欧美精品| 久久午夜亚洲精品久久| .国产精品久久| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| av国产免费在线观看| 国产淫片久久久久久久久| 国产精品98久久久久久宅男小说| 偷拍熟女少妇极品色| 日韩欧美在线乱码| 亚洲精品成人久久久久久| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| 搡老妇女老女人老熟妇| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| 亚洲欧美日韩高清专用| 黄色一级大片看看| 听说在线观看完整版免费高清| 成人综合一区亚洲| 一区福利在线观看| 干丝袜人妻中文字幕| 在线观看av片永久免费下载| 国产精品久久久久久av不卡| 特级一级黄色大片| 亚洲av日韩精品久久久久久密| 国产色婷婷99| 国产91精品成人一区二区三区| 免费黄网站久久成人精品| 午夜福利18| 国产中年淑女户外野战色| 亚洲成人久久性| 精品午夜福利视频在线观看一区| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 香蕉av资源在线| 可以在线观看毛片的网站| 欧美性猛交╳xxx乱大交人| 日韩精品中文字幕看吧| 亚洲最大成人手机在线| 国产精品一区二区性色av| 久久久久性生活片| 久久这里只有精品中国| 国产探花在线观看一区二区| 18禁在线播放成人免费| 欧美最新免费一区二区三区| 能在线免费观看的黄片| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| 天堂√8在线中文| 国产成人一区二区在线| 成人无遮挡网站| 一进一出抽搐gif免费好疼| 国产69精品久久久久777片| 草草在线视频免费看| 日韩大尺度精品在线看网址| 免费观看人在逋| 麻豆成人av在线观看| 简卡轻食公司| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看| 欧美性感艳星| 一级黄色大片毛片| 热99re8久久精品国产| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 免费观看人在逋| 99视频精品全部免费 在线| 18禁黄网站禁片午夜丰满| 欧美日韩精品成人综合77777| 乱码一卡2卡4卡精品| 亚洲无线在线观看| 亚洲经典国产精华液单| 简卡轻食公司| 国产不卡一卡二| 亚洲人成网站高清观看| 美女xxoo啪啪120秒动态图| 亚洲专区国产一区二区| 欧美xxxx性猛交bbbb| 久久精品久久久久久噜噜老黄 | 九九热线精品视视频播放| 国产毛片a区久久久久| 午夜精品在线福利| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 噜噜噜噜噜久久久久久91| 亚洲经典国产精华液单| bbb黄色大片| 日韩精品有码人妻一区| 日韩一区二区视频免费看| av视频在线观看入口| 色哟哟哟哟哟哟| 国产精品伦人一区二区| 深夜精品福利| 日韩国内少妇激情av| 国产亚洲精品久久久com| 久久人人精品亚洲av| 老女人水多毛片| 听说在线观看完整版免费高清| 变态另类成人亚洲欧美熟女| 欧美xxxx性猛交bbbb| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| а√天堂www在线а√下载| 国产午夜福利久久久久久| 免费看av在线观看网站| 亚州av有码| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 天美传媒精品一区二区| 国产精品一区二区性色av| 中出人妻视频一区二区| 长腿黑丝高跟| 久久亚洲精品不卡| 赤兔流量卡办理| 天天躁日日操中文字幕| 国产乱人视频| 亚洲美女搞黄在线观看 | 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 中文字幕久久专区| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 亚洲图色成人| 我要看日韩黄色一级片| 日本黄色视频三级网站网址| 一级av片app| 久久人人爽人人爽人人片va| 欧美不卡视频在线免费观看| 日韩 亚洲 欧美在线| 亚洲美女视频黄频| 国产精品人妻久久久久久| 中国美女看黄片| 亚洲精品在线观看二区| 国产综合懂色| 精品免费久久久久久久清纯| 亚洲一区二区三区色噜噜| 亚洲欧美激情综合另类| 五月伊人婷婷丁香| 直男gayav资源| 88av欧美| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 韩国av一区二区三区四区| 综合色av麻豆| 亚洲,欧美,日韩| 一个人观看的视频www高清免费观看| 日本成人三级电影网站| 亚洲va在线va天堂va国产| 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 自拍偷自拍亚洲精品老妇| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 不卡一级毛片| 很黄的视频免费| 少妇丰满av| 啦啦啦观看免费观看视频高清| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看| 毛片女人毛片| 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 色吧在线观看| 亚洲av中文字字幕乱码综合| 男女之事视频高清在线观看| 三级男女做爰猛烈吃奶摸视频| 日本欧美国产在线视频| 波多野结衣高清无吗| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 赤兔流量卡办理| 日日干狠狠操夜夜爽| 亚洲中文字幕日韩| 熟女人妻精品中文字幕| 3wmmmm亚洲av在线观看| 色综合婷婷激情| 一本一本综合久久| 搡女人真爽免费视频火全软件 | 国产黄片美女视频| 最新在线观看一区二区三区| 床上黄色一级片|