• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ren-integrable and ren-symmetric integrable systems

    2024-05-24 15:18:15Lou
    Communications in Theoretical Physics 2024年3期

    S Y Lou

    School of Physical Science and Technology,Ningbo University,Ningbo,315211,China

    Abstract A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics,super-symmetric gravity,super-symmetric string theory,super-symmetric integrable systems and so on.Supersymmetry and Grassmann numbers are,in some sense,dual conceptions,and it turns out that these conceptions coincide for the ren situation,that is,a similar conception of ren-number(R-number)is devised for ren-symmetry.In particular,some basic results of the R-number and ren-symmetry are exposed which allow one to derive,in principle,some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems.Training examples of renintegrable KdV-type systems and ren-symmetric KdV equations are explicitly given.

    Keywords: symmetries,integrable systems,anyon physics,extended supersymmetry,rensymmetry

    1.Introduction

    The idea of symmetry originates in natural scientific fields,and its importance there is well known [1–9].Symmetry considerations belong to the most universal and astonishing methods by which scientists have successfully solved problems in building new solutions from known ones [10–12],performing dimensional reductions of nonlinear partial differential equations [13–18],getting new integrable systems[19–23] and even constructing all solutions for certain nonlinear systems [24,25].

    By using the SU(3)×SU(2)×U(1) symmetry,three fundamental interactions,the strong,weak and electromagnetic interactions,have been unified into the so-called standard model.However,in order to unify the gravitational interaction to the standard model,one has to introduce a new type of symmetry,say the super-symmetry between bosons and fermions.New areas of physical fields,including super-symmetric gravity [26,27],super-symmetric quantum mechanics [28],super-symmetric string theory [29] and super-symmetric integrable systems [30–35],have been developed which are highly motivated by super-symmetries,in the belief that they possess a high potential for future development.

    In super-symmetry theory,it is essential to introduce the Grassmann variable θ [36,37] and the super-symmetric derivativeD with the properties

    The super-symmetric derivativeD is invariant under the super-symmetric transformation

    Recently,unlike bosons and fermions,anyons with fractional charges,spin and statistics in two dimensions have attracted the attention of many scientists[38–41].Anyons can be used to describe some kinds of quasi-particles (the lowenergy excitations in Hamiltonian systems) including the fractional quantum Hall states [42],vortices in topological superconductors [43] and Majorana zero modes in semiconductors proximitized by superconductors[44].By analogy with the fermion case in which fermions can be described by Grassmann fields,some new fields are endowed to describe anyons,which we call anyon-fields and/or ren-fields.We shall use the adjective ‘ren’to stress the arbitrary nature of α and to avoid confusion with ‘arbitrary symmetry’ or ‘any symmetry’.‘Ren’ means ‘arbitrary’ in Chinese.

    A comparison of the Grassmann number (G-number)θ=and the super-symmetric derivative D=corresponding to the ren point of view,suggests that one should use,as the ren-number (R-number) and the ren-symmetric derivative,respectively,the following radical generalization of the formulae

    with α being arbitrary.

    The introduction of the G-number and the super-symmetric derivative yields some significant novel mathematical and physical fields such as Grassmann algebra [36],super-symmetric quantum mechanics [28],super-symmetric string theory [29],super-symmetric gravity [26],super-/Kuper-integrable systems[45–51] and super-symmetric integrable theories [30–35].Therefore,we hope that the introduction of the R-number and the ren-symmetric derivative may successfully create some different mathematical and physical fields such as ren-algebra,rencalculus,ren-integrable models and ren-symmetric integrable systems.The usual G-number,G-algebra,super-symmetric theory,super-integrable systems and super-symmetric integrable systems just correspond to the ren-case for α=2.

    In Section 2 of this paper,the concept of the R-number θ for an arbitrary positive integer α is defined with the aim of deriving ren-algebra,ren-derivative and ren-symmetric derivative.Then,we deal in Section 3 with the problem of finding some types of ren-integrable systems by coupling the usual boson fields and the anyon-fields.When α is fixed to α=2,the ren-integrable system is just the known super-or Kuper-integrable systems [45].By means of the ren-symmetric derivative,we study the ren-symmetric integrable systems in Section 4,and the ren-symmetric KdV systems for α=3,4 are explicitly given.The well-known super-symmetric integrable systems are just the special cases of the ren-symmetric integrable systems with α=2.The last section includes a short summary and some discussions.

    2.Ren-algebra,ren-derivative and ren-symmetric derivative

    Definition 1.An R-numberθ≡θαis defined as a number possessing the properties

    where α is an arbitrary positive integer.

    That is,an R-number can be spelled out as a non-zero α root of zero

    It is clear that there are α-1 solutions of (5),{θ,θ2,…,θα-1}.Such a definition exists in one important special case,α=2,and the usual G-number θ=θ2.

    For α=2,we know that ifaandbare G-numbers then the combination is still a G-number when the anti-communication relation

    holds.

    Similarly,for α ≥2,ifaandbare R-numbers with theqcommutation relation

    then so is the combinationa+bofaandb,where{nmpm<α} is a set withpm,m=1,…,Mbeing the prime factors of α andnm=1,…,Nmbeing integers withNmpm<α.For α=3,4,…,10,we have

    From the expression ofqgiven in (7),we know that the usual number (boson number) is related to α=∞and the G-number (fermion number) corresponds to α=2.

    Definition 2.The degree,β(mod(α)),of an R-number γ is defined as

    where the degree of θ is always fixed as one in this paper.γ in(9) is also said to be a β order R-number.

    If the R-numbers γ1and γ2possess the degrees β1and β2,respectively,then we have the commutation relation

    which is consistent with (9) when β2=1 and β1β2=0.

    Definition 3.Ren-derivative,is a derivative with respect to the ren-variable θ,

    Similar to the Grassmann case,because the definition of the R-number (4),an arbitrary function of the renvariable,f(θ),can be written as

    Iff(θ) is a β order R-number,thenfiandgiin (12) are β-iorder R-numbers with

    According to the property(12),it is enough to find all the possible ren-derivatives for an arbitrary ren-functionf(θ) by calculating

    Based on the commutation relation(7)and the definition of the ren-derivative (11),it is readily proven that

    whereiqis defined asiq=1+q+…+qi-1,say,2q=1+q,3q=1+q+q2and so on.

    Thus,for the ren-functionf(θ) with degree β,we have

    Ren-integration may be defined as an inverse operator of the ren-derivative for θk,k<α-1,however,for θα-1the inverse operator of the ren-derivative is not well defined.A different integration operator can be defined[52].For α=2,the Berezin integral has been defined [53,54].In this paper,we will not discuss this problem,though the similar Berezin integral may be introduced under the requirement of translation invariance[52].Definition 4.A ren-symmetric derivativeR ≡Rαis defined as an α root of the usual space derivativex?,i.e.,

    It is interesting that in terms of the R-number θ,the rensymmetric derivativeR can be explicitly written as

    whose particular caseq=1 is the usualn!.

    It is reasonable that the ren-symmetric derivative (16)will reduce back to the known super-symmetric derivative R2≡ D=?θ+θ?xwhen α=2.The ren-symmetric derivatives for α=3,4,5,6 and 7 are given by the formulae as a straightforward computation,

    It is not difficult to prove that the ren-symmetric derivativeR possesses the following ren-symmetric transformation

    With the stress on the first fewf,say,α=2,3,4,5 and 6,we have

    3.Ren-integrable systems

    In the limit α=2,ren-integrable models are just the known super-or Kuper-integrable models which were first proposed by Kupershmidt in [45].It is known that the usual bosonic KdV equation,

    Usually,the spectral function ψ is considered as a boson function.In fact,because the Lax pair (23) is linear,the spectral function ψ may be a fermion function and even a renfunction.

    It is known that if σ is a symmetry of an integrable evolution equation

    is also an integrable model.

    Furthermore,if σ=σ(ψ),where ψ is a spectral function of the Lax pair,

    of (24),then the first type of source equation

    and the second type of source equation

    may all be integrable [55–63].

    Usually,the spectral functions ψ studied in the integrable models are restricted as bosonic functions.For instance,for the KdV equation(22)the first and second types of integrable bosonic source equations possess the forms

    respectively.

    It is the fallacy of the time, and manypoets express it, to say that all that is noble is bad and stupid, andthat, on the contrary, the lower one goes among the poor, the morebrilliant virtues38 one finds

    Now,if we extend the spectral function of the Lax pair(23) to a ren-function,ξ,then we have a trivial symmetry,σ=ξα-1ξxx.Applying this symmetry to the second type of source equation,we can find some coupled ren systems

    with one boson fielduandk×niren-fields ξij,wherek,niand αiare all arbitrary integers.

    The integrability of(32)with αi=2 for alli=1,2,…,kis known because the models reduce back to the so-called super-/Kuper-integrable systems [45–48].Before studying the integrability of (32) with αi≠2 for some 2 <i≤k,we directly write down a more general nontrivial symmetry of the KdV equation (22),

    where ξ1and ξ2are ren-spectral functions of the usual KdV equation with the same spectral parameter λ=λ1=λ2but with different degrees,β and α-β,respectively.

    The simplest second type of source equation related to(33) possesses the form

    Theorem.The model(34)is Lax integrable with the Lax pair

    Proof.To complete the proof of the theorem,it suffices to prove that the compatibility condition

    is valid for arbitraryfif (34) is satisfied.

    Expanding the expression(36)with the operatorsdefined in (35),

    and simplifying the result with the formulae of integration by parts

    (37) is changed to

    Because of the arbitrariness off,(39) is correct only after joining it to equation (34).The theorem is proved.

    Remark.From the proof procedure of the theorem,it is known that we have not used any commutation relation on ξ1and ξ2.That means (34) is Lax integrable no matter whether the fields ξ1and ξ2are boson fields,fermion fields and/or renfields with arbitrary α.

    4.Ren-symmetric integrable systems

    In Section 2 of this paper,we defined the ren-symmetric derivativeR.By means of the ren-symmetric derivative,the usual bosonic integrable systems can be extended to rensymmetric integrable ones.Before discussing ren-symmetric integrable systems,we list some special cases for α=2,i.e.,the super-symmetric integrable models.

    4.1.Super-symmetric integrable KdV systems

    The most generalN=1 symmetric form of the KdV equation(22)is generated by the fermionic super-field Φ with an arbitrary constanta,

    Mathieu had proven that the super-symmetric KdV equation(40)is Painlevé integrable only fora=0 and 3[64].Although the super-symmetric KdV system (40) is not Painlevé integrable for arbitrarya,it does possess multiple soliton solutions [65].In (40),the super-field Φ ≡ξ+θuis a fermionic super-field with a fermion field ξ and a boson fieldu.

    For the coupled KdV equation,we have an interacting model between a super-symmetric boson fieldUand a supersymmetric fermion field Φ

    which is Lax integrable.IncorporatingU=0,(41) readily reduces back to (40) witha=3.For Φ=0,(41) becomes a quite trivial extension of the original KdV equation (22)byu→U.

    The component form of (41) reads

    withU=u+θξ and Φ=ζ+θv,whereuandvare boson components and ξ and ζ are fermion components.

    The Lax pair of (41) can be written as

    4.2.Ren-symmetric integrable KdV systems

    Analogous to (40),the general ren-symmetric KdV equation is expressible in the form

    where[β1] is the integer part of β1,ai,i=0,1,2,…,[β1],are arbitrary bosonic constants and β is the degree of the ren-field Φ ≡Φ(x,t,θ).

    As in the super-symmetric (α=2) case,one may find some possible integrable cases by fixing the constantsaiof the ren-symmetric KdV equation (44).For instance,the Lax integrable systems,

    are just the special cases of (44).The degrees of Φjand ρjin(45) arej.

    For α=3,the ren-symmetric KdV equation (44)becomes

    wherea,bandcare arbitrary constants and Φ0,Φ1and Φ2are the ren-fields with degrees 0,1 and 2,respectively.

    The special integrable case (45) for {α=3,j=0} is related to(47)withb=0 up to a re-scaling.(48)with{a=0,c=b} is equivalent to the integrable case (45) for {α=3,j=1}.Taking {a=b=0} in (49) leads to the equivalent special integrable ren-symmetric KdV equation (45) with{α=3,j=2}.

    Incorporating the explicit forms for

    and the consistent commutation relations

    leads to the coupled component forms of (47),(48) and (49)

    and

    respectively.uin(51)–(53) is a bosonic field and ξ and ζ are ren-fields with degrees 1 and 2,respectively.

    The known special integrable ren-symmetric KdV systems of (51) and (52) read

    respectively.The special integrable ren-symmetric KdV system of(53)is equivalent to that of(52)by the transformation ζx→ζ.

    where Φ0,Φ1,Φ2and Φ3are the ren-fields with degrees 0,1,2 and 3,respectively.

    5.Summary and discussions

    In retrospect,the usual Grassmann number and the supersymmetric derivative have been straightforwardly extended to more general forms,the R-number and the ren-symmetric derivatives,to be applicable to describe physically important quasi-particles,anyons.Applying the R-numbers and rensymmetric derivatives to integrable theory,we have extended the super-integrable and super-symmetric integrable systems to ren-integrable and ren-symmetric integrable systems.

    It is interesting that the ren-integrable KdV system (34)possesses completely the same form for arbitrary α even for the boson case (α=∞) and fermion case (α=2).The only difference is that the degrees of the ren-fields ξ1and ξ2should be complementary,say,β and α-β,such that ξ1ξ2becomes a boson.

    The ren-integrable system(34)can be further extended to

    where |?〉 is a boson vector field,is a βαorder renvector field andis an α-βαorder ren-vector field.The general ren-integrable KdV-type system(60)is still a Lax integrable model.

    Although the number of papers produced so far on the construction of solutions is incredibly large,it is necessary to develop some novel methods,one of which may be the socalled bosonization method [37],to construct special solutions of the ren-integrable KdV system (34) (or more generally (60)) and the ren-symmetric KdV system (44).

    R-numbers may also be used to find other types of integrable models such as dark equations and integrable couplings [66,67].The concept of dark equations was first introduced by Kupershmidt in [68–70] where many types of dark KdV systems are given.The modified dark KdV equations are studied in [71].The bosonization procedure of the super-symmetric systems have offered some new types of dark integrable systems [37].The super-symmetric dark systems have also been proposed in a preprint paper[72].The bosonization of ren-symmetric integrable models may yield further dark integrable equations.In fact,applying the bosonization assumptions

    with the {x,t}-independent R-number η and the {x,t}-dependent boson fieldspandqon the integrable systems(54)and/or (55) yields the same standard dark equation system,

    because η3=0.From (62),we know that the ren-integrable systems(54)and(55)possess special types of exact solutions withubeing an arbitrary solution of the usual KdV equation and ξ and ζ being given by (61) whilepandqare arbitrary symmetries of the usual KdV equation.

    The dark systems can also be considered as some special type of integrable couplings [72–74].More about the renintegrable,ren-symmetric integrable and dark integrable systems should be further studied later.

    Acknowledgments

    The work was sponsored by the National Natural Science Foundation of China (Nos.12235007,11 975 131).The author wishes to thank Profs.Q P Liu,B F Feng,X B Hu,R X Yao and M Jia and Drs.K Tian,X Z Hao and D D Zhang for their helpful discussions.

    ORCID iDs

    一二三四社区在线视频社区8| 99久久久亚洲精品蜜臀av| x7x7x7水蜜桃| 国产一区二区三区在线臀色熟女| 黑人巨大精品欧美一区二区mp4| 最新美女视频免费是黄的| 国产精品亚洲av一区麻豆| 亚洲18禁久久av| 精品国产美女av久久久久小说| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 亚洲五月婷婷丁香| 国模一区二区三区四区视频 | 日本撒尿小便嘘嘘汇集6| 午夜精品在线福利| 日韩av在线大香蕉| 国产91精品成人一区二区三区| 欧美又色又爽又黄视频| 国产精品1区2区在线观看.| 中文字幕av在线有码专区| 成人国语在线视频| 最近最新免费中文字幕在线| 天天添夜夜摸| 成人三级黄色视频| 欧美日本视频| 久久天躁狠狠躁夜夜2o2o| 日韩精品免费视频一区二区三区| 少妇熟女aⅴ在线视频| 亚洲av成人一区二区三| 成人国语在线视频| 欧美色视频一区免费| 亚洲成av人片免费观看| 欧美成人一区二区免费高清观看 | 国产一区在线观看成人免费| 男女床上黄色一级片免费看| 亚洲精品色激情综合| 91麻豆精品激情在线观看国产| 国产精品香港三级国产av潘金莲| 黄色成人免费大全| 国产免费男女视频| 欧美一级a爱片免费观看看 | 精品熟女少妇八av免费久了| 免费搜索国产男女视频| 性色av乱码一区二区三区2| 亚洲精品美女久久av网站| 亚洲片人在线观看| 亚洲成人精品中文字幕电影| 欧美日韩黄片免| 99国产精品一区二区三区| 麻豆成人午夜福利视频| 丝袜人妻中文字幕| 床上黄色一级片| 精品乱码久久久久久99久播| 国内揄拍国产精品人妻在线| 最好的美女福利视频网| 亚洲中文字幕日韩| 国语自产精品视频在线第100页| 国产伦一二天堂av在线观看| 在线观看免费日韩欧美大片| 国产亚洲欧美在线一区二区| 国产av在哪里看| 欧美精品啪啪一区二区三区| 午夜成年电影在线免费观看| 搡老妇女老女人老熟妇| www日本黄色视频网| 波多野结衣巨乳人妻| 亚洲av中文字字幕乱码综合| av福利片在线| 欧美成人一区二区免费高清观看 | 一本综合久久免费| 日韩欧美在线二视频| 校园春色视频在线观看| 非洲黑人性xxxx精品又粗又长| 丝袜人妻中文字幕| 黄色视频,在线免费观看| 国产精品免费一区二区三区在线| av国产免费在线观看| av天堂在线播放| 曰老女人黄片| 亚洲自偷自拍图片 自拍| 亚洲男人的天堂狠狠| 亚洲人成网站高清观看| 久久久久久久久中文| 国产av一区在线观看免费| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 国产精品久久电影中文字幕| 欧美3d第一页| 99精品久久久久人妻精品| 日韩高清综合在线| 精品免费久久久久久久清纯| 久久中文看片网| 国产精品av视频在线免费观看| 国产爱豆传媒在线观看 | 精品国产乱子伦一区二区三区| 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 男人的好看免费观看在线视频 | 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 一本综合久久免费| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 波多野结衣巨乳人妻| 亚洲精品在线观看二区| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 此物有八面人人有两片| а√天堂www在线а√下载| 99久久综合精品五月天人人| 欧美日韩精品网址| 天堂动漫精品| 国产成人欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 热99re8久久精品国产| 日韩欧美在线乱码| 日本 av在线| 丝袜人妻中文字幕| 国产亚洲精品综合一区在线观看 | 黑人欧美特级aaaaaa片| 神马国产精品三级电影在线观看 | 在线观看免费视频日本深夜| 露出奶头的视频| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲成人国产一区在线观看| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| av国产免费在线观看| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久九九精品二区国产 | 欧美精品亚洲一区二区| 黄色视频不卡| 性欧美人与动物交配| 欧美日韩精品网址| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 999久久久精品免费观看国产| 欧美一区二区国产精品久久精品 | 国产爱豆传媒在线观看 | 小说图片视频综合网站| videosex国产| 欧美中文综合在线视频| 一进一出抽搐gif免费好疼| 亚洲av电影在线进入| 久久草成人影院| 国产精品一区二区精品视频观看| 亚洲精品国产精品久久久不卡| 久久久国产成人精品二区| 激情在线观看视频在线高清| 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 免费无遮挡裸体视频| 久久中文看片网| 国产成人aa在线观看| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 性欧美人与动物交配| 久热爱精品视频在线9| www.999成人在线观看| 午夜激情福利司机影院| 久热爱精品视频在线9| 国产一区二区在线av高清观看| av片东京热男人的天堂| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 哪里可以看免费的av片| 午夜福利视频1000在线观看| 欧美色欧美亚洲另类二区| 国产av一区在线观看免费| 在线国产一区二区在线| 成人三级黄色视频| 中文字幕熟女人妻在线| 好男人在线观看高清免费视频| 老司机午夜福利在线观看视频| 精品第一国产精品| 久久久久国产精品人妻aⅴ院| 波多野结衣高清无吗| 黄色视频不卡| 欧美成狂野欧美在线观看| 亚洲avbb在线观看| 亚洲自偷自拍图片 自拍| 日韩欧美精品v在线| 香蕉av资源在线| 精品电影一区二区在线| 亚洲av美国av| 少妇裸体淫交视频免费看高清 | 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 久久精品人妻少妇| 宅男免费午夜| 免费人成视频x8x8入口观看| 欧美日韩福利视频一区二区| 欧美极品一区二区三区四区| 中文字幕久久专区| 欧美三级亚洲精品| 在线观看一区二区三区| 99国产综合亚洲精品| tocl精华| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看 | 亚洲成人久久爱视频| 精品一区二区三区av网在线观看| 亚洲中文字幕日韩| 岛国视频午夜一区免费看| 桃红色精品国产亚洲av| 两性夫妻黄色片| 国产精品一区二区三区四区久久| 男女视频在线观看网站免费 | 欧美在线一区亚洲| 俺也久久电影网| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 亚洲av成人精品一区久久| 超碰成人久久| www.自偷自拍.com| 88av欧美| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 精品久久久久久久人妻蜜臀av| 国产精品一区二区精品视频观看| 国产在线观看jvid| 18禁美女被吸乳视频| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 精华霜和精华液先用哪个| 欧美乱妇无乱码| 国产免费男女视频| 国产一区二区三区在线臀色熟女| 成人一区二区视频在线观看| 午夜a级毛片| 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 9191精品国产免费久久| 一二三四社区在线视频社区8| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99精品欧美一区二区三区四区| 久久久国产成人精品二区| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放 | 午夜视频精品福利| 欧美日韩国产亚洲二区| 人人妻人人看人人澡| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 精品久久久久久久久久久久久| 无限看片的www在线观看| 午夜福利18| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 宅男免费午夜| 黄色丝袜av网址大全| 亚洲真实伦在线观看| 日韩高清综合在线| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 99久久久亚洲精品蜜臀av| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| 叶爱在线成人免费视频播放| 精品一区二区三区四区五区乱码| 国产伦一二天堂av在线观看| 一区福利在线观看| 午夜免费激情av| 一级毛片女人18水好多| 国产一区二区三区视频了| 视频区欧美日本亚洲| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 免费搜索国产男女视频| 午夜久久久久精精品| 熟女电影av网| 香蕉av资源在线| 久久精品91无色码中文字幕| 精品欧美一区二区三区在线| 国产精品1区2区在线观看.| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器 | 久久天躁狠狠躁夜夜2o2o| 亚洲av成人精品一区久久| 成人国产一区最新在线观看| 91av网站免费观看| 校园春色视频在线观看| 全区人妻精品视频| 亚洲精品美女久久av网站| 好男人在线观看高清免费视频| 亚洲精品国产一区二区精华液| 亚洲午夜精品一区,二区,三区| 久久国产乱子伦精品免费另类| 国产成人精品无人区| 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 欧美成人免费av一区二区三区| 国产熟女xx| 18禁观看日本| 久久久久久国产a免费观看| 日本一二三区视频观看| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 国产av不卡久久| 操出白浆在线播放| 亚洲午夜理论影院| 亚洲美女黄片视频| 日本a在线网址| 法律面前人人平等表现在哪些方面| 国产视频一区二区在线看| 成人三级黄色视频| 男人的好看免费观看在线视频 | 18禁国产床啪视频网站| 99精品久久久久人妻精品| 国产亚洲精品一区二区www| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| 欧美av亚洲av综合av国产av| 精品欧美国产一区二区三| 国产伦在线观看视频一区| 国产黄片美女视频| 精品国产超薄肉色丝袜足j| a级毛片a级免费在线| 桃色一区二区三区在线观看| 搞女人的毛片| 日韩欧美精品v在线| 一级片免费观看大全| 亚洲国产精品久久男人天堂| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 男人舔奶头视频| av福利片在线| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 91字幕亚洲| 可以在线观看的亚洲视频| 999久久久精品免费观看国产| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 亚洲成人免费电影在线观看| 一本一本综合久久| 久久久久久人人人人人| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 午夜视频精品福利| 精品一区二区三区四区五区乱码| 亚洲美女黄片视频| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 国产精品一及| 怎么达到女性高潮| 久久久久久久午夜电影| 午夜日韩欧美国产| 日本免费a在线| 超碰成人久久| 国产精品久久久久久人妻精品电影| 成人国产综合亚洲| 亚洲九九香蕉| 九色国产91popny在线| 观看免费一级毛片| 国产精品久久久久久久电影 | 欧美三级亚洲精品| 久久香蕉激情| 亚洲一区二区三区色噜噜| 久久性视频一级片| 欧美一区二区精品小视频在线| 久9热在线精品视频| 日本黄大片高清| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| aaaaa片日本免费| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 中文字幕人成人乱码亚洲影| 午夜成年电影在线免费观看| 99热只有精品国产| 窝窝影院91人妻| 欧美性猛交黑人性爽| 99国产精品99久久久久| 少妇裸体淫交视频免费看高清 | 久久久久久国产a免费观看| 精品高清国产在线一区| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 亚洲av熟女| 男人的好看免费观看在线视频 | avwww免费| 中亚洲国语对白在线视频| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 国产熟女午夜一区二区三区| 国内少妇人妻偷人精品xxx网站 | 国产单亲对白刺激| 曰老女人黄片| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 亚洲美女视频黄频| 欧美人与性动交α欧美精品济南到| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 欧美日韩乱码在线| 看免费av毛片| 国产精品久久久久久精品电影| 99久久精品国产亚洲精品| 亚洲一区二区三区色噜噜| 亚洲国产欧美一区二区综合| 91在线观看av| 日韩三级视频一区二区三区| svipshipincom国产片| 波多野结衣高清无吗| 制服诱惑二区| 精品福利观看| 黄频高清免费视频| 久久久久久久久中文| 亚洲国产欧洲综合997久久,| 精品久久久久久成人av| 村上凉子中文字幕在线| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 欧美日本视频| 视频区欧美日本亚洲| 亚洲人成网站高清观看| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 中亚洲国语对白在线视频| 亚洲自偷自拍图片 自拍| 露出奶头的视频| 黄色a级毛片大全视频| 男女做爰动态图高潮gif福利片| av片东京热男人的天堂| 又粗又爽又猛毛片免费看| tocl精华| 亚洲国产高清在线一区二区三| 久久精品91无色码中文字幕| 又黄又爽又免费观看的视频| 琪琪午夜伦伦电影理论片6080| 国产成人av激情在线播放| 99久久精品热视频| 亚洲欧美精品综合久久99| 人人妻,人人澡人人爽秒播| 毛片女人毛片| 久久香蕉精品热| 免费人成视频x8x8入口观看| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 免费看日本二区| 日本五十路高清| 禁无遮挡网站| 亚洲自偷自拍图片 自拍| 久久久国产精品麻豆| 日日夜夜操网爽| 久久精品国产清高在天天线| 国产精品 欧美亚洲| 啦啦啦免费观看视频1| bbb黄色大片| 国产一区二区三区视频了| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 久久中文字幕一级| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线| 亚洲欧美精品综合久久99| 国产野战对白在线观看| av福利片在线| 12—13女人毛片做爰片一| 国模一区二区三区四区视频 | 国产精品一区二区三区四区免费观看 | 亚洲九九香蕉| 日日爽夜夜爽网站| 久久久久久久久久黄片| 亚洲第一电影网av| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 亚洲国产看品久久| 少妇的丰满在线观看| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 国产成人一区二区三区免费视频网站| 老熟妇仑乱视频hdxx| 一级作爱视频免费观看| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 我的老师免费观看完整版| 桃红色精品国产亚洲av| 久久精品91蜜桃| 十八禁人妻一区二区| 欧美+亚洲+日韩+国产| 精品久久久久久成人av| 亚洲精品国产精品久久久不卡| 特级一级黄色大片| 久久九九热精品免费| 亚洲美女黄片视频| xxx96com| 国产亚洲精品久久久久5区| 午夜两性在线视频| 很黄的视频免费| 少妇被粗大的猛进出69影院| 人人妻人人看人人澡| a级毛片在线看网站| 欧美激情久久久久久爽电影| 国产一区二区激情短视频| 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 国产午夜精品久久久久久| 成人一区二区视频在线观看| 国产午夜精品久久久久久| 欧美乱码精品一区二区三区| 亚洲精品中文字幕一二三四区| 老司机在亚洲福利影院| 十八禁人妻一区二区| 少妇粗大呻吟视频| 亚洲成av人片免费观看| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 久久人人精品亚洲av| 久久这里只有精品19| av天堂在线播放| 精品无人区乱码1区二区| 久久久国产欧美日韩av| www.精华液| 深夜精品福利| 精品高清国产在线一区| 久久中文字幕一级| 国产精品一区二区三区四区免费观看 | 久久久久久大精品| 亚洲av片天天在线观看| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 天堂√8在线中文| 亚洲 欧美一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美日韩国产亚洲二区| 亚洲成av人片免费观看| 巨乳人妻的诱惑在线观看| 啦啦啦韩国在线观看视频| 日韩av在线大香蕉| 亚洲av成人不卡在线观看播放网| 中文在线观看免费www的网站 | 老司机在亚洲福利影院| 99久久国产精品久久久| 久久精品国产清高在天天线| 人人妻人人看人人澡| 十八禁人妻一区二区| 日韩成人在线观看一区二区三区| 国产精品一区二区免费欧美| 一个人免费在线观看电影 | 十八禁网站免费在线| 欧美激情久久久久久爽电影| 亚洲成人久久爱视频| 国产精品久久久人人做人人爽| 丁香六月欧美| 日本 欧美在线| 人人妻人人澡欧美一区二区| 久久人妻av系列| 久久精品国产亚洲av高清一级| 日韩免费av在线播放| 伦理电影免费视频| 日本免费a在线| 精品一区二区三区视频在线观看免费| 特大巨黑吊av在线直播| 在线免费观看的www视频| 欧美乱色亚洲激情| 成人av在线播放网站| 亚洲精品久久成人aⅴ小说| 麻豆一二三区av精品| 俺也久久电影网| 啦啦啦免费观看视频1| 麻豆一二三区av精品| 俺也久久电影网| 精华霜和精华液先用哪个| 99国产精品99久久久久| 黄片大片在线免费观看| 亚洲国产看品久久| 亚洲午夜理论影院| 真人一进一出gif抽搐免费| 久久精品aⅴ一区二区三区四区| 亚洲午夜理论影院| 真人一进一出gif抽搐免费| 两个人免费观看高清视频| 一本综合久久免费| 在线观看免费午夜福利视频| 1024香蕉在线观看| 成人高潮视频无遮挡免费网站| 非洲黑人性xxxx精品又粗又长| 亚洲精品色激情综合| 欧美色视频一区免费| 亚洲美女视频黄频| 特级一级黄色大片| 午夜老司机福利片| 波多野结衣高清作品|