• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The quasi-Gramian solution of a noncommutative extension of the higher-order nonlinear Schr?dinger equation

    2024-04-02 07:47:20RiazandLin
    Communications in Theoretical Physics 2024年3期

    H W A Riaz and J Lin

    Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    Abstract The nonlinear Schr?dinger(NLS)equation,which incorporates higher-order dispersive terms,is widely employed in the theoretical analysis of various physical phenomena.In this study,we explore the non-commutative extension of the higher-order NLS equation.We treat real or complex-valued functions,such as g1=g1(x,t) and g2=g2(x,t) as non-commutative,and employ the Lax pair associated with the evolution equation,as in the commutation case.We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation.The soliton solutions are presented explicitly within the framework of quasideterminants.To visually understand the dynamics and solutions in the given example,we also provide simulations illustrating the associated profiles.Moreover,the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.

    Keywords: integrable systems,Darboux transformation,solitons

    1.Introduction

    The nonlinear Schr?dinger (NLS) equation,which incorporates higher-order dispersive terms,is widely used in the theoretical analysis of various physical phenomena,including nonlinear optics,molecular systems,and fluid dynamics [1–5].With the addition of fourth-order terms,known as the Lakshmanan–Porsezian–Daniel (LPD) equation,it describes higher-order molecular excitations with quadruple-quadruple coefficients and possesses integrability [6–8].Lakshmananetalinvestigated its application to study nonlinear spin excitations involving bilinear and biquadratic interactions[7].In recent years,Ankiewiczetalintroduced a further extension of the NLS equation by incorporating third-order (odd) and fourth-order (even) dispersion terms The NLS equation with higher-order terms becomes increasingly significant when modeling the propagation of ultrashort optical pulses along optical fibers[9,10].The integrability of the extended NLS equation,with certain parameter values,was confirmed in [11],where Lax operators were introduced.We now write this equation as it appears in the aforementioned references with some modification as

    whereu=u(x,t) is a complex-valued scalar function,andrepresents its complex conjugate.This equation includes several particular cases,such as the standard NLS equation with α1=γ=0 [14],the Hirota equation with γ=0 [15],and the LPD equation with α1=0 [7].

    In this study,we explore the non-commutative extension of the higher-order NLS(HNLS)equation(1.1).Non-commutative integrable systems have attracted considerable attention due to their relevance in quantum field theories,D-brane dynamics,and string theories [16–18].The non-commutative version of the NLS model is significant for exploring the behavior of quantum systems and wave propagation in scenarios where non-commutativity is a fundamental aspect [19].Non-commutativity often arises from phase-space quantization,introducing noncommutativity among independent variables through a star product [20,21].Our approach to inducing non-commutativity in a given nonlinear evolution equation parallels the methods employed by Lechtenfeldetal[22],Gilson and Nimmo [23],and Gilson and Macfarlane [24] for the non-commutative generalization of the sine-Gordon,Kadomtsev–Petviashvili,and Davey–Stewartson equations,respectively.

    We adopt a systematic method to extend the chosen equation to its non-commutative form,without explicitly specifying the nature of non-commutativity.We consider real or complex-valued functions,such asg1=g1(x,t) andg2=g2(x,t),as non-commutative and take advantage of the same Lax pair as in the commutative scenario to describe the equation of nonlinear evolution.

    In this paper,we investigate a non-commutative version of the HNLS equation(nc-HNLS).We define the Lax pair for the nc-HNLS equation within this context.To find solutions to the nc-HNLS equation,we construct the Darboux matrix and the binary Darboux matrix.We present explicit quasi-Gramian solutions for the non-commutative fields of the nc-HNLS equation which,after reducing the non-commutativity limit,can be reduced to a ratio of Gramian solutions.

    2.Modulation instability

    The propagation of a continuous or quasi-continuous wave triggers modulational instability (MI),a phenomenon arising from the interplay of dispersion and nonlinear interactions[25–27].MI serves as a valuable tool for numerically investigating the mechanisms behind solution generation within the framework of nonlinear equations.By splitting the MI and modulational stability zones,we can determine the circumstances to excite plane waves,solitons,breather and rogue waves.This approach facilitates a comprehensive understanding of the dynamics governing wave phenomena in nonlinear dispersive media.To analyze the modulation instability,we give a plane-wave solution of the equation (1.1) as

    The solution provided by equation (2.1) holds significant importance in the realm of optics,particularly within the context of the NLS equation.This solution represents a wave with constant amplitude that undergoes a nonlinear evolution over time.The dynamics are determined by parameters such as the amplitudec,the constant γ,and α2.This solution’s application extends to the study of the stability of plane waves and comprehension of the generation of periodic patterns through MI.It serves as a prime example of how the NLS equation can lead to complex behavior in optical systems,thereby making it a crucial area of research in this field.

    An approach to assess the stability of the plane-wave solution involves introducing perturbations to the solution and examining the linearized evolution of these perturbations.To simplify the analysis,the common phase can be factored out of the equation.This leads to a first-order ordinary differential equation (ODE) that couples the complex field with its complex conjugate as a result of the perturbation.Substituting the perturbed functionv(x,t) into equation (2.1),we obtain

    Substituting (2.2) into (1.1) and after linearization,we have

    To analyze the stability of the plane-wave solution,the Fourier transform of the equation is taken.This results in a first-order ODE that governs the real and imaginary parts of evolution.The stability of the solution can then be determined by looking at the eigenvalues of this ODE.In particular,the eigenvalues represent the exponent in the time evolution of the solution.Thus,the Fourier transform of the evolution equation (2.3) is

    The linear evolution equation forcan be evaluated by separating it into its real and imaginary components.Thus,for=v1+iv2,we have a system of differential equations

    The plot of equation (2.6) is shown in figure 1.

    The stability of the solution becomes evident when examining a graphical representation of the real parts of eigenvalues plotted against different frequencies.If the real part is positive,the solution will exhibit growth;conversely,negative values indicate decay.The overall stability is established by observing whether the real eigenvalue remains positive or negative across various frequency ranges.This phenomenon is referred to as MI.

    3.Non-commutative HNLS equation

    The spectral problem associated with the nc-HNLS equation is given by

    where ρ1=-4 iα1λ3-2 iλ2α2,ρ2=i(2λα1+α2),ρ3=3 iuu?uu?-4 iλ2uu?+8 iλ4,ρ4=-3 iu?uu?u+4 iλ2u?u-8 iλ4,ρ5=-8λ3u+4λuu?u,ρ6=8λ3u?-4λu?uu?.The equation of motion for the system can be derived by setting the commutator of Γ and Δ equal to zero and equating the coefficients at λ

    whereu=u(x,t) is an non-commutative object,?denotes the adjoint (Hermitian conjugate),α1,α2,and γ are real parameters,and λ is a spectral parameter (real or complex).The equation presented in (3.5) is a non-commutative generalization of the HNLS equation,as given in equation(1.1).This equation exhibits several interesting properties.For instance,when both α2and γ are zero,it reduces to non-commutative generalization of the complex modified Korteweg–de Vries(KdV)equation and to the standard modified KdV equation for real-valuedu.Moreover,setting γ to zero results in the noncommutative generalization of the Hirota equation,while setting α1and α2to zero simultaneously yields the well-known LPD equation.Finally,when α1and γ are set to zero,the equation reduces to non-commutative generalization of the NLS equation.After relaxing the non-commutativity condition,equation (3.5) corresponds to the commutative counterpart.The spectral problem linked with equation (1.1) remains the same as that of equations (3.1) and (3.2),with the exception thatuandare now perceived as commutative functions.

    3.1.Quasideterminants

    In non-commutative algebra,quasideterminants serve as a replacement for ordinary determinants of matrices.They hold a similar significance in non-commutative algebra as ordinary determinants do in commutative algebra and have found vast applications in the domain of non-commutative integrable systems [23,28,29].

    The quasideterminant |M|ijfori,j=1,...,nof ann×nmatrix over a non-commutative ring R,expanded about the matrixmij,is defined as

    wheremijis referred to as the expansion point and represents theijth entry ofM,denotes theith row ofMwithout thejth entry,represents thejth column ofMwithout theith row,andMijis the submatrix ofMobtained by removing theith row and thejth column fromM.

    Quasideterminants are not merely a generalization of usual commutative determinants but are also related to inverse matrices.The inverse of a matrixMis defined as

    4.Darboux transformation

    The application of quasideterminants when solving noncommutative(or matrix)nonlinear equations has proven to be an effective tool,particularly in generating multisoliton solutions.The Darboux transformation(DT),as demonstrated in many works,such as [24,29–33],provides a systematic and effective approach for constructing these diverse solutions.This transformative methodology contributes significantly to understanding complex phenomena in nonlinear systems,providing insights into the formation and dynamics of bright solitons,multi-valley dark solitons,and high-order rogue waves.In this section,a DT is introduced for the system of the nc-HNLS equation (3.5) through the definition of the Darboux matrix

    and the Lax operators Γ and Δ

    The spectral parameter λ,which can be real or complex,is incorporated together with the constantq×qmatrix Λ,and the non-commutative objects U,Vp,andB from equations(3.3) and (3.4),respectively,are utilized as entries in the Lax operators.Now,consider a function φ=φ(x,t) that is an eigenfunction of the Lax operators Γ and Δ such that Γ(φ)=0 and Δ(φ)=0.We can define a new function ?φusing the Darboux matrixD(Y) :

    Here,φ(n)=λnφ and Ξ(n)=ΞΛn,where each Λi,i=1,...,n,is a constant matrix.Hence,we expressed a quasideterminant formula for φ[n+1]in terms of the known eigenfunctions Yi,i=1,...,nand the eigenfunction φ of the “seed” Lax pair Γ=Γ1,Δ=Δ1.

    5.Quasi-Wronskian solutions

    In the upcoming analysis,we will examine how the DT,DY=λI-YΛ Y-1,affects the Lax operator Γ=Γ1,where Y is an eigenfunction of Γ(since Γ(Y)=0by definition)and Λ is an eigenvalue matrix.It is important to note that the same results apply to the operator Δ=Δ1.As a result of this transformation,the operator Γ is converted to a new operator=Γ[2],which can be expressed as=DY.By substituting equations (3.1) and (4.1) into the latter equation and equating the coefficients at λj,we obtain two equations,

    To confirm the validity of equation (5.2),we express equation (3.1) using a particular eigenfunction Y as Yx=JYΛ +UY.By utilizing this equation,we can easily check that the condition expressed in equation (5.2) is satisfied.To simplify the notation,a matrixF is introduced such that U=[F,J ].This equation is satisfied if F=Then,equation (5.1) with U=[F,J ]can be used to obtain F[2]=F -Y(1) Y-1,whereY(1)is defined as YΛ .Afternrepeated applications of the DTDY,we have

    where F[1]=F,Y[1]=Y1=Y,and Λ1=Λ.

    Because our nc-HNLS equation (3.5) is expressed in terms ofuandu?,it is more appropriate to express the quasi-Wronskian solution in terms of these objects.For this,we express each Yi,i=1,...,nas a 2×2 matrix asFor φ=φ(x,t) and χ=χ(x,t),we can express F[n+1]as

    We proceed in the next section to construct the binary DT for the nc-HNLS equation,using a strategy similar to that employed in [12].

    6.Binary Darboux transformation

    We introduce Y1,...,Ynas eigenfunctions of the Lax operators Γ and Δ,andas eigenfunctions of the adjoint Lax operators Γ?and Δ?.Assuming φ[1]=φ to be a generic eigenfunction of the Lax operators Γ and Δ,and ψ[1]=ψ to be a generic eigenfunction of the adjoint Lax operators Γ?and Δ?,we define the binary DT and its adjoint as

    Within the context of the binary DT,we use Y[1]=Y1as the initial eigenfunction that characterizes the transformation from the Lax operators Γ and Δ to the new operators ?Γ andSimilarly,we defineto represent the adjoint transformation,where the potential ?

    with a generic eigenfunction

    and with a generic adjoint eigenfunction

    For thenth iteration of the binary DT,we choose the eigenfunctionY[n]that defines the transformation from Γ[n],Δ[n]to Γ[n+1],Δ[n+1].Similarly,we choose the eigenfunctionZ[n]for the adjoint transformation fromThe Lax operators Γ[n]and Δ[n]exhibit covariance under the binary DT

    By introducing the matrices Ξ=(Y1,...,Yn)andZ=(Z1,...,Zn),we can represent these findings within the framework of quasi-Gramians,yielding the following expressions

    7.Quasi-Gramian solutions

    In this section,we now determine the effect of binary DTDY,Z=I-ξΥ (Y ,Z)-1Ω-?Z?on the Lax operator Γ,with Y1,...,Ynbeing eigenfunctions of Γ.Similarly,let Z1,...,Zndenote the eigenfunctions of the adjoint Lax operator Γ?.The same results apply to the operators Δ and Δ?.

    Afterniterations of applying the binary DTDY,Z,the resulting expression is given by

    It is worth noting that each Yi,i=1,...,nis a 2×2 matrix.Given that our system of the nc-HNLS equation is presented in terms of non-commutative objects,u,u?,we find it more appropriate to express the quasi-Gramian solution,equation (7.5),in terms of these objects.Thus,we introduce the matricesiY by following a similar approach to the quasi-Wronskian case.We also defineZ=ΞQ?,whereQrepresents a constant matrix of size 2n×2nand?denotes the Hermitian conjugate.It is noted that Ξ andZadhere to the same dispersion relation and remain unchanged when multiplied by a constant matrix.Consequently,the quasi-Gramian solution,equation (7.5),can also be represented as

    where φ=(φ1,...,φn) and χ=(χ1,...,χn) are row vectors.Thus,quasi-Gramian expressions are given by

    Equation(7.7) represents the quasi-Gramian solutions for the nc-HNLS equation (3.5).If we relax the non-commutativity condition,the equation can be simplified and expressed as a ratio of simple Gramians.In the limit of commutativity,we obtain the following expressions

    These expressions define the Gramian solutions of the HNLS equation.

    8.Explicit solutions

    Whenu=0,the spectral problem,equations (3.1) and (3.2),has the solution

    To simplify the notation and work with only φ1,…,φnand χ1,…,χn,we introduce the following relabeling.We redefine φiasfor odd values ofi(i.e.i=1,…,2n-1),and set φi=0 for even values ofi(i.e.i=2,4,…,2n).Similarly,we relabel χiasfor even values ofi,and χi=0 for odd values ofi.We then have

    using the notation Yi=diag (φi,χi)fori=1,…,n,where φiand χiare given in equation(8.1).For the commutative case,the Gramian solutionu[n+1],equation (7.8),is given by

    Here,I2nis the identity matrix of size 2n×2n.Constructing the matrix Ξ involves arranging the eigenfunctions Y1,Y2,...,Yn,where each Yirepresents an eigenfunction of the Lax operators Γ and Δ,presented as a 2×2 matrix.Similarly,assembling the matrixZinvolves the eigenfunc-tions Z1,Z2,...,Zn,with Ziserving as eigenfunctions of the adjoint Lax operators Γ?and Δ?.The matrix ?(Ξ,Z) is a 2n×2nmatrix,with its entries being scalar components(1×1).As we proceed to discuss the non-commutative case,we will consider every component ofiY andZias a matrix.Presenting the matrixQ,a constant matrix 2n×2n,we defineZas the result of multiplying Ξ by the Hermitian adjoint ofQ,denoted asZ=ΞQ?,allowing us to express equation(8.4)as

    To visualize this solution,we plot the propagation of theu1soliton in the commutative case with a velocity ofwhere λ=λR+iλI.Figure 2 illustrates the behavior of the soliton over time.

    Figure 2.Evolution of the solution,equation(8.7),with the parameters α1=1.5,α2=γ=1,c1=0.5,q1=2,q2=-1,(A)λ=0.1+0.5i,(B)λ=0.5i.

    Figure 3.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=0,q13=q14=-1,q33=-0.2,q34=-0.1,λ=-0.1+0.5i.

    Figure 4.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=-0.2,q13=-1,q14=-0.6,q33=0,q34=0.1,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 5.Evolution of the solution,equation(8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0,q12=-2,q13=0,q14=2,q33=0,q34=0,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 6.The profiles of u11 and u12 with γ=α2=0 in(A)and(B),and with γ=0 in(C)and(D).All the other parameters are the same as in figure 5.

    Figure 7.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.5i,λ2=-0.1-0.1i.All the other parameters are the same as in figure 5,(A) u11 profile,and (B) u12 profile.

    Figure 8.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.6i,λ2=-1.1-1.1i,(A) u11 profile,and (B) u12 profile.

    Figure 9.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.1+0.5i,λ2=-0.5i,(A) u11 profile,and (B) u12 profile.

    8.1.Non-commutative case

    We now discuss the non-commutative case.It has been shown in [13] that the behavior of matrix solitons differs from their scalar counterparts.Unlike scalar solitons,which keep their amplitudes unchanged during interactions,matrix solitons undergo transformations that depend on certain rules.These transformations affect the amplitudes,which are determined by vectors rather than individual values in the non-commutative setting.When considering the case ofn=1,we choose the solutions φ and χ of the Lax pair to be 2×2 matrices,given by

    Here,I2is the 2×2 identity matrix.And each entry in φ and χ and the constant matrixQis a 2×2 matrix,so that these matrices are given by

    Therefore,the quasi-Gramian expression foru2(which we will now denote asu1for the non-commutative case) can be expressed as

    Within the context of a non-commutative system,the soliton solution,equation (8.11),is intricately influenced by both the spectral parameter λ and the elements composing the matrixQ.When specific entries,such asq13andq14,are deliberately set to zero,the resulting solutions foru11,u12,u21,andu22appear trivial.And whereq13=q14=-1,the graphical representations of solutionsu11,u12,u21,andu22manifest as a single consolidated plot instead of the originally intended four.Noteworthy is the fact that under these conditions,all solitons propagate with a consistent amplitude of 0.2163 units,as shown in figure 3.Unlike this symmetry,whenq13≠q14,the resulting graphs exhibit a variety of double-and single-peaked patterns for each component of the matrixu1(see figure 4).It is worth highlighting that solitonu12advances with an amplitude of 0.3860 units of large peak and 0.2317 units of small peak,while solitonu11propagates with an amplitude of 1.9797 units.Additionally,an intriguing situation unfolds when we chooseq12=-q14=-2 andq11=q13=q33=q34=0.For such parametric values,we notice a single-peaked soliton foru11with an amplitude of 0.2214 units,while simultaneously observing a kink pattern inu12of maximum height 0.8858 units (as seen in figure 5).

    The solution,equation (8.11),includes several particular cases.When both α2and γ are zero,the solution,equation (8.11),takes a different form.It becomes a solution of a non-commutative generalization of the complex modified KdV equation,and is further reduced to the standard modified KdV equation when the variableuis real-valued.Additionally,if we set γ to zero,we obtain the solution of the non-commutative extension of the Hirota equation.These solutions are depicted in figure 6.Furthermore,when we simultaneously set α1and α2to zero,we have the solution of the non-commutative LPD equation.Lastly,if we set α1and γ to zero,we get the solution of non-commutative generalization of the NLS equation.

    In summary,studying the non-commutative version is important because it gives us different choices for arranging solitons.These arrangements depend not only on the spectral parameter λ but also on values in a matrix.Similarly,two soliton solutions for the non-commutative case are depicted in figures 7–9.

    In figure 7,it is shown that solitons exhibiting breatherlike structures are observed in the componentsu11andu12,where (u11≠u12).This occurrence can be attributed to the strength of the force acting between two solitons.When this force becomes sufficiently strong,solitons in a bound state have the ability to merge and transform into solitons with a breather-like structure.This phenomenon is commonly referred to as soliton fusion,which provides important insights into the dynamics of nonlinear wave systems by demonstrating the complicated behavior and complex interplay of solitons when exposed to strong interacting forces.

    Figures 8–9 present a visual representation of two soliton solutions derived from the nc-HNLS equation.Within this context,solitons represent localized waves of energy that propagate through a medium with stability.The figures illustrate the interaction of two distinct solitons,each characterized by its own velocity,moving independently and later scattering without undergoing any shape changes.This behavior aligns with the defining characteristic of soliton robustness during interactions.Similarly,other multisoliton expressions can be obtained by repeatedly applying the DT to the seed solution.Note that we have omitted the explicit expression of soliton solutions for non-commutative cases as it is long and cumbersome.

    9.Concluding remarks

    This study explored the non-commutative extension of the HNLS equation.We have constructed Darboux and binary DTs and used these to obtain solutions in quasi-Wronskian and quasi-Gramian forms.These solutions were intricately linked to the nc-HNLS equation and its associated Lax pair.We demonstrated single-and double-peaked,kink,and bright solitons in non-commutative settings.Further,we also visualized the different types of interaction of two individual solitons: that is,two different lump energies moving at different velocities and frequencies that interact and scatter off without changing their profiles.The method proposed in this study serves as an effective tool,enabling the explicit construction of multi-solitons for other related non-commutative integrable systems.

    Acknowledgments

    We acknowledge the support from the National Natural Science Foundation of China,Nos.11 835 011 and 12 375 006.

    久久久久久国产a免费观看| 欧美国产日韩亚洲一区| 在线国产一区二区在线| 女人被躁到高潮嗷嗷叫费观| 国产精品,欧美在线| 男女之事视频高清在线观看| 国产亚洲欧美98| 两个人看的免费小视频| 亚洲欧美精品综合一区二区三区| 中文字幕人成人乱码亚洲影| 精品免费久久久久久久清纯| 亚洲欧美精品综合久久99| 中文字幕av电影在线播放| 国产精品亚洲一级av第二区| 久久精品aⅴ一区二区三区四区| 99国产综合亚洲精品| 久久香蕉激情| 亚洲色图综合在线观看| 在线观看免费视频日本深夜| 91麻豆精品激情在线观看国产| 久久人妻熟女aⅴ| 国产麻豆69| 91老司机精品| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 日韩av在线大香蕉| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 久久狼人影院| 欧美成人性av电影在线观看| 精品日产1卡2卡| 我的亚洲天堂| svipshipincom国产片| 国产97色在线日韩免费| 在线观看午夜福利视频| 黑丝袜美女国产一区| 成年版毛片免费区| 性欧美人与动物交配| 一边摸一边抽搐一进一小说| 嫩草影院精品99| 亚洲av成人av| 欧美激情 高清一区二区三区| av在线播放免费不卡| 涩涩av久久男人的天堂| 黑人巨大精品欧美一区二区蜜桃| 午夜视频精品福利| 亚洲成人久久性| 国产精品久久久人人做人人爽| 一夜夜www| 日本撒尿小便嘘嘘汇集6| 国产激情欧美一区二区| 日韩精品青青久久久久久| 免费高清视频大片| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| 女同久久另类99精品国产91| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 在线观看日韩欧美| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 两个人视频免费观看高清| 欧美黄色淫秽网站| 熟妇人妻久久中文字幕3abv| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片 | 国产精品美女特级片免费视频播放器 | 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 99久久精品国产亚洲精品| 精品高清国产在线一区| 亚洲欧美日韩无卡精品| 91av网站免费观看| 午夜福利免费观看在线| 日本 av在线| 少妇熟女aⅴ在线视频| 日韩有码中文字幕| 可以在线观看的亚洲视频| 中文字幕人妻熟女乱码| 好男人在线观看高清免费视频 | 国内精品久久久久精免费| 亚洲va日本ⅴa欧美va伊人久久| 在线观看www视频免费| 国产真人三级小视频在线观看| 欧美日本中文国产一区发布| 久久这里只有精品19| 91精品国产国语对白视频| 日本免费一区二区三区高清不卡 | 又黄又粗又硬又大视频| 国产免费av片在线观看野外av| 视频在线观看一区二区三区| 国产1区2区3区精品| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 午夜免费鲁丝| 国产精品亚洲美女久久久| 国产乱人伦免费视频| 黑人巨大精品欧美一区二区mp4| 国产成人av教育| 国产成人一区二区三区免费视频网站| 成人亚洲精品av一区二区| 中文字幕久久专区| 老司机在亚洲福利影院| 精品人妻1区二区| 91精品三级在线观看| 电影成人av| 国产成人欧美在线观看| 日日夜夜操网爽| 精品不卡国产一区二区三区| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 91国产中文字幕| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 午夜免费成人在线视频| 国产一区二区激情短视频| 久久久久国内视频| 久久久久国产一级毛片高清牌| 成人精品一区二区免费| 精品一区二区三区视频在线观看免费| 精品国产一区二区三区四区第35| 亚洲av日韩精品久久久久久密| 桃红色精品国产亚洲av| 久久久久精品国产欧美久久久| www日本在线高清视频| 波多野结衣高清无吗| 亚洲精品美女久久av网站| 日韩大码丰满熟妇| 国产亚洲欧美精品永久| 亚洲午夜理论影院| 999精品在线视频| 午夜福利一区二区在线看| 精品免费久久久久久久清纯| 欧美色欧美亚洲另类二区 | 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 久久久久九九精品影院| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 欧美一区二区精品小视频在线| 亚洲激情在线av| 黄频高清免费视频| 18禁黄网站禁片午夜丰满| 级片在线观看| 亚洲自偷自拍图片 自拍| 亚洲av成人不卡在线观看播放网| 亚洲视频免费观看视频| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| www.精华液| 久久精品亚洲精品国产色婷小说| 亚洲专区中文字幕在线| 国产私拍福利视频在线观看| 日本a在线网址| 很黄的视频免费| 麻豆一二三区av精品| 国产午夜福利久久久久久| 国产精品,欧美在线| 啪啪无遮挡十八禁网站| 老司机午夜福利在线观看视频| 欧美日本视频| 91字幕亚洲| 国产一区二区三区综合在线观看| 中国美女看黄片| 欧美成人免费av一区二区三区| 看免费av毛片| 亚洲国产高清在线一区二区三 | 日本免费一区二区三区高清不卡 | 国产精品一区二区在线不卡| 少妇熟女aⅴ在线视频| 日韩成人在线观看一区二区三区| 女性生殖器流出的白浆| 国产av又大| 色尼玛亚洲综合影院| 欧美性长视频在线观看| 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 在线观看午夜福利视频| 欧美中文综合在线视频| 亚洲国产精品合色在线| 欧美av亚洲av综合av国产av| 黑丝袜美女国产一区| 国产麻豆69| 国产亚洲精品av在线| 伊人久久大香线蕉亚洲五| 十八禁网站免费在线| 久久午夜亚洲精品久久| 亚洲情色 制服丝袜| 女同久久另类99精品国产91| 欧美在线黄色| 久久中文字幕人妻熟女| 国产精品秋霞免费鲁丝片| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 免费看美女性在线毛片视频| 女警被强在线播放| 国产激情欧美一区二区| 国产一级毛片七仙女欲春2 | 成人亚洲精品一区在线观看| 香蕉国产在线看| 伦理电影免费视频| 变态另类成人亚洲欧美熟女 | 免费久久久久久久精品成人欧美视频| 亚洲自偷自拍图片 自拍| 午夜免费成人在线视频| 国产精品精品国产色婷婷| 精品无人区乱码1区二区| 成人精品一区二区免费| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区三区| 国产精品久久久av美女十八| 久久久精品欧美日韩精品| 精品国产一区二区久久| 国产99久久九九免费精品| 国产成人欧美| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 一a级毛片在线观看| av在线天堂中文字幕| 日韩有码中文字幕| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 男女午夜视频在线观看| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 啦啦啦韩国在线观看视频| 老司机靠b影院| 欧美激情 高清一区二区三区| 一区二区三区精品91| 黄色丝袜av网址大全| 一级黄色大片毛片| 国产免费av片在线观看野外av| 69av精品久久久久久| 99久久综合精品五月天人人| 亚洲专区字幕在线| 涩涩av久久男人的天堂| 久久中文字幕人妻熟女| 两人在一起打扑克的视频| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 久久中文字幕一级| 99久久精品国产亚洲精品| 中文字幕精品免费在线观看视频| 免费少妇av软件| 日本a在线网址| 老司机福利观看| 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 中亚洲国语对白在线视频| 色尼玛亚洲综合影院| 亚洲欧美激情在线| 宅男免费午夜| 午夜免费激情av| 淫妇啪啪啪对白视频| 亚洲中文字幕一区二区三区有码在线看 | 黑人巨大精品欧美一区二区mp4| 黄色女人牲交| 视频在线观看一区二区三区| 久久热在线av| 悠悠久久av| 久久久久久久午夜电影| 精品国产一区二区久久| 亚洲国产日韩欧美精品在线观看 | 亚洲av片天天在线观看| 国产三级在线视频| 日本免费a在线| av片东京热男人的天堂| 无限看片的www在线观看| 国产又爽黄色视频| 色播亚洲综合网| 久久午夜综合久久蜜桃| 久久精品91蜜桃| 国产精品一区二区三区四区久久 | 精品久久久久久久毛片微露脸| 一进一出抽搐动态| 成人永久免费在线观看视频| 亚洲自拍偷在线| 亚洲七黄色美女视频| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 日本精品一区二区三区蜜桃| 男人的好看免费观看在线视频 | 亚洲七黄色美女视频| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久午夜电影| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月| 国产色视频综合| 色播在线永久视频| 97人妻精品一区二区三区麻豆 | 欧美激情 高清一区二区三区| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看 | 久久香蕉精品热| 久久久国产精品麻豆| 校园春色视频在线观看| 亚洲av五月六月丁香网| 亚洲视频免费观看视频| 国产极品粉嫩免费观看在线| 国产精品亚洲美女久久久| 亚洲,欧美精品.| 男人舔女人的私密视频| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 一边摸一边做爽爽视频免费| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 欧美激情高清一区二区三区| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| 色综合站精品国产| 成熟少妇高潮喷水视频| 久久婷婷成人综合色麻豆| 欧美激情高清一区二区三区| 最近最新中文字幕大全电影3 | 黑人操中国人逼视频| 久久亚洲精品不卡| 免费在线观看黄色视频的| 国产熟女xx| 日本 av在线| 在线观看免费午夜福利视频| 精品久久久精品久久久| 男女下面进入的视频免费午夜 | 国产高清有码在线观看视频 | 在线观看免费视频网站a站| av超薄肉色丝袜交足视频| 国产成人免费无遮挡视频| 亚洲第一av免费看| 亚洲成av人片免费观看| 一区二区三区国产精品乱码| 日本欧美视频一区| 十八禁人妻一区二区| 丝袜美足系列| 国产三级在线视频| 午夜福利免费观看在线| 婷婷丁香在线五月| 国产乱人伦免费视频| 波多野结衣av一区二区av| 在线观看免费日韩欧美大片| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 欧美色视频一区免费| 精品久久久精品久久久| 日韩欧美三级三区| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 黄色视频不卡| 日韩欧美在线二视频| 少妇粗大呻吟视频| 亚洲国产精品成人综合色| 91在线观看av| 日韩欧美三级三区| 国产精品亚洲av一区麻豆| 亚洲欧美激情在线| or卡值多少钱| 黄色丝袜av网址大全| 久久欧美精品欧美久久欧美| 亚洲五月天丁香| 国产熟女xx| 国产成年人精品一区二区| 国产单亲对白刺激| 免费在线观看影片大全网站| 51午夜福利影视在线观看| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国产极品粉嫩免费观看在线| 国产精品98久久久久久宅男小说| 90打野战视频偷拍视频| 亚洲在线自拍视频| 巨乳人妻的诱惑在线观看| av福利片在线| 手机成人av网站| 长腿黑丝高跟| 亚洲国产中文字幕在线视频| 黄色 视频免费看| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 99在线视频只有这里精品首页| 午夜激情av网站| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 嫁个100分男人电影在线观看| 搞女人的毛片| 国产一区二区激情短视频| 50天的宝宝边吃奶边哭怎么回事| 午夜a级毛片| 精品国产一区二区久久| 国产视频一区二区在线看| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 婷婷丁香在线五月| 999久久久国产精品视频| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 国产不卡一卡二| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 在线永久观看黄色视频| 精品久久蜜臀av无| 亚洲全国av大片| 青草久久国产| 757午夜福利合集在线观看| 国产一区二区激情短视频| 国产片内射在线| 国产不卡一卡二| 国内精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 母亲3免费完整高清在线观看| 一级毛片精品| 在线永久观看黄色视频| 性欧美人与动物交配| 12—13女人毛片做爰片一| 桃色一区二区三区在线观看| 精品久久久精品久久久| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 波多野结衣高清无吗| 午夜精品在线福利| 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区| 成人三级黄色视频| 可以在线观看的亚洲视频| 变态另类成人亚洲欧美熟女 | 香蕉久久夜色| 美女高潮到喷水免费观看| 精品久久蜜臀av无| 999精品在线视频| a级毛片在线看网站| 欧美乱色亚洲激情| 久久精品人人爽人人爽视色| 久久午夜综合久久蜜桃| 久久精品91蜜桃| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 色综合站精品国产| 久久热在线av| 久久亚洲精品不卡| 久久草成人影院| 韩国精品一区二区三区| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 久久人妻熟女aⅴ| 亚洲av成人一区二区三| 国产欧美日韩精品亚洲av| 最新美女视频免费是黄的| 久久国产精品男人的天堂亚洲| 欧美色欧美亚洲另类二区 | 午夜福利视频1000在线观看 | 亚洲黑人精品在线| 美国免费a级毛片| 亚洲精品国产精品久久久不卡| 久久国产精品人妻蜜桃| 一区福利在线观看| 久久久国产成人精品二区| 久久久久亚洲av毛片大全| 久久香蕉激情| 国产午夜福利久久久久久| 一级,二级,三级黄色视频| 不卡av一区二区三区| 免费高清在线观看日韩| 脱女人内裤的视频| 18禁国产床啪视频网站| 国产精品久久电影中文字幕| 免费少妇av软件| 欧美丝袜亚洲另类 | 国产乱人伦免费视频| 亚洲欧美一区二区三区黑人| 国产亚洲精品av在线| 欧美日本中文国产一区发布| 国产高清videossex| 中文字幕人成人乱码亚洲影| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站| 老司机在亚洲福利影院| 日本a在线网址| 超碰成人久久| 国产成人精品在线电影| 丁香六月欧美| 美女高潮到喷水免费观看| 亚洲在线自拍视频| 亚洲av美国av| 国产精品一区二区在线不卡| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 91字幕亚洲| 在线观看日韩欧美| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清| 无限看片的www在线观看| 国产一区二区三区在线臀色熟女| 黄色毛片三级朝国网站| 久久精品影院6| 50天的宝宝边吃奶边哭怎么回事| 88av欧美| 亚洲欧美日韩高清在线视频| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 国产精品,欧美在线| 久久人妻av系列| 亚洲,欧美精品.| 国产日韩一区二区三区精品不卡| 国产蜜桃级精品一区二区三区| 亚洲第一电影网av| 一进一出好大好爽视频| 91大片在线观看| 国产免费av片在线观看野外av| 日本在线视频免费播放| 国产免费av片在线观看野外av| 日韩欧美国产在线观看| 欧美黄色片欧美黄色片| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 免费高清在线观看日韩| 韩国av一区二区三区四区| 露出奶头的视频| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 搞女人的毛片| 亚洲精品中文字幕一二三四区| 美女国产高潮福利片在线看| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 国产成人av教育| 久久人人精品亚洲av| 99久久综合精品五月天人人| 在线观看一区二区三区| 欧美国产日韩亚洲一区| 欧美黄色片欧美黄色片| 欧美最黄视频在线播放免费| 亚洲无线在线观看| 精品国产国语对白av| 精品国产乱码久久久久久男人| 日韩国内少妇激情av| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 日本一区二区免费在线视频| av天堂在线播放| 久久精品国产99精品国产亚洲性色 | 亚洲精品在线观看二区| 女人精品久久久久毛片| 97人妻精品一区二区三区麻豆 | 给我免费播放毛片高清在线观看| 国产成人欧美| 午夜老司机福利片| 国产亚洲精品第一综合不卡| 人妻久久中文字幕网| 他把我摸到了高潮在线观看| 久久人人爽av亚洲精品天堂| 国产三级黄色录像| av电影中文网址| 一个人观看的视频www高清免费观看 | 精品欧美一区二区三区在线| 精品人妻在线不人妻| 国产成人欧美在线观看| 一区福利在线观看| 91大片在线观看| 国产黄a三级三级三级人| 精品国产国语对白av| 两个人视频免费观看高清| 在线观看66精品国产| 成人手机av| 此物有八面人人有两片| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 精品一区二区三区av网在线观看| 国产一区二区在线av高清观看| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 夜夜看夜夜爽夜夜摸| 午夜精品久久久久久毛片777| 男女午夜视频在线观看| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 香蕉国产在线看| 男女午夜视频在线观看| 日本三级黄在线观看| 国产欧美日韩精品亚洲av| 女人爽到高潮嗷嗷叫在线视频| 日韩av在线大香蕉| 亚洲精品中文字幕在线视频| e午夜精品久久久久久久|