• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The quasi-Gramian solution of a noncommutative extension of the higher-order nonlinear Schr?dinger equation

    2024-04-02 07:47:20RiazandLin
    Communications in Theoretical Physics 2024年3期

    H W A Riaz and J Lin

    Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    Abstract The nonlinear Schr?dinger(NLS)equation,which incorporates higher-order dispersive terms,is widely employed in the theoretical analysis of various physical phenomena.In this study,we explore the non-commutative extension of the higher-order NLS equation.We treat real or complex-valued functions,such as g1=g1(x,t) and g2=g2(x,t) as non-commutative,and employ the Lax pair associated with the evolution equation,as in the commutation case.We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation.The soliton solutions are presented explicitly within the framework of quasideterminants.To visually understand the dynamics and solutions in the given example,we also provide simulations illustrating the associated profiles.Moreover,the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.

    Keywords: integrable systems,Darboux transformation,solitons

    1.Introduction

    The nonlinear Schr?dinger (NLS) equation,which incorporates higher-order dispersive terms,is widely used in the theoretical analysis of various physical phenomena,including nonlinear optics,molecular systems,and fluid dynamics [1–5].With the addition of fourth-order terms,known as the Lakshmanan–Porsezian–Daniel (LPD) equation,it describes higher-order molecular excitations with quadruple-quadruple coefficients and possesses integrability [6–8].Lakshmananetalinvestigated its application to study nonlinear spin excitations involving bilinear and biquadratic interactions[7].In recent years,Ankiewiczetalintroduced a further extension of the NLS equation by incorporating third-order (odd) and fourth-order (even) dispersion terms The NLS equation with higher-order terms becomes increasingly significant when modeling the propagation of ultrashort optical pulses along optical fibers[9,10].The integrability of the extended NLS equation,with certain parameter values,was confirmed in [11],where Lax operators were introduced.We now write this equation as it appears in the aforementioned references with some modification as

    whereu=u(x,t) is a complex-valued scalar function,andrepresents its complex conjugate.This equation includes several particular cases,such as the standard NLS equation with α1=γ=0 [14],the Hirota equation with γ=0 [15],and the LPD equation with α1=0 [7].

    In this study,we explore the non-commutative extension of the higher-order NLS(HNLS)equation(1.1).Non-commutative integrable systems have attracted considerable attention due to their relevance in quantum field theories,D-brane dynamics,and string theories [16–18].The non-commutative version of the NLS model is significant for exploring the behavior of quantum systems and wave propagation in scenarios where non-commutativity is a fundamental aspect [19].Non-commutativity often arises from phase-space quantization,introducing noncommutativity among independent variables through a star product [20,21].Our approach to inducing non-commutativity in a given nonlinear evolution equation parallels the methods employed by Lechtenfeldetal[22],Gilson and Nimmo [23],and Gilson and Macfarlane [24] for the non-commutative generalization of the sine-Gordon,Kadomtsev–Petviashvili,and Davey–Stewartson equations,respectively.

    We adopt a systematic method to extend the chosen equation to its non-commutative form,without explicitly specifying the nature of non-commutativity.We consider real or complex-valued functions,such asg1=g1(x,t) andg2=g2(x,t),as non-commutative and take advantage of the same Lax pair as in the commutative scenario to describe the equation of nonlinear evolution.

    In this paper,we investigate a non-commutative version of the HNLS equation(nc-HNLS).We define the Lax pair for the nc-HNLS equation within this context.To find solutions to the nc-HNLS equation,we construct the Darboux matrix and the binary Darboux matrix.We present explicit quasi-Gramian solutions for the non-commutative fields of the nc-HNLS equation which,after reducing the non-commutativity limit,can be reduced to a ratio of Gramian solutions.

    2.Modulation instability

    The propagation of a continuous or quasi-continuous wave triggers modulational instability (MI),a phenomenon arising from the interplay of dispersion and nonlinear interactions[25–27].MI serves as a valuable tool for numerically investigating the mechanisms behind solution generation within the framework of nonlinear equations.By splitting the MI and modulational stability zones,we can determine the circumstances to excite plane waves,solitons,breather and rogue waves.This approach facilitates a comprehensive understanding of the dynamics governing wave phenomena in nonlinear dispersive media.To analyze the modulation instability,we give a plane-wave solution of the equation (1.1) as

    The solution provided by equation (2.1) holds significant importance in the realm of optics,particularly within the context of the NLS equation.This solution represents a wave with constant amplitude that undergoes a nonlinear evolution over time.The dynamics are determined by parameters such as the amplitudec,the constant γ,and α2.This solution’s application extends to the study of the stability of plane waves and comprehension of the generation of periodic patterns through MI.It serves as a prime example of how the NLS equation can lead to complex behavior in optical systems,thereby making it a crucial area of research in this field.

    An approach to assess the stability of the plane-wave solution involves introducing perturbations to the solution and examining the linearized evolution of these perturbations.To simplify the analysis,the common phase can be factored out of the equation.This leads to a first-order ordinary differential equation (ODE) that couples the complex field with its complex conjugate as a result of the perturbation.Substituting the perturbed functionv(x,t) into equation (2.1),we obtain

    Substituting (2.2) into (1.1) and after linearization,we have

    To analyze the stability of the plane-wave solution,the Fourier transform of the equation is taken.This results in a first-order ODE that governs the real and imaginary parts of evolution.The stability of the solution can then be determined by looking at the eigenvalues of this ODE.In particular,the eigenvalues represent the exponent in the time evolution of the solution.Thus,the Fourier transform of the evolution equation (2.3) is

    The linear evolution equation forcan be evaluated by separating it into its real and imaginary components.Thus,for=v1+iv2,we have a system of differential equations

    The plot of equation (2.6) is shown in figure 1.

    The stability of the solution becomes evident when examining a graphical representation of the real parts of eigenvalues plotted against different frequencies.If the real part is positive,the solution will exhibit growth;conversely,negative values indicate decay.The overall stability is established by observing whether the real eigenvalue remains positive or negative across various frequency ranges.This phenomenon is referred to as MI.

    3.Non-commutative HNLS equation

    The spectral problem associated with the nc-HNLS equation is given by

    where ρ1=-4 iα1λ3-2 iλ2α2,ρ2=i(2λα1+α2),ρ3=3 iuu?uu?-4 iλ2uu?+8 iλ4,ρ4=-3 iu?uu?u+4 iλ2u?u-8 iλ4,ρ5=-8λ3u+4λuu?u,ρ6=8λ3u?-4λu?uu?.The equation of motion for the system can be derived by setting the commutator of Γ and Δ equal to zero and equating the coefficients at λ

    whereu=u(x,t) is an non-commutative object,?denotes the adjoint (Hermitian conjugate),α1,α2,and γ are real parameters,and λ is a spectral parameter (real or complex).The equation presented in (3.5) is a non-commutative generalization of the HNLS equation,as given in equation(1.1).This equation exhibits several interesting properties.For instance,when both α2and γ are zero,it reduces to non-commutative generalization of the complex modified Korteweg–de Vries(KdV)equation and to the standard modified KdV equation for real-valuedu.Moreover,setting γ to zero results in the noncommutative generalization of the Hirota equation,while setting α1and α2to zero simultaneously yields the well-known LPD equation.Finally,when α1and γ are set to zero,the equation reduces to non-commutative generalization of the NLS equation.After relaxing the non-commutativity condition,equation (3.5) corresponds to the commutative counterpart.The spectral problem linked with equation (1.1) remains the same as that of equations (3.1) and (3.2),with the exception thatuandare now perceived as commutative functions.

    3.1.Quasideterminants

    In non-commutative algebra,quasideterminants serve as a replacement for ordinary determinants of matrices.They hold a similar significance in non-commutative algebra as ordinary determinants do in commutative algebra and have found vast applications in the domain of non-commutative integrable systems [23,28,29].

    The quasideterminant |M|ijfori,j=1,...,nof ann×nmatrix over a non-commutative ring R,expanded about the matrixmij,is defined as

    wheremijis referred to as the expansion point and represents theijth entry ofM,denotes theith row ofMwithout thejth entry,represents thejth column ofMwithout theith row,andMijis the submatrix ofMobtained by removing theith row and thejth column fromM.

    Quasideterminants are not merely a generalization of usual commutative determinants but are also related to inverse matrices.The inverse of a matrixMis defined as

    4.Darboux transformation

    The application of quasideterminants when solving noncommutative(or matrix)nonlinear equations has proven to be an effective tool,particularly in generating multisoliton solutions.The Darboux transformation(DT),as demonstrated in many works,such as [24,29–33],provides a systematic and effective approach for constructing these diverse solutions.This transformative methodology contributes significantly to understanding complex phenomena in nonlinear systems,providing insights into the formation and dynamics of bright solitons,multi-valley dark solitons,and high-order rogue waves.In this section,a DT is introduced for the system of the nc-HNLS equation (3.5) through the definition of the Darboux matrix

    and the Lax operators Γ and Δ

    The spectral parameter λ,which can be real or complex,is incorporated together with the constantq×qmatrix Λ,and the non-commutative objects U,Vp,andB from equations(3.3) and (3.4),respectively,are utilized as entries in the Lax operators.Now,consider a function φ=φ(x,t) that is an eigenfunction of the Lax operators Γ and Δ such that Γ(φ)=0 and Δ(φ)=0.We can define a new function ?φusing the Darboux matrixD(Y) :

    Here,φ(n)=λnφ and Ξ(n)=ΞΛn,where each Λi,i=1,...,n,is a constant matrix.Hence,we expressed a quasideterminant formula for φ[n+1]in terms of the known eigenfunctions Yi,i=1,...,nand the eigenfunction φ of the “seed” Lax pair Γ=Γ1,Δ=Δ1.

    5.Quasi-Wronskian solutions

    In the upcoming analysis,we will examine how the DT,DY=λI-YΛ Y-1,affects the Lax operator Γ=Γ1,where Y is an eigenfunction of Γ(since Γ(Y)=0by definition)and Λ is an eigenvalue matrix.It is important to note that the same results apply to the operator Δ=Δ1.As a result of this transformation,the operator Γ is converted to a new operator=Γ[2],which can be expressed as=DY.By substituting equations (3.1) and (4.1) into the latter equation and equating the coefficients at λj,we obtain two equations,

    To confirm the validity of equation (5.2),we express equation (3.1) using a particular eigenfunction Y as Yx=JYΛ +UY.By utilizing this equation,we can easily check that the condition expressed in equation (5.2) is satisfied.To simplify the notation,a matrixF is introduced such that U=[F,J ].This equation is satisfied if F=Then,equation (5.1) with U=[F,J ]can be used to obtain F[2]=F -Y(1) Y-1,whereY(1)is defined as YΛ .Afternrepeated applications of the DTDY,we have

    where F[1]=F,Y[1]=Y1=Y,and Λ1=Λ.

    Because our nc-HNLS equation (3.5) is expressed in terms ofuandu?,it is more appropriate to express the quasi-Wronskian solution in terms of these objects.For this,we express each Yi,i=1,...,nas a 2×2 matrix asFor φ=φ(x,t) and χ=χ(x,t),we can express F[n+1]as

    We proceed in the next section to construct the binary DT for the nc-HNLS equation,using a strategy similar to that employed in [12].

    6.Binary Darboux transformation

    We introduce Y1,...,Ynas eigenfunctions of the Lax operators Γ and Δ,andas eigenfunctions of the adjoint Lax operators Γ?and Δ?.Assuming φ[1]=φ to be a generic eigenfunction of the Lax operators Γ and Δ,and ψ[1]=ψ to be a generic eigenfunction of the adjoint Lax operators Γ?and Δ?,we define the binary DT and its adjoint as

    Within the context of the binary DT,we use Y[1]=Y1as the initial eigenfunction that characterizes the transformation from the Lax operators Γ and Δ to the new operators ?Γ andSimilarly,we defineto represent the adjoint transformation,where the potential ?

    with a generic eigenfunction

    and with a generic adjoint eigenfunction

    For thenth iteration of the binary DT,we choose the eigenfunctionY[n]that defines the transformation from Γ[n],Δ[n]to Γ[n+1],Δ[n+1].Similarly,we choose the eigenfunctionZ[n]for the adjoint transformation fromThe Lax operators Γ[n]and Δ[n]exhibit covariance under the binary DT

    By introducing the matrices Ξ=(Y1,...,Yn)andZ=(Z1,...,Zn),we can represent these findings within the framework of quasi-Gramians,yielding the following expressions

    7.Quasi-Gramian solutions

    In this section,we now determine the effect of binary DTDY,Z=I-ξΥ (Y ,Z)-1Ω-?Z?on the Lax operator Γ,with Y1,...,Ynbeing eigenfunctions of Γ.Similarly,let Z1,...,Zndenote the eigenfunctions of the adjoint Lax operator Γ?.The same results apply to the operators Δ and Δ?.

    Afterniterations of applying the binary DTDY,Z,the resulting expression is given by

    It is worth noting that each Yi,i=1,...,nis a 2×2 matrix.Given that our system of the nc-HNLS equation is presented in terms of non-commutative objects,u,u?,we find it more appropriate to express the quasi-Gramian solution,equation (7.5),in terms of these objects.Thus,we introduce the matricesiY by following a similar approach to the quasi-Wronskian case.We also defineZ=ΞQ?,whereQrepresents a constant matrix of size 2n×2nand?denotes the Hermitian conjugate.It is noted that Ξ andZadhere to the same dispersion relation and remain unchanged when multiplied by a constant matrix.Consequently,the quasi-Gramian solution,equation (7.5),can also be represented as

    where φ=(φ1,...,φn) and χ=(χ1,...,χn) are row vectors.Thus,quasi-Gramian expressions are given by

    Equation(7.7) represents the quasi-Gramian solutions for the nc-HNLS equation (3.5).If we relax the non-commutativity condition,the equation can be simplified and expressed as a ratio of simple Gramians.In the limit of commutativity,we obtain the following expressions

    These expressions define the Gramian solutions of the HNLS equation.

    8.Explicit solutions

    Whenu=0,the spectral problem,equations (3.1) and (3.2),has the solution

    To simplify the notation and work with only φ1,…,φnand χ1,…,χn,we introduce the following relabeling.We redefine φiasfor odd values ofi(i.e.i=1,…,2n-1),and set φi=0 for even values ofi(i.e.i=2,4,…,2n).Similarly,we relabel χiasfor even values ofi,and χi=0 for odd values ofi.We then have

    using the notation Yi=diag (φi,χi)fori=1,…,n,where φiand χiare given in equation(8.1).For the commutative case,the Gramian solutionu[n+1],equation (7.8),is given by

    Here,I2nis the identity matrix of size 2n×2n.Constructing the matrix Ξ involves arranging the eigenfunctions Y1,Y2,...,Yn,where each Yirepresents an eigenfunction of the Lax operators Γ and Δ,presented as a 2×2 matrix.Similarly,assembling the matrixZinvolves the eigenfunc-tions Z1,Z2,...,Zn,with Ziserving as eigenfunctions of the adjoint Lax operators Γ?and Δ?.The matrix ?(Ξ,Z) is a 2n×2nmatrix,with its entries being scalar components(1×1).As we proceed to discuss the non-commutative case,we will consider every component ofiY andZias a matrix.Presenting the matrixQ,a constant matrix 2n×2n,we defineZas the result of multiplying Ξ by the Hermitian adjoint ofQ,denoted asZ=ΞQ?,allowing us to express equation(8.4)as

    To visualize this solution,we plot the propagation of theu1soliton in the commutative case with a velocity ofwhere λ=λR+iλI.Figure 2 illustrates the behavior of the soliton over time.

    Figure 2.Evolution of the solution,equation(8.7),with the parameters α1=1.5,α2=γ=1,c1=0.5,q1=2,q2=-1,(A)λ=0.1+0.5i,(B)λ=0.5i.

    Figure 3.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=0,q13=q14=-1,q33=-0.2,q34=-0.1,λ=-0.1+0.5i.

    Figure 4.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=-0.2,q13=-1,q14=-0.6,q33=0,q34=0.1,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 5.Evolution of the solution,equation(8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0,q12=-2,q13=0,q14=2,q33=0,q34=0,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 6.The profiles of u11 and u12 with γ=α2=0 in(A)and(B),and with γ=0 in(C)and(D).All the other parameters are the same as in figure 5.

    Figure 7.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.5i,λ2=-0.1-0.1i.All the other parameters are the same as in figure 5,(A) u11 profile,and (B) u12 profile.

    Figure 8.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.6i,λ2=-1.1-1.1i,(A) u11 profile,and (B) u12 profile.

    Figure 9.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.1+0.5i,λ2=-0.5i,(A) u11 profile,and (B) u12 profile.

    8.1.Non-commutative case

    We now discuss the non-commutative case.It has been shown in [13] that the behavior of matrix solitons differs from their scalar counterparts.Unlike scalar solitons,which keep their amplitudes unchanged during interactions,matrix solitons undergo transformations that depend on certain rules.These transformations affect the amplitudes,which are determined by vectors rather than individual values in the non-commutative setting.When considering the case ofn=1,we choose the solutions φ and χ of the Lax pair to be 2×2 matrices,given by

    Here,I2is the 2×2 identity matrix.And each entry in φ and χ and the constant matrixQis a 2×2 matrix,so that these matrices are given by

    Therefore,the quasi-Gramian expression foru2(which we will now denote asu1for the non-commutative case) can be expressed as

    Within the context of a non-commutative system,the soliton solution,equation (8.11),is intricately influenced by both the spectral parameter λ and the elements composing the matrixQ.When specific entries,such asq13andq14,are deliberately set to zero,the resulting solutions foru11,u12,u21,andu22appear trivial.And whereq13=q14=-1,the graphical representations of solutionsu11,u12,u21,andu22manifest as a single consolidated plot instead of the originally intended four.Noteworthy is the fact that under these conditions,all solitons propagate with a consistent amplitude of 0.2163 units,as shown in figure 3.Unlike this symmetry,whenq13≠q14,the resulting graphs exhibit a variety of double-and single-peaked patterns for each component of the matrixu1(see figure 4).It is worth highlighting that solitonu12advances with an amplitude of 0.3860 units of large peak and 0.2317 units of small peak,while solitonu11propagates with an amplitude of 1.9797 units.Additionally,an intriguing situation unfolds when we chooseq12=-q14=-2 andq11=q13=q33=q34=0.For such parametric values,we notice a single-peaked soliton foru11with an amplitude of 0.2214 units,while simultaneously observing a kink pattern inu12of maximum height 0.8858 units (as seen in figure 5).

    The solution,equation (8.11),includes several particular cases.When both α2and γ are zero,the solution,equation (8.11),takes a different form.It becomes a solution of a non-commutative generalization of the complex modified KdV equation,and is further reduced to the standard modified KdV equation when the variableuis real-valued.Additionally,if we set γ to zero,we obtain the solution of the non-commutative extension of the Hirota equation.These solutions are depicted in figure 6.Furthermore,when we simultaneously set α1and α2to zero,we have the solution of the non-commutative LPD equation.Lastly,if we set α1and γ to zero,we get the solution of non-commutative generalization of the NLS equation.

    In summary,studying the non-commutative version is important because it gives us different choices for arranging solitons.These arrangements depend not only on the spectral parameter λ but also on values in a matrix.Similarly,two soliton solutions for the non-commutative case are depicted in figures 7–9.

    In figure 7,it is shown that solitons exhibiting breatherlike structures are observed in the componentsu11andu12,where (u11≠u12).This occurrence can be attributed to the strength of the force acting between two solitons.When this force becomes sufficiently strong,solitons in a bound state have the ability to merge and transform into solitons with a breather-like structure.This phenomenon is commonly referred to as soliton fusion,which provides important insights into the dynamics of nonlinear wave systems by demonstrating the complicated behavior and complex interplay of solitons when exposed to strong interacting forces.

    Figures 8–9 present a visual representation of two soliton solutions derived from the nc-HNLS equation.Within this context,solitons represent localized waves of energy that propagate through a medium with stability.The figures illustrate the interaction of two distinct solitons,each characterized by its own velocity,moving independently and later scattering without undergoing any shape changes.This behavior aligns with the defining characteristic of soliton robustness during interactions.Similarly,other multisoliton expressions can be obtained by repeatedly applying the DT to the seed solution.Note that we have omitted the explicit expression of soliton solutions for non-commutative cases as it is long and cumbersome.

    9.Concluding remarks

    This study explored the non-commutative extension of the HNLS equation.We have constructed Darboux and binary DTs and used these to obtain solutions in quasi-Wronskian and quasi-Gramian forms.These solutions were intricately linked to the nc-HNLS equation and its associated Lax pair.We demonstrated single-and double-peaked,kink,and bright solitons in non-commutative settings.Further,we also visualized the different types of interaction of two individual solitons: that is,two different lump energies moving at different velocities and frequencies that interact and scatter off without changing their profiles.The method proposed in this study serves as an effective tool,enabling the explicit construction of multi-solitons for other related non-commutative integrable systems.

    Acknowledgments

    We acknowledge the support from the National Natural Science Foundation of China,Nos.11 835 011 and 12 375 006.

    亚洲美女黄色视频免费看| 欧美丝袜亚洲另类| 亚洲国产精品成人久久小说| 亚洲国产毛片av蜜桃av| 国产av码专区亚洲av| 男女下面进入的视频免费午夜| 国产亚洲欧美精品永久| 亚洲四区av| 亚洲av在线观看美女高潮| 欧美激情国产日韩精品一区| 亚洲精品,欧美精品| 777米奇影视久久| 美女内射精品一级片tv| 免费看日本二区| 国产成人午夜福利电影在线观看| 久久精品人妻少妇| 国产亚洲午夜精品一区二区久久| 亚洲国产色片| 国产av一区二区精品久久 | 日本vs欧美在线观看视频 | 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频 | 婷婷色综合大香蕉| 亚洲色图综合在线观看| 99热这里只有精品一区| 亚洲成色77777| av国产免费在线观看| 国产精品精品国产色婷婷| 乱系列少妇在线播放| 欧美一级a爱片免费观看看| 欧美日韩一区二区视频在线观看视频在线| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 少妇精品久久久久久久| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 在现免费观看毛片| 80岁老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 精品一区在线观看国产| 成年免费大片在线观看| 女人久久www免费人成看片| 久久99精品国语久久久| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人爽人人片va| 亚洲精品第二区| 日韩欧美一区视频在线观看 | 又粗又硬又长又爽又黄的视频| 一本久久精品| 大又大粗又爽又黄少妇毛片口| 亚洲电影在线观看av| 色吧在线观看| 国产老妇伦熟女老妇高清| av在线老鸭窝| 日韩av不卡免费在线播放| 国产精品免费大片| 国产视频内射| 欧美激情极品国产一区二区三区 | 精品亚洲成a人片在线观看 | 国产精品久久久久久av不卡| 亚洲色图综合在线观看| 三级经典国产精品| 亚洲欧美日韩东京热| 中国美白少妇内射xxxbb| 日韩,欧美,国产一区二区三区| 免费看光身美女| 夜夜看夜夜爽夜夜摸| freevideosex欧美| 亚洲美女黄色视频免费看| 日韩制服骚丝袜av| 亚洲精品乱久久久久久| 亚洲精品国产成人久久av| 免费大片18禁| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的 | 国产在视频线精品| 午夜视频国产福利| 蜜臀久久99精品久久宅男| 搡老乐熟女国产| 久久精品国产亚洲网站| 99国产精品免费福利视频| 国产 一区精品| 久久97久久精品| 中文字幕亚洲精品专区| 九九在线视频观看精品| 国产亚洲欧美精品永久| 亚洲精品第二区| 亚洲无线观看免费| 日韩伦理黄色片| 天天躁日日操中文字幕| 韩国高清视频一区二区三区| 51国产日韩欧美| 日韩av在线免费看完整版不卡| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 亚洲美女视频黄频| 久久ye,这里只有精品| 国产精品爽爽va在线观看网站| 国产高清有码在线观看视频| videossex国产| 99久久精品国产国产毛片| 日本黄色片子视频| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜爱| 久久久久精品性色| 熟妇人妻不卡中文字幕| 成人综合一区亚洲| 精品酒店卫生间| 人妻夜夜爽99麻豆av| 多毛熟女@视频| 少妇熟女欧美另类| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| 最后的刺客免费高清国语| 一个人免费看片子| 国产极品天堂在线| 午夜免费鲁丝| 中文字幕人妻熟人妻熟丝袜美| 欧美三级亚洲精品| 校园人妻丝袜中文字幕| 观看免费一级毛片| 91aial.com中文字幕在线观看| 一二三四中文在线观看免费高清| 少妇精品久久久久久久| 欧美区成人在线视频| 国产伦精品一区二区三区视频9| 人人妻人人添人人爽欧美一区卜 | 日本欧美视频一区| 国产成人精品一,二区| 赤兔流量卡办理| 色综合色国产| 大话2 男鬼变身卡| 午夜日本视频在线| 精品国产三级普通话版| 一边亲一边摸免费视频| 啦啦啦中文免费视频观看日本| 国产精品久久久久成人av| 久久精品久久久久久久性| av线在线观看网站| 亚洲国产精品999| 亚洲天堂av无毛| 嫩草影院入口| av在线老鸭窝| 免费观看a级毛片全部| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 久久99蜜桃精品久久| 大片免费播放器 马上看| 免费少妇av软件| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 高清在线视频一区二区三区| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 最近的中文字幕免费完整| 中文资源天堂在线| 色吧在线观看| 亚洲精品中文字幕在线视频 | 亚洲成人av在线免费| 日韩大片免费观看网站| 一本一本综合久久| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| 中文字幕亚洲精品专区| 麻豆成人av视频| 一级毛片黄色毛片免费观看视频| 天堂中文最新版在线下载| 少妇丰满av| 久久久精品94久久精品| 亚洲va在线va天堂va国产| 如何舔出高潮| 青春草视频在线免费观看| 国产精品.久久久| 久久久午夜欧美精品| 欧美国产精品一级二级三级 | 在线免费观看不下载黄p国产| 亚洲不卡免费看| 一个人看视频在线观看www免费| av福利片在线观看| 简卡轻食公司| 又爽又黄a免费视频| 国产精品国产av在线观看| 黑丝袜美女国产一区| 日本av免费视频播放| 亚洲av.av天堂| 久久久久久久精品精品| 国产精品一区www在线观看| 国产一区有黄有色的免费视频| 久热这里只有精品99| 午夜福利在线观看免费完整高清在| 久久精品久久久久久噜噜老黄| 成人特级av手机在线观看| 毛片女人毛片| 欧美成人午夜免费资源| 麻豆成人av视频| 亚洲av中文av极速乱| 亚洲色图综合在线观看| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 深爱激情五月婷婷| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 51国产日韩欧美| 黄色日韩在线| 青青草视频在线视频观看| 国产色爽女视频免费观看| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 少妇高潮的动态图| 激情 狠狠 欧美| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 一本一本综合久久| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| av在线老鸭窝| 少妇被粗大猛烈的视频| 97精品久久久久久久久久精品| 五月开心婷婷网| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 国产精品久久久久久精品古装| 欧美三级亚洲精品| 欧美成人a在线观看| 少妇的逼水好多| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 日本一二三区视频观看| 国产一区二区三区综合在线观看 | 十八禁网站网址无遮挡 | 亚洲精品日本国产第一区| 不卡视频在线观看欧美| 成人国产av品久久久| 日韩 亚洲 欧美在线| 一级爰片在线观看| 身体一侧抽搐| 国产男女超爽视频在线观看| 在线观看一区二区三区| 久久久久精品性色| 国产成人一区二区在线| 观看av在线不卡| 久久午夜福利片| 亚洲av在线观看美女高潮| 人人妻人人爽人人添夜夜欢视频 | videos熟女内射| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| www.av在线官网国产| 深夜a级毛片| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 国产毛片在线视频| 亚洲av日韩在线播放| 丰满人妻一区二区三区视频av| 男人爽女人下面视频在线观看| 国产黄片美女视频| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| av又黄又爽大尺度在线免费看| 国产91av在线免费观看| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 熟女av电影| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 中国美白少妇内射xxxbb| 又粗又硬又长又爽又黄的视频| 久久精品国产a三级三级三级| 欧美日韩在线观看h| 久久久久精品性色| av在线蜜桃| 六月丁香七月| 国产黄片美女视频| 在线观看免费高清a一片| 亚洲无线观看免费| 中国国产av一级| 亚洲三级黄色毛片| 一本—道久久a久久精品蜜桃钙片| 91精品国产九色| 久久久午夜欧美精品| 插阴视频在线观看视频| 大陆偷拍与自拍| 91在线精品国自产拍蜜月| 亚洲精华国产精华液的使用体验| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 最黄视频免费看| 色视频www国产| 日韩人妻高清精品专区| 大香蕉97超碰在线| 日本免费在线观看一区| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 午夜福利视频精品| 久久精品国产亚洲av涩爱| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 国产一区二区三区av在线| 能在线免费看毛片的网站| 日韩大片免费观看网站| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久丰满| 九九在线视频观看精品| 大片电影免费在线观看免费| 国内精品宾馆在线| 国产精品人妻久久久久久| av在线观看视频网站免费| 搡老乐熟女国产| 美女高潮的动态| 看免费成人av毛片| 久久久久精品久久久久真实原创| 日本一二三区视频观看| 国产欧美日韩精品一区二区| 蜜臀久久99精品久久宅男| 欧美性感艳星| 香蕉精品网在线| 亚洲av二区三区四区| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 亚洲天堂av无毛| 性色av一级| 只有这里有精品99| 最近的中文字幕免费完整| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看| 欧美成人一区二区免费高清观看| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 天天躁日日操中文字幕| 久久国产精品大桥未久av | 2021少妇久久久久久久久久久| 色网站视频免费| 男男h啪啪无遮挡| 久热这里只有精品99| 国产国拍精品亚洲av在线观看| 国产一区有黄有色的免费视频| 亚洲av男天堂| 精品人妻一区二区三区麻豆| av免费在线看不卡| 国产一区有黄有色的免费视频| 久久久久久久久大av| 久久精品国产a三级三级三级| 26uuu在线亚洲综合色| 亚洲av综合色区一区| 2022亚洲国产成人精品| 成年免费大片在线观看| 在线观看免费日韩欧美大片 | 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| 岛国毛片在线播放| 天天躁日日操中文字幕| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 一二三四中文在线观看免费高清| 亚洲中文av在线| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 97超视频在线观看视频| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 国产高清三级在线| 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 日本wwww免费看| 国产乱来视频区| 内射极品少妇av片p| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 天美传媒精品一区二区| 国产伦精品一区二区三区四那| 少妇人妻 视频| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜| 在线观看国产h片| 精品亚洲成国产av| 国产精品久久久久久久电影| 久久久久视频综合| 少妇 在线观看| 国产伦理片在线播放av一区| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 国产人妻一区二区三区在| 99国产精品免费福利视频| av免费观看日本| 99久久综合免费| 人人妻人人看人人澡| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 国产探花极品一区二区| 免费久久久久久久精品成人欧美视频 | 黄片wwwwww| 51国产日韩欧美| 全区人妻精品视频| 舔av片在线| 青春草视频在线免费观看| 国产精品欧美亚洲77777| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 亚洲经典国产精华液单| 日本欧美国产在线视频| 在线观看av片永久免费下载| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 老师上课跳d突然被开到最大视频| 精品午夜福利在线看| 久热这里只有精品99| 丰满迷人的少妇在线观看| 国产精品99久久久久久久久| 国产免费视频播放在线视频| 亚洲电影在线观看av| 国产人妻一区二区三区在| 汤姆久久久久久久影院中文字幕| 中文字幕亚洲精品专区| 18禁裸乳无遮挡动漫免费视频| 免费人成在线观看视频色| 国产高清国产精品国产三级 | 美女cb高潮喷水在线观看| 国产高潮美女av| 青春草国产在线视频| 看非洲黑人一级黄片| 精品亚洲成a人片在线观看 | 尤物成人国产欧美一区二区三区| 国产精品人妻久久久影院| 国产av一区二区精品久久 | 日韩一区二区视频免费看| a级毛片免费高清观看在线播放| 人人妻人人爽人人添夜夜欢视频 | 成年人午夜在线观看视频| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 中国三级夫妇交换| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 国产av精品麻豆| av女优亚洲男人天堂| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 亚洲自偷自拍三级| 一本一本综合久久| 欧美xxxx黑人xx丫x性爽| 在线观看免费视频网站a站| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 91久久精品电影网| 国模一区二区三区四区视频| 国产成人一区二区在线| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| www.av在线官网国产| 国产亚洲最大av| 国产91av在线免费观看| 久久久亚洲精品成人影院| 久久青草综合色| 91狼人影院| 五月玫瑰六月丁香| 国产91av在线免费观看| 男人舔奶头视频| a 毛片基地| 亚洲av日韩在线播放| 插阴视频在线观看视频| 久久人妻熟女aⅴ| 久久久久性生活片| 国产精品av视频在线免费观看| 成人综合一区亚洲| 黄色怎么调成土黄色| 国产av精品麻豆| 亚洲欧美一区二区三区国产| 欧美bdsm另类| 国产成人a区在线观看| 伦理电影免费视频| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 国产精品成人在线| 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| 国产伦在线观看视频一区| 欧美成人a在线观看| 成人毛片a级毛片在线播放| a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 亚洲无线观看免费| 性色avwww在线观看| 亚洲av中文av极速乱| 99热这里只有精品一区| 一级a做视频免费观看| 久久久久国产网址| 热99国产精品久久久久久7| 免费高清在线观看视频在线观看| 又爽又黄a免费视频| 亚洲精品国产成人久久av| 成人亚洲精品一区在线观看 | 欧美3d第一页| 欧美日韩综合久久久久久| 亚洲一区二区三区欧美精品| 免费观看无遮挡的男女| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 成人亚洲精品一区在线观看 | 亚洲综合色惰| 涩涩av久久男人的天堂| 99久久精品热视频| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 欧美成人精品欧美一级黄| 国产 一区精品| 一级av片app| 男女下面进入的视频免费午夜| 亚洲成人一二三区av| 观看av在线不卡| 免费黄网站久久成人精品| 视频区图区小说| 99热这里只有精品一区| 少妇人妻久久综合中文| 国产 一区 欧美 日韩| xxx大片免费视频| 亚洲三级黄色毛片| 欧美国产精品一级二级三级 | 亚洲最大成人中文| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 夜夜骑夜夜射夜夜干| 两个人的视频大全免费| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 新久久久久国产一级毛片| 亚洲国产精品一区三区| 亚洲电影在线观看av| 亚洲精品中文字幕在线视频 | 超碰av人人做人人爽久久| 熟女电影av网| 免费看av在线观看网站| 亚洲av福利一区| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片| 国产亚洲欧美精品永久| 联通29元200g的流量卡| 午夜激情久久久久久久| 黄色欧美视频在线观看| 欧美精品国产亚洲| a级一级毛片免费在线观看| 亚洲国产欧美人成| 久久久欧美国产精品| 国产精品女同一区二区软件| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 黄色日韩在线| 日本欧美国产在线视频| 日韩一本色道免费dvd| 国产69精品久久久久777片| 精华霜和精华液先用哪个| 国产在线一区二区三区精| 各种免费的搞黄视频| a级一级毛片免费在线观看| 免费大片18禁| 国产精品.久久久| 亚洲四区av| 亚洲精品亚洲一区二区| 国产一级毛片在线| 日本vs欧美在线观看视频 | 国产精品蜜桃在线观看| 精品一区二区免费观看| 精品一区二区三卡| 中国国产av一级| 精品酒店卫生间| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 老熟女久久久| 在线观看美女被高潮喷水网站| 国产免费福利视频在线观看| 免费黄网站久久成人精品| 我要看日韩黄色一级片| 身体一侧抽搐| 国产在线一区二区三区精| 少妇裸体淫交视频免费看高清| 91久久精品电影网| 极品少妇高潮喷水抽搐| 久久人人爽av亚洲精品天堂 | 妹子高潮喷水视频| 亚洲内射少妇av| 99精国产麻豆久久婷婷| 极品教师在线视频| 国产精品欧美亚洲77777| 夜夜看夜夜爽夜夜摸| 中文字幕免费在线视频6|