• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The quasi-Gramian solution of a noncommutative extension of the higher-order nonlinear Schr?dinger equation

    2024-04-02 07:47:20RiazandLin
    Communications in Theoretical Physics 2024年3期

    H W A Riaz and J Lin

    Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    Abstract The nonlinear Schr?dinger(NLS)equation,which incorporates higher-order dispersive terms,is widely employed in the theoretical analysis of various physical phenomena.In this study,we explore the non-commutative extension of the higher-order NLS equation.We treat real or complex-valued functions,such as g1=g1(x,t) and g2=g2(x,t) as non-commutative,and employ the Lax pair associated with the evolution equation,as in the commutation case.We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation.The soliton solutions are presented explicitly within the framework of quasideterminants.To visually understand the dynamics and solutions in the given example,we also provide simulations illustrating the associated profiles.Moreover,the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.

    Keywords: integrable systems,Darboux transformation,solitons

    1.Introduction

    The nonlinear Schr?dinger (NLS) equation,which incorporates higher-order dispersive terms,is widely used in the theoretical analysis of various physical phenomena,including nonlinear optics,molecular systems,and fluid dynamics [1–5].With the addition of fourth-order terms,known as the Lakshmanan–Porsezian–Daniel (LPD) equation,it describes higher-order molecular excitations with quadruple-quadruple coefficients and possesses integrability [6–8].Lakshmananetalinvestigated its application to study nonlinear spin excitations involving bilinear and biquadratic interactions[7].In recent years,Ankiewiczetalintroduced a further extension of the NLS equation by incorporating third-order (odd) and fourth-order (even) dispersion terms The NLS equation with higher-order terms becomes increasingly significant when modeling the propagation of ultrashort optical pulses along optical fibers[9,10].The integrability of the extended NLS equation,with certain parameter values,was confirmed in [11],where Lax operators were introduced.We now write this equation as it appears in the aforementioned references with some modification as

    whereu=u(x,t) is a complex-valued scalar function,andrepresents its complex conjugate.This equation includes several particular cases,such as the standard NLS equation with α1=γ=0 [14],the Hirota equation with γ=0 [15],and the LPD equation with α1=0 [7].

    In this study,we explore the non-commutative extension of the higher-order NLS(HNLS)equation(1.1).Non-commutative integrable systems have attracted considerable attention due to their relevance in quantum field theories,D-brane dynamics,and string theories [16–18].The non-commutative version of the NLS model is significant for exploring the behavior of quantum systems and wave propagation in scenarios where non-commutativity is a fundamental aspect [19].Non-commutativity often arises from phase-space quantization,introducing noncommutativity among independent variables through a star product [20,21].Our approach to inducing non-commutativity in a given nonlinear evolution equation parallels the methods employed by Lechtenfeldetal[22],Gilson and Nimmo [23],and Gilson and Macfarlane [24] for the non-commutative generalization of the sine-Gordon,Kadomtsev–Petviashvili,and Davey–Stewartson equations,respectively.

    We adopt a systematic method to extend the chosen equation to its non-commutative form,without explicitly specifying the nature of non-commutativity.We consider real or complex-valued functions,such asg1=g1(x,t) andg2=g2(x,t),as non-commutative and take advantage of the same Lax pair as in the commutative scenario to describe the equation of nonlinear evolution.

    In this paper,we investigate a non-commutative version of the HNLS equation(nc-HNLS).We define the Lax pair for the nc-HNLS equation within this context.To find solutions to the nc-HNLS equation,we construct the Darboux matrix and the binary Darboux matrix.We present explicit quasi-Gramian solutions for the non-commutative fields of the nc-HNLS equation which,after reducing the non-commutativity limit,can be reduced to a ratio of Gramian solutions.

    2.Modulation instability

    The propagation of a continuous or quasi-continuous wave triggers modulational instability (MI),a phenomenon arising from the interplay of dispersion and nonlinear interactions[25–27].MI serves as a valuable tool for numerically investigating the mechanisms behind solution generation within the framework of nonlinear equations.By splitting the MI and modulational stability zones,we can determine the circumstances to excite plane waves,solitons,breather and rogue waves.This approach facilitates a comprehensive understanding of the dynamics governing wave phenomena in nonlinear dispersive media.To analyze the modulation instability,we give a plane-wave solution of the equation (1.1) as

    The solution provided by equation (2.1) holds significant importance in the realm of optics,particularly within the context of the NLS equation.This solution represents a wave with constant amplitude that undergoes a nonlinear evolution over time.The dynamics are determined by parameters such as the amplitudec,the constant γ,and α2.This solution’s application extends to the study of the stability of plane waves and comprehension of the generation of periodic patterns through MI.It serves as a prime example of how the NLS equation can lead to complex behavior in optical systems,thereby making it a crucial area of research in this field.

    An approach to assess the stability of the plane-wave solution involves introducing perturbations to the solution and examining the linearized evolution of these perturbations.To simplify the analysis,the common phase can be factored out of the equation.This leads to a first-order ordinary differential equation (ODE) that couples the complex field with its complex conjugate as a result of the perturbation.Substituting the perturbed functionv(x,t) into equation (2.1),we obtain

    Substituting (2.2) into (1.1) and after linearization,we have

    To analyze the stability of the plane-wave solution,the Fourier transform of the equation is taken.This results in a first-order ODE that governs the real and imaginary parts of evolution.The stability of the solution can then be determined by looking at the eigenvalues of this ODE.In particular,the eigenvalues represent the exponent in the time evolution of the solution.Thus,the Fourier transform of the evolution equation (2.3) is

    The linear evolution equation forcan be evaluated by separating it into its real and imaginary components.Thus,for=v1+iv2,we have a system of differential equations

    The plot of equation (2.6) is shown in figure 1.

    The stability of the solution becomes evident when examining a graphical representation of the real parts of eigenvalues plotted against different frequencies.If the real part is positive,the solution will exhibit growth;conversely,negative values indicate decay.The overall stability is established by observing whether the real eigenvalue remains positive or negative across various frequency ranges.This phenomenon is referred to as MI.

    3.Non-commutative HNLS equation

    The spectral problem associated with the nc-HNLS equation is given by

    where ρ1=-4 iα1λ3-2 iλ2α2,ρ2=i(2λα1+α2),ρ3=3 iuu?uu?-4 iλ2uu?+8 iλ4,ρ4=-3 iu?uu?u+4 iλ2u?u-8 iλ4,ρ5=-8λ3u+4λuu?u,ρ6=8λ3u?-4λu?uu?.The equation of motion for the system can be derived by setting the commutator of Γ and Δ equal to zero and equating the coefficients at λ

    whereu=u(x,t) is an non-commutative object,?denotes the adjoint (Hermitian conjugate),α1,α2,and γ are real parameters,and λ is a spectral parameter (real or complex).The equation presented in (3.5) is a non-commutative generalization of the HNLS equation,as given in equation(1.1).This equation exhibits several interesting properties.For instance,when both α2and γ are zero,it reduces to non-commutative generalization of the complex modified Korteweg–de Vries(KdV)equation and to the standard modified KdV equation for real-valuedu.Moreover,setting γ to zero results in the noncommutative generalization of the Hirota equation,while setting α1and α2to zero simultaneously yields the well-known LPD equation.Finally,when α1and γ are set to zero,the equation reduces to non-commutative generalization of the NLS equation.After relaxing the non-commutativity condition,equation (3.5) corresponds to the commutative counterpart.The spectral problem linked with equation (1.1) remains the same as that of equations (3.1) and (3.2),with the exception thatuandare now perceived as commutative functions.

    3.1.Quasideterminants

    In non-commutative algebra,quasideterminants serve as a replacement for ordinary determinants of matrices.They hold a similar significance in non-commutative algebra as ordinary determinants do in commutative algebra and have found vast applications in the domain of non-commutative integrable systems [23,28,29].

    The quasideterminant |M|ijfori,j=1,...,nof ann×nmatrix over a non-commutative ring R,expanded about the matrixmij,is defined as

    wheremijis referred to as the expansion point and represents theijth entry ofM,denotes theith row ofMwithout thejth entry,represents thejth column ofMwithout theith row,andMijis the submatrix ofMobtained by removing theith row and thejth column fromM.

    Quasideterminants are not merely a generalization of usual commutative determinants but are also related to inverse matrices.The inverse of a matrixMis defined as

    4.Darboux transformation

    The application of quasideterminants when solving noncommutative(or matrix)nonlinear equations has proven to be an effective tool,particularly in generating multisoliton solutions.The Darboux transformation(DT),as demonstrated in many works,such as [24,29–33],provides a systematic and effective approach for constructing these diverse solutions.This transformative methodology contributes significantly to understanding complex phenomena in nonlinear systems,providing insights into the formation and dynamics of bright solitons,multi-valley dark solitons,and high-order rogue waves.In this section,a DT is introduced for the system of the nc-HNLS equation (3.5) through the definition of the Darboux matrix

    and the Lax operators Γ and Δ

    The spectral parameter λ,which can be real or complex,is incorporated together with the constantq×qmatrix Λ,and the non-commutative objects U,Vp,andB from equations(3.3) and (3.4),respectively,are utilized as entries in the Lax operators.Now,consider a function φ=φ(x,t) that is an eigenfunction of the Lax operators Γ and Δ such that Γ(φ)=0 and Δ(φ)=0.We can define a new function ?φusing the Darboux matrixD(Y) :

    Here,φ(n)=λnφ and Ξ(n)=ΞΛn,where each Λi,i=1,...,n,is a constant matrix.Hence,we expressed a quasideterminant formula for φ[n+1]in terms of the known eigenfunctions Yi,i=1,...,nand the eigenfunction φ of the “seed” Lax pair Γ=Γ1,Δ=Δ1.

    5.Quasi-Wronskian solutions

    In the upcoming analysis,we will examine how the DT,DY=λI-YΛ Y-1,affects the Lax operator Γ=Γ1,where Y is an eigenfunction of Γ(since Γ(Y)=0by definition)and Λ is an eigenvalue matrix.It is important to note that the same results apply to the operator Δ=Δ1.As a result of this transformation,the operator Γ is converted to a new operator=Γ[2],which can be expressed as=DY.By substituting equations (3.1) and (4.1) into the latter equation and equating the coefficients at λj,we obtain two equations,

    To confirm the validity of equation (5.2),we express equation (3.1) using a particular eigenfunction Y as Yx=JYΛ +UY.By utilizing this equation,we can easily check that the condition expressed in equation (5.2) is satisfied.To simplify the notation,a matrixF is introduced such that U=[F,J ].This equation is satisfied if F=Then,equation (5.1) with U=[F,J ]can be used to obtain F[2]=F -Y(1) Y-1,whereY(1)is defined as YΛ .Afternrepeated applications of the DTDY,we have

    where F[1]=F,Y[1]=Y1=Y,and Λ1=Λ.

    Because our nc-HNLS equation (3.5) is expressed in terms ofuandu?,it is more appropriate to express the quasi-Wronskian solution in terms of these objects.For this,we express each Yi,i=1,...,nas a 2×2 matrix asFor φ=φ(x,t) and χ=χ(x,t),we can express F[n+1]as

    We proceed in the next section to construct the binary DT for the nc-HNLS equation,using a strategy similar to that employed in [12].

    6.Binary Darboux transformation

    We introduce Y1,...,Ynas eigenfunctions of the Lax operators Γ and Δ,andas eigenfunctions of the adjoint Lax operators Γ?and Δ?.Assuming φ[1]=φ to be a generic eigenfunction of the Lax operators Γ and Δ,and ψ[1]=ψ to be a generic eigenfunction of the adjoint Lax operators Γ?and Δ?,we define the binary DT and its adjoint as

    Within the context of the binary DT,we use Y[1]=Y1as the initial eigenfunction that characterizes the transformation from the Lax operators Γ and Δ to the new operators ?Γ andSimilarly,we defineto represent the adjoint transformation,where the potential ?

    with a generic eigenfunction

    and with a generic adjoint eigenfunction

    For thenth iteration of the binary DT,we choose the eigenfunctionY[n]that defines the transformation from Γ[n],Δ[n]to Γ[n+1],Δ[n+1].Similarly,we choose the eigenfunctionZ[n]for the adjoint transformation fromThe Lax operators Γ[n]and Δ[n]exhibit covariance under the binary DT

    By introducing the matrices Ξ=(Y1,...,Yn)andZ=(Z1,...,Zn),we can represent these findings within the framework of quasi-Gramians,yielding the following expressions

    7.Quasi-Gramian solutions

    In this section,we now determine the effect of binary DTDY,Z=I-ξΥ (Y ,Z)-1Ω-?Z?on the Lax operator Γ,with Y1,...,Ynbeing eigenfunctions of Γ.Similarly,let Z1,...,Zndenote the eigenfunctions of the adjoint Lax operator Γ?.The same results apply to the operators Δ and Δ?.

    Afterniterations of applying the binary DTDY,Z,the resulting expression is given by

    It is worth noting that each Yi,i=1,...,nis a 2×2 matrix.Given that our system of the nc-HNLS equation is presented in terms of non-commutative objects,u,u?,we find it more appropriate to express the quasi-Gramian solution,equation (7.5),in terms of these objects.Thus,we introduce the matricesiY by following a similar approach to the quasi-Wronskian case.We also defineZ=ΞQ?,whereQrepresents a constant matrix of size 2n×2nand?denotes the Hermitian conjugate.It is noted that Ξ andZadhere to the same dispersion relation and remain unchanged when multiplied by a constant matrix.Consequently,the quasi-Gramian solution,equation (7.5),can also be represented as

    where φ=(φ1,...,φn) and χ=(χ1,...,χn) are row vectors.Thus,quasi-Gramian expressions are given by

    Equation(7.7) represents the quasi-Gramian solutions for the nc-HNLS equation (3.5).If we relax the non-commutativity condition,the equation can be simplified and expressed as a ratio of simple Gramians.In the limit of commutativity,we obtain the following expressions

    These expressions define the Gramian solutions of the HNLS equation.

    8.Explicit solutions

    Whenu=0,the spectral problem,equations (3.1) and (3.2),has the solution

    To simplify the notation and work with only φ1,…,φnand χ1,…,χn,we introduce the following relabeling.We redefine φiasfor odd values ofi(i.e.i=1,…,2n-1),and set φi=0 for even values ofi(i.e.i=2,4,…,2n).Similarly,we relabel χiasfor even values ofi,and χi=0 for odd values ofi.We then have

    using the notation Yi=diag (φi,χi)fori=1,…,n,where φiand χiare given in equation(8.1).For the commutative case,the Gramian solutionu[n+1],equation (7.8),is given by

    Here,I2nis the identity matrix of size 2n×2n.Constructing the matrix Ξ involves arranging the eigenfunctions Y1,Y2,...,Yn,where each Yirepresents an eigenfunction of the Lax operators Γ and Δ,presented as a 2×2 matrix.Similarly,assembling the matrixZinvolves the eigenfunc-tions Z1,Z2,...,Zn,with Ziserving as eigenfunctions of the adjoint Lax operators Γ?and Δ?.The matrix ?(Ξ,Z) is a 2n×2nmatrix,with its entries being scalar components(1×1).As we proceed to discuss the non-commutative case,we will consider every component ofiY andZias a matrix.Presenting the matrixQ,a constant matrix 2n×2n,we defineZas the result of multiplying Ξ by the Hermitian adjoint ofQ,denoted asZ=ΞQ?,allowing us to express equation(8.4)as

    To visualize this solution,we plot the propagation of theu1soliton in the commutative case with a velocity ofwhere λ=λR+iλI.Figure 2 illustrates the behavior of the soliton over time.

    Figure 2.Evolution of the solution,equation(8.7),with the parameters α1=1.5,α2=γ=1,c1=0.5,q1=2,q2=-1,(A)λ=0.1+0.5i,(B)λ=0.5i.

    Figure 3.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=0,q13=q14=-1,q33=-0.2,q34=-0.1,λ=-0.1+0.5i.

    Figure 4.Evolution of the solution,equation (8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0.5,q12=-0.2,q13=-1,q14=-0.6,q33=0,q34=0.1,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 5.Evolution of the solution,equation(8.11),with the parameters α1=1.5,α2=γ=1,c1=0.5,q11=0,q12=-2,q13=0,q14=2,q33=0,q34=0,λ=-0.1+0.5i,(A) u11 profile,and (B) u12 profile.

    Figure 6.The profiles of u11 and u12 with γ=α2=0 in(A)and(B),and with γ=0 in(C)and(D).All the other parameters are the same as in figure 5.

    Figure 7.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.5i,λ2=-0.1-0.1i.All the other parameters are the same as in figure 5,(A) u11 profile,and (B) u12 profile.

    Figure 8.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.6i,λ2=-1.1-1.1i,(A) u11 profile,and (B) u12 profile.

    Figure 9.The profiles of uij,i,j=1,2 with α1=0.5,α2=ν=1,λ1=0.1+0.5i,λ2=-0.5i,(A) u11 profile,and (B) u12 profile.

    8.1.Non-commutative case

    We now discuss the non-commutative case.It has been shown in [13] that the behavior of matrix solitons differs from their scalar counterparts.Unlike scalar solitons,which keep their amplitudes unchanged during interactions,matrix solitons undergo transformations that depend on certain rules.These transformations affect the amplitudes,which are determined by vectors rather than individual values in the non-commutative setting.When considering the case ofn=1,we choose the solutions φ and χ of the Lax pair to be 2×2 matrices,given by

    Here,I2is the 2×2 identity matrix.And each entry in φ and χ and the constant matrixQis a 2×2 matrix,so that these matrices are given by

    Therefore,the quasi-Gramian expression foru2(which we will now denote asu1for the non-commutative case) can be expressed as

    Within the context of a non-commutative system,the soliton solution,equation (8.11),is intricately influenced by both the spectral parameter λ and the elements composing the matrixQ.When specific entries,such asq13andq14,are deliberately set to zero,the resulting solutions foru11,u12,u21,andu22appear trivial.And whereq13=q14=-1,the graphical representations of solutionsu11,u12,u21,andu22manifest as a single consolidated plot instead of the originally intended four.Noteworthy is the fact that under these conditions,all solitons propagate with a consistent amplitude of 0.2163 units,as shown in figure 3.Unlike this symmetry,whenq13≠q14,the resulting graphs exhibit a variety of double-and single-peaked patterns for each component of the matrixu1(see figure 4).It is worth highlighting that solitonu12advances with an amplitude of 0.3860 units of large peak and 0.2317 units of small peak,while solitonu11propagates with an amplitude of 1.9797 units.Additionally,an intriguing situation unfolds when we chooseq12=-q14=-2 andq11=q13=q33=q34=0.For such parametric values,we notice a single-peaked soliton foru11with an amplitude of 0.2214 units,while simultaneously observing a kink pattern inu12of maximum height 0.8858 units (as seen in figure 5).

    The solution,equation (8.11),includes several particular cases.When both α2and γ are zero,the solution,equation (8.11),takes a different form.It becomes a solution of a non-commutative generalization of the complex modified KdV equation,and is further reduced to the standard modified KdV equation when the variableuis real-valued.Additionally,if we set γ to zero,we obtain the solution of the non-commutative extension of the Hirota equation.These solutions are depicted in figure 6.Furthermore,when we simultaneously set α1and α2to zero,we have the solution of the non-commutative LPD equation.Lastly,if we set α1and γ to zero,we get the solution of non-commutative generalization of the NLS equation.

    In summary,studying the non-commutative version is important because it gives us different choices for arranging solitons.These arrangements depend not only on the spectral parameter λ but also on values in a matrix.Similarly,two soliton solutions for the non-commutative case are depicted in figures 7–9.

    In figure 7,it is shown that solitons exhibiting breatherlike structures are observed in the componentsu11andu12,where (u11≠u12).This occurrence can be attributed to the strength of the force acting between two solitons.When this force becomes sufficiently strong,solitons in a bound state have the ability to merge and transform into solitons with a breather-like structure.This phenomenon is commonly referred to as soliton fusion,which provides important insights into the dynamics of nonlinear wave systems by demonstrating the complicated behavior and complex interplay of solitons when exposed to strong interacting forces.

    Figures 8–9 present a visual representation of two soliton solutions derived from the nc-HNLS equation.Within this context,solitons represent localized waves of energy that propagate through a medium with stability.The figures illustrate the interaction of two distinct solitons,each characterized by its own velocity,moving independently and later scattering without undergoing any shape changes.This behavior aligns with the defining characteristic of soliton robustness during interactions.Similarly,other multisoliton expressions can be obtained by repeatedly applying the DT to the seed solution.Note that we have omitted the explicit expression of soliton solutions for non-commutative cases as it is long and cumbersome.

    9.Concluding remarks

    This study explored the non-commutative extension of the HNLS equation.We have constructed Darboux and binary DTs and used these to obtain solutions in quasi-Wronskian and quasi-Gramian forms.These solutions were intricately linked to the nc-HNLS equation and its associated Lax pair.We demonstrated single-and double-peaked,kink,and bright solitons in non-commutative settings.Further,we also visualized the different types of interaction of two individual solitons: that is,two different lump energies moving at different velocities and frequencies that interact and scatter off without changing their profiles.The method proposed in this study serves as an effective tool,enabling the explicit construction of multi-solitons for other related non-commutative integrable systems.

    Acknowledgments

    We acknowledge the support from the National Natural Science Foundation of China,Nos.11 835 011 and 12 375 006.

    亚洲aⅴ乱码一区二区在线播放 | 久久午夜亚洲精品久久| 一本一本久久a久久精品综合妖精| 国产欧美日韩一区二区三区在线| 亚洲 国产 在线| 一级黄色大片毛片| 国产高清国产精品国产三级| 夜夜躁狠狠躁天天躁| 国产麻豆69| 狂野欧美激情性xxxx| 免费av中文字幕在线| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 久久久久视频综合| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 国产xxxxx性猛交| 精品国产美女av久久久久小说| 人妻一区二区av| 国产精品九九99| 国产免费av片在线观看野外av| 亚洲男人天堂网一区| 国产成人精品在线电影| 高清黄色对白视频在线免费看| 久久久久久久午夜电影 | 色精品久久人妻99蜜桃| 免费观看a级毛片全部| 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www | 男女下面插进去视频免费观看| 亚洲国产欧美一区二区综合| 亚洲九九香蕉| 最近最新免费中文字幕在线| 久久亚洲真实| 一级作爱视频免费观看| 亚洲精品乱久久久久久| 在线播放国产精品三级| 啦啦啦在线免费观看视频4| 日韩免费高清中文字幕av| 久热爱精品视频在线9| 悠悠久久av| 亚洲国产精品sss在线观看 | 久久精品国产a三级三级三级| 欧美精品高潮呻吟av久久| av视频免费观看在线观看| 天堂√8在线中文| 国产精品一区二区在线观看99| 人人妻人人澡人人爽人人夜夜| 99热只有精品国产| 久久香蕉国产精品| 男女免费视频国产| 麻豆国产av国片精品| 国产成人av教育| 日本vs欧美在线观看视频| 法律面前人人平等表现在哪些方面| 国产成人av激情在线播放| 欧美乱色亚洲激情| 一区二区三区激情视频| 老熟女久久久| 久久久精品免费免费高清| 久久久水蜜桃国产精品网| 99精国产麻豆久久婷婷| 视频在线观看一区二区三区| 三级毛片av免费| 午夜成年电影在线免费观看| 国产成人免费无遮挡视频| 欧美国产精品va在线观看不卡| 麻豆成人av在线观看| 嫩草影视91久久| 99国产极品粉嫩在线观看| 日韩欧美一区视频在线观看| 国产欧美亚洲国产| 日本a在线网址| 久久九九热精品免费| 国产成人免费观看mmmm| 欧美精品av麻豆av| 天天躁日日躁夜夜躁夜夜| 97人妻天天添夜夜摸| 日韩免费av在线播放| 亚洲片人在线观看| 日韩熟女老妇一区二区性免费视频| 最近最新中文字幕大全免费视频| 男人的好看免费观看在线视频 | 免费人成视频x8x8入口观看| 在线观看日韩欧美| 中出人妻视频一区二区| 一级毛片女人18水好多| 亚洲va日本ⅴa欧美va伊人久久| 激情视频va一区二区三区| 午夜福利视频在线观看免费| 亚洲,欧美精品.| 成在线人永久免费视频| 超色免费av| 国产成人欧美在线观看 | 欧美黑人欧美精品刺激| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 精品高清国产在线一区| 侵犯人妻中文字幕一二三四区| 丝瓜视频免费看黄片| 国产精品久久久人人做人人爽| 色94色欧美一区二区| 超色免费av| 欧美中文综合在线视频| 美女扒开内裤让男人捅视频| 美女扒开内裤让男人捅视频| 亚洲精品久久午夜乱码| 老司机亚洲免费影院| 每晚都被弄得嗷嗷叫到高潮| 国产淫语在线视频| 亚洲久久久国产精品| 51午夜福利影视在线观看| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| 老司机深夜福利视频在线观看| 久久香蕉精品热| 久久久国产成人精品二区 | 在线观看舔阴道视频| 一区二区三区激情视频| 一a级毛片在线观看| 亚洲性夜色夜夜综合| 午夜精品在线福利| 午夜久久久在线观看| 欧美乱码精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 在线永久观看黄色视频| 欧美激情高清一区二区三区| 午夜精品久久久久久毛片777| 国内久久婷婷六月综合欲色啪| 免费在线观看视频国产中文字幕亚洲| 悠悠久久av| 欧美老熟妇乱子伦牲交| 69av精品久久久久久| 精品无人区乱码1区二区| 欧美久久黑人一区二区| 黄色成人免费大全| 日韩精品免费视频一区二区三区| 国产一区二区激情短视频| 两性夫妻黄色片| 亚洲成国产人片在线观看| 亚洲色图综合在线观看| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩三级视频一区二区三区| 超色免费av| www.精华液| 久久精品亚洲精品国产色婷小说| 日韩免费av在线播放| 日韩欧美三级三区| 电影成人av| 99久久综合精品五月天人人| 亚洲av片天天在线观看| 妹子高潮喷水视频| 精品视频人人做人人爽| 日韩视频一区二区在线观看| 在线观看日韩欧美| 高潮久久久久久久久久久不卡| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽 | 亚洲第一欧美日韩一区二区三区| 亚洲成人手机| 12—13女人毛片做爰片一| 99热只有精品国产| 一边摸一边抽搐一进一小说 | 久久狼人影院| 欧美日韩亚洲综合一区二区三区_| 精品免费久久久久久久清纯 | 国产亚洲一区二区精品| 久久精品熟女亚洲av麻豆精品| 国产精品av久久久久免费| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 一级黄色大片毛片| 亚洲国产看品久久| 精品国产乱码久久久久久男人| 久99久视频精品免费| 人人澡人人妻人| 欧美成人午夜精品| 人妻 亚洲 视频| 亚洲av熟女| 亚洲综合色网址| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 欧美日韩中文字幕国产精品一区二区三区 | av网站免费在线观看视频| 首页视频小说图片口味搜索| 9191精品国产免费久久| 亚洲全国av大片| 亚洲精品美女久久av网站| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 国产在线观看jvid| 中文字幕另类日韩欧美亚洲嫩草| 很黄的视频免费| 在线观看免费高清a一片| 飞空精品影院首页| 91精品三级在线观看| 欧美成狂野欧美在线观看| 国产精品一区二区免费欧美| 久久香蕉精品热| 91麻豆精品激情在线观看国产 | 99香蕉大伊视频| 人妻丰满熟妇av一区二区三区 | 国产免费现黄频在线看| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 久久婷婷成人综合色麻豆| 欧美黑人欧美精品刺激| 91国产中文字幕| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 精品乱码久久久久久99久播| 国产色视频综合| 久久久久久久久免费视频了| 日本黄色视频三级网站网址 | av一本久久久久| 一二三四在线观看免费中文在| 一区福利在线观看| av超薄肉色丝袜交足视频| 欧美中文综合在线视频| 水蜜桃什么品种好| 午夜福利乱码中文字幕| 夜夜爽天天搞| 国产精品欧美亚洲77777| 久久国产精品影院| 宅男免费午夜| 一区在线观看完整版| 日日爽夜夜爽网站| 嫩草影视91久久| 大陆偷拍与自拍| 久久久国产成人精品二区 | 女同久久另类99精品国产91| 亚洲色图综合在线观看| 亚洲精品在线美女| 亚洲av成人av| 亚洲五月婷婷丁香| 黄片播放在线免费| 丝袜在线中文字幕| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 好男人电影高清在线观看| 成在线人永久免费视频| 少妇的丰满在线观看| 亚洲国产精品合色在线| 成年动漫av网址| 久久精品成人免费网站| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀| 欧美日韩视频精品一区| av天堂久久9| 国产99白浆流出| 亚洲人成77777在线视频| 国产极品粉嫩免费观看在线| 在线国产一区二区在线| 十八禁高潮呻吟视频| 国产精品自产拍在线观看55亚洲 | 婷婷精品国产亚洲av在线 | 欧美人与性动交α欧美软件| 精品国产一区二区三区四区第35| 麻豆av在线久日| 一级毛片女人18水好多| 少妇粗大呻吟视频| 午夜福利免费观看在线| 久久久国产成人精品二区 | 国产高清视频在线播放一区| 人人妻人人澡人人爽人人夜夜| 久久久国产成人精品二区 | 18禁观看日本| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 久久九九热精品免费| 欧美一级毛片孕妇| a级毛片黄视频| 在线永久观看黄色视频| 国产av又大| 亚洲精品av麻豆狂野| 国产男靠女视频免费网站| 国产成人精品久久二区二区91| 国产高清国产精品国产三级| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 欧美激情极品国产一区二区三区| 亚洲精品乱久久久久久| 少妇 在线观看| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 亚洲一区中文字幕在线| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 黄色成人免费大全| 欧美激情高清一区二区三区| 欧美大码av| 少妇 在线观看| 热99久久久久精品小说推荐| 日韩人妻精品一区2区三区| 久久午夜综合久久蜜桃| 国产在线一区二区三区精| 51午夜福利影视在线观看| www.熟女人妻精品国产| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 国产成人欧美在线观看 | 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 丝袜在线中文字幕| 久久香蕉国产精品| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 午夜福利,免费看| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 自线自在国产av| 色94色欧美一区二区| 精品久久久久久电影网| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 男女免费视频国产| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线 | 水蜜桃什么品种好| 99在线人妻在线中文字幕 | 美女午夜性视频免费| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 日韩成人在线观看一区二区三区| 电影成人av| 91精品国产国语对白视频| 国产成人系列免费观看| 一区二区三区精品91| 黑人操中国人逼视频| 两个人免费观看高清视频| 国产精品秋霞免费鲁丝片| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 一进一出好大好爽视频| 久久久精品国产亚洲av高清涩受| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 十分钟在线观看高清视频www| 女同久久另类99精品国产91| 人人妻人人澡人人爽人人夜夜| 国产精品 欧美亚洲| 91字幕亚洲| 国产精品久久久久久人妻精品电影| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 国产精华一区二区三区| 美女福利国产在线| 波多野结衣av一区二区av| 十八禁人妻一区二区| 韩国av一区二区三区四区| a级片在线免费高清观看视频| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 天天添夜夜摸| av一本久久久久| 色老头精品视频在线观看| 人妻一区二区av| 大码成人一级视频| 身体一侧抽搐| 男女下面插进去视频免费观看| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 亚洲精品在线观看二区| 亚洲精品自拍成人| 搡老熟女国产l中国老女人| 国产精品免费一区二区三区在线 | av不卡在线播放| 黄片小视频在线播放| 中文字幕色久视频| 中文字幕制服av| 国产精品久久视频播放| 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 身体一侧抽搐| 一级片免费观看大全| 9191精品国产免费久久| 免费在线观看完整版高清| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 精品国产国语对白av| 18禁国产床啪视频网站| 男女免费视频国产| 精品国内亚洲2022精品成人 | 丝袜人妻中文字幕| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 免费黄频网站在线观看国产| 久久天躁狠狠躁夜夜2o2o| 色播在线永久视频| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 亚洲精品在线美女| 亚洲aⅴ乱码一区二区在线播放 | 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 在线av久久热| 999久久久国产精品视频| 日韩大码丰满熟妇| 在线十欧美十亚洲十日本专区| 国产精品.久久久| 国产精品一区二区在线不卡| 国产精品香港三级国产av潘金莲| 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 国产激情久久老熟女| 亚洲少妇的诱惑av| 久久香蕉激情| 麻豆成人av在线观看| 欧美日韩乱码在线| 啦啦啦视频在线资源免费观看| 久久精品国产清高在天天线| 免费不卡黄色视频| 婷婷成人精品国产| 麻豆av在线久日| 免费日韩欧美在线观看| 黄色视频不卡| 国产人伦9x9x在线观看| 国产又爽黄色视频| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 午夜久久久在线观看| 在线视频色国产色| 热99re8久久精品国产| 国产精品久久久久久精品古装| av超薄肉色丝袜交足视频| 成人永久免费在线观看视频| 美女高潮到喷水免费观看| 91老司机精品| 国产主播在线观看一区二区| 国产单亲对白刺激| av线在线观看网站| 麻豆国产av国片精品| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 咕卡用的链子| 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| 亚洲视频免费观看视频| 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 国产精品美女特级片免费视频播放器 | 国产在线一区二区三区精| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 免费看十八禁软件| 国产精品一区二区精品视频观看| 天堂中文最新版在线下载| 男男h啪啪无遮挡| 亚洲av成人av| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 麻豆国产av国片精品| 欧美日韩黄片免| 国产精品成人在线| 欧美成人午夜精品| 国产黄色免费在线视频| 少妇 在线观看| 久久久久国内视频| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| netflix在线观看网站| 亚洲人成77777在线视频| 热re99久久国产66热| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 露出奶头的视频| 看黄色毛片网站| 免费高清在线观看日韩| 亚洲午夜理论影院| 99精国产麻豆久久婷婷| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 热99re8久久精品国产| 久久人人97超碰香蕉20202| 操出白浆在线播放| 韩国精品一区二区三区| 热99re8久久精品国产| 国产深夜福利视频在线观看| 午夜老司机福利片| 99久久人妻综合| 操美女的视频在线观看| 精品人妻1区二区| 很黄的视频免费| 精品人妻1区二区| 国产区一区二久久| 午夜福利视频在线观看免费| av片东京热男人的天堂| 国产男靠女视频免费网站| 国产亚洲欧美98| 欧美精品高潮呻吟av久久| 十分钟在线观看高清视频www| 精品久久久久久,| 成人国语在线视频| 啦啦啦免费观看视频1| 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| 久久久国产一区二区| 一a级毛片在线观看| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月 | 纯流量卡能插随身wifi吗| 制服诱惑二区| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 动漫黄色视频在线观看| 波多野结衣一区麻豆| 午夜视频精品福利| 美女 人体艺术 gogo| 亚洲伊人色综图| 国产成人欧美在线观看 | 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 国产精品免费大片| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 精品一区二区三区av网在线观看| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 黑丝袜美女国产一区| 国产在视频线精品| 亚洲aⅴ乱码一区二区在线播放 | 免费观看精品视频网站| 欧美激情 高清一区二区三区| 最新美女视频免费是黄的| 91麻豆精品激情在线观看国产 | 午夜影院日韩av| 久久久久久久久免费视频了| 中文字幕人妻丝袜制服| 亚洲国产欧美日韩在线播放| 亚洲国产中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 变态另类成人亚洲欧美熟女 | 99精品久久久久人妻精品| 日韩精品免费视频一区二区三区| 美女福利国产在线| 亚洲精品自拍成人| 色在线成人网| 脱女人内裤的视频| 亚洲国产欧美一区二区综合| av天堂在线播放| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 91老司机精品| 亚洲精品粉嫩美女一区| 99国产精品99久久久久| 国产av精品麻豆| 精品久久久精品久久久| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 亚洲av欧美aⅴ国产| 少妇 在线观看| 国产色视频综合| av线在线观看网站| 777米奇影视久久| a级片在线免费高清观看视频| 成人精品一区二区免费| 国产精品国产av在线观看| 日日摸夜夜添夜夜添小说| 男女之事视频高清在线观看| 国产视频一区二区在线看| 精品熟女少妇八av免费久了| 波多野结衣av一区二区av| 国产激情久久老熟女| 深夜精品福利| 看黄色毛片网站| 高清黄色对白视频在线免费看| 麻豆成人av在线观看| 久99久视频精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品av麻豆av| 黄色视频不卡| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 精品电影一区二区在线| 国产精品亚洲av一区麻豆| av视频免费观看在线观看| 欧美最黄视频在线播放免费 | 国产欧美日韩一区二区三| 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| 手机成人av网站| 在线观看日韩欧美| 99re在线观看精品视频| 精品国产乱子伦一区二区三区| 叶爱在线成人免费视频播放| 少妇 在线观看|