• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An adaptive energy regulation in a memristive map linearized from a circuit with two memristive channels

    2024-04-02 07:47:14FeifeiYangPingZhouandJunMa
    Communications in Theoretical Physics 2024年3期

    Feifei Yang ,Ping Zhou and Jun Ma,3,*

    1 School of Science,Chongqing University of Posts and Telecommunications,Chongqing 430065,China

    2College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China

    3 Department of Physics,Lanzhou University of Technology,Lanzhou 730050,China

    Abstract Nonlinear circuits can show multistability when a magnetic flux-dependent memristor(MFDM)or a charge-sensitive memristor (CSM) is incorporated into a one branch circuit,which helps estimate magnetic or electric field effects.In this paper,two different kinds of memristors are incorporated into two branch circuits composed of a capacitor and a nonlinear resistor,thus a memristive circuit with double memristive channels is designed.The circuit equations are presented,and the dynamics in this oscillator with two memristive terms are discussed.Then,the memristive oscillator is converted into a memristive map by applying linear transformation on the sampled time series for the memristive oscillator.The Hamilton energy function for the memristive oscillator is obtained by using the Helmholtz theorem,and it can be mapped from the field energy of the memristive circuit.An energy function for the dual memristive map is suggested by imposing suitable weights on the discrete energy function.The dynamical behaviors of the new memristive map are investigated,and an adaptive law is proposed to regulate the firing mode in the memristive map.This work will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map energy calculation.

    Keywords: Hamilton energy,dual memristive map,adaptive energy regulation

    1.Introduction

    The conceptional proposal of a memristor[1],the fabrication of a memristor[2] and its potential application have been widely explored in the control of a nonlinear circuit [3–5],neuromorphic computing [6–8],chaotic systems [9–11],and artificial neural networks [12–15].In fact,a memristor can be embedded into a nonlinear circuit to develop a memristive circuit for presenting rich complex dynamical characteristics.For example,Yangetal[16]designed a simple chaotic circuit by coupling a magnetic flux-controlled memristor (MFCM)with two capacitors and an inductor.The memristive circuit has a complex hyperchaotic phenomenon and the parameter range for the chaotic region is large.Douetal[17]proposed an RC bridge oscillatory circuit based on a memristor,and this memristive circuit can result in symmetric coexistence such as single-scroll,asymmetrical single-scroll,symmetric doublescroll and asymmetrical limit–cycle behaviors.Zhouetal[18]developed a new memristive chaotic system for inducing multistability.In addition,memristive functional neuron models [19–21] are obtained by connecting memristors into a simple neural circuit.

    Figure 1.Schematic diagram for a dual memristive circuit.M(φ)denotes mem-conductance for a MFCM and M(q) represents memresistance for a CCM,respectively.C and NR means a capacitor and a nonlinear resistor,respectively.

    Recently,discrete memristors (DM) have become a research hotspot.DM's have some advantages such as low power consumption,programmability and anti-interference.Therefore,they have potential applications in the design of DM chaotic/hyperchaotic maps [22–24],neural networks[25–27] and embedded system development [28] fields.Furthermore,a variety of DM maps have been proposed for a dynamical approach and application in signal processing.For instance,Zhangetal[29,30] proposed dual memristor hyperchaotic maps from mathematical assumption.Baoetal[31] designed a parallel bi-memristor hyperchaotic map.The discrete memristive Rulkov neuron map [32,33] was developed by introducing a DM into a Rulkov neuron model.A fractional memristive map is proposed in [34].In addition,DM chaotic maps are hardware implemented by applying DSP platform [35–37] and an analog circuit [38].One important application is that DM chaotic maps are used in image encryption algorithms [39–41].

    Most of the previous works about the approach of DM maps suggested that a DM map can be defined by introducing a DM into an existing discrete map.In fact,this kind of description is artificial and is a mathematical assumption without clarifying its inner physical property.The physical modeling of a DM map is not perfect,and the energy of a DM map is also an open problem.Inspired by the suggestion in[42],biophysical and memristive maps can be converted from memristive circuits,in which the energy function for its equivalent memristive oscillator is defined in a theoretical way.In this work,a dual memristive circuit is constructed by using two different memristor elements,a nonlinear resistor and a capacitor.The dual memristive oscillator is derived and its Hamilton energy function is obtained from physical approach.According to the transformation relationship between the oscillator and the map described in [43],the dual memristive map and the corresponding Hamilton energy function are obtained.The results provide further possible guidance for designing discrete maps and calculating their energy.

    This study is organized as follows: in section 2,the dual DM map is obtained.The numerical investigations are given in section 3.In section 4,the results are summarised.

    2.Model and scheme

    Due to the nonlinear properties of the memristor,the dynamics of a nonlinear circuit coupled by the memristor and the memristive circuit become more controllable.In this paper,a memristive circuit is constructed by including a MFCM and a CCM in two additive branch circuits,a nonlinear resistor and a capacitor are coupled in parallel in figure 1.

    In figure 1,the current of the nonlinear resistance (NR)can be estimated by

    where ρ is the resistance within the linear region,V0denotes a cut-off voltage andrmeans a dimensionless gain.Vis the across voltage of the nonlinear resistor,and the dependence of voltage on the memristive channels current for the MFCM and CCM is defined by

    As shown in equation (2),theM(φ) andM(q) have simple forms with low order,and their internal state equations are only composed of linear terms.Compared with higher-order memristors,the memristors in this paper are easier to implement physically.Sinusoidal stimulusAsin(2πωt) is imposed on the memristor,whereAmeans the amplitude of stimulus,and ω denotes the frequency of the stimulus.Thev–icurve for the MFCM with different frequencies ω underA=3 is shown in figure 2(a),thev–icurve for the MFCM with different amplitudesAat ω=0.8 is shown in figure 2(b).

    Figure 2 shows that thev–icurve for the MFCM is 8-shaped.The 8-shaped area decreases when the frequency of the stimulus is increased.While the 8-shaped area increases when the amplitude of the stimulus is increased.By applying the same sinusoidal stimulusAsin(2πωt),thei–vcurve for the CCM with different stimuli are displayed in figure 3.

    Figure 2.The v–i curve for the MFCM with different stimuli.For (a) A=3;(b) ω=0.8.

    Figure 3.The i–v curve for the MFCM with different stimuli.For (a) A=3;(b) ω=0.8.

    Figure 4.(a) Bifurcation diagram and (b) the distribution of the LEs for the memristive map by changing parameter a.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is (0.1,0.1,0).

    Figure 5.Phase portraits of the memristive map by changing parameter a.For(a)a=2;(b)a=1.5;(c)a=1.4;(d)a=0.5.The parameters are λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is (0.1,0.1,0).

    Figure 6.Evolution of energy function and its average value in the memristive map by changing parameter a.For(a)a=2;(b)a=1.5;(c)a=1.4;(d)a=0.5.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is(0.1,0.1,0).<Hn>denotes the average value of the Hamilton energy.

    Figure 7.Phase portraits of the memristive map by changing initial value v(0).For(a)initial value is(0.1,0.1,0-hπ),(h=0,1,2,3,4);(b)initial value is (0.1,0.1,0+hπ),(h=0,1,2,3,4).The parameters are λ=3.9,a=0.5,b=0.2,c=0.3,d=1,β=0.1,δ=1.

    Figure 8.Growth of parameter a,Hamilton energy and phase diagram for gain k.For(a)k=0.005;(b)k=0.007.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.Setting initial values for variables (0.1,0.1,0).

    The results in figure 3 confirm that thei–vcurve for the CCM exhibits a similar 8-shaped characteristic.The 8-shaped area becomes larger with the increase of amplitude and frequency of the stimulus.According to Kirchhoff’s laws,the circuit equations for the memristive circuit in figure 1 are described by

    To facilitate the analysis,dimensionless parameters and variables in equation (3) are defined as follows

    The dynamic equations in equation (3) can be rewritten by

    The memristive ciruit in figure 1 has three energy storage elements,the field energyWand its dimensionless Hamilton energyHare given in equation (6).

    The Hamilton energy functionHin equation (6) for the memristive oscillator in equation (5) can be proven by applying the Helmholtz’s theorem,when the memristive oscillator in equation (5) is rewritten in a vector form

    According to the Helmholtz’s theorem,the Hamilton energy functionHmeets the following criterion

    Indeed,the energy functionHin equation (6) satisfies the criterion in equations (8) and (9) completely.Furthermore,linear transformation is imposed on the sampled time series for variables from equation (5) with time step Δτ during a numerical approach.

    These renewed discrete variables accompanied with updated parameters can be used to define a new memristive map as follows

    Under the same weights for two terms in the discrete energy function for equation(6),the Hamilton energy for the map in equation (11) is described by

    As suggested in the recent works [44,45],membrane parameters or memristive parameters can be controlled by the energy flow to induce a mode transition when the inner energy level is beyond a threshold.To investigate the selfadaption in the dual memristive map,it requires that parameterafor the dual memristive map can be controlled by the energy flux in an adaptive way as follows

    Where the energy threshold 0 <p<1 determines the energy level of a memristive map in thenth iteration.andenotes value for the map parameter in thenth iteration,parameterkmeans growth step,and the Heaviside function θ(*)is used to control parameter growth to a saturation value.

    3.Results and discussion

    Similar to most of the memristive oscillators[20,21,46–50],numerical solutions for equation (5) can be obtained and additive noise can be applied to induce nonlinear resonance and mode control in neural activities.Numerical results are mainly explored in the memristive map under the control of adaptive law in equation (13).To investigate the complex dynamic characteristics of the dual memristive map presented in equation (11),the initial values of the memristive map are selected as (0.1,0.1,0).The parameters of the memristive map are fixed as λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The bifurcation diagram and the Lyapunov exponents (LEs) spectrum are calculated by changing the parameteracarefully,and the results are plotted in figure 4.

    The results in figure 4 show that the dual memristive map triggers a mode transition with the increase of the parametera,such as period-1,period-2,period-4,period-8 and chaotic behaviors are generated.The positive Lyapunov exponent becomes negative and the inverse double period bifurcation occurs by increasing parameterain a continuous way,and chaos is suppressed effectively.Furthermore,phase portraits of the memristive map with different values for parameteraare shown in figure 5.

    In figure 5,the profile of the attractors shows period-2,period-4,period-8 and chaotic characteristics.According to the Hamilton energy function presented in equation (12),the relation between the Hamilton energy and the oscillatory states in the memristive map is calculated,and the results are shown in figure 6.

    The results in figure 6 illustrate that the dual memristive map has a higher mean value of Hamilton energy with period state,while it has a lower mean value of Hamilton energy with a chaotic pattern.In addition,the mean value of Hamilton energy decreases with the increase of a period number.

    When the parameters in equation (11) are fixed atd=1 and δ=1,the memristive map exits the fixed point (0,0,0±hπ) (h=0,±1,±2,±3…),and indicates that the memristive map can be initially boosted to give extreme multistability.The parameters are λ=3.9,a=0.5,b=0.2,c=0.3,d=1,β=0.1,δ=1,by changing the initial valuev(0),the phase portraits are shown in figure 7.

    The results in figure 7 confirm that the memristive map will produce an extreme multistable phenomenon by changing the initial value for the variablev.According to the criterion of the growth for parameterain equation(13),it sets the thresholdp=0.35,parameters are fixed at λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1,and initial values are selected as (0.1,0.1,0).The initial value for parametera=0.5,gainsk=0.005 andk=0.007,the memristive map in equation (11) is iterated 1200 times,respectively.The growth of parametera,changes of Hamilton energy and phase diagram are shown in figure 8.

    It is confirmed that parameteraof the memristive map relative to when the MFCM reaches a stable value of 2.39 after 800 iterations.The Hamilton energy shows a distinct transition when the memristive maps change the chaotic patterns to periodic states,and a similar shift occurs in the phase diagram.By comparing figures 8(a) and (b),it is found that with the increased value of gaink,parameteraneeds fewer iterations to reach a saturation value.The result indicates that the dynamics for the memristive map can be controlled by the energy flow in an adaptive way.Considering that the chaotic systems are extremely sensitive to the parameters and initial values,the map attractor basins ony(0)-v(0) andz(0)-v(0) are shown in figure 9.

    It is found that the initial values affect the chaotic region(blue region) and the periodic region (red region) at different initial values.As a result,the stochastic and continuous switch of the initial values for the memristive variables will induce a distinct mode transition and energy shift.

    From the memristive oscillator in equation (5) to the memristive map in equation (11),perfect covariance in the formulas is confirmed.The continuous energy function in equation (6) is relative to the state variables and bifurcation parameteradirectly,while the discrete energy function for the map in equation (12) is dependent on the discrete variables and parameterbcompletely.From a dynamical viewpoint,the energy level for both the memristive oscillator and the memristive map can be calculated by adjusting one bifurcation parameter carefully.In fact,the two curves for the energy function in the oscillator and the map seldom intersect,keeping the same energy value due to the involvement of the time step when the memristive oscillator is obtained with numerical solutions.In an experimental approach,analog signals from the nonlinear circuit can be filtered and adjusted to present discrete signals,and the memristive map provides fast computing without further estimating the time step.Our scheme provides a reference to verify the reliability of the mathematical maps.As a result,these physical maps can be connected to build an artificial array for signal processing in parallel.

    4.Conclusion

    In this paper,a dual memristive circuit is built to develop a memristive oscillator for discerning the effect of the magnetic field and the electric field synchronously.The energy function for the dual memristive oscillator is obtained in a theoretical way.By applying a linear transformation on the sampled variables for the memristive oscillator,a dual memristive map is designed with a clear definition of the energy function and adaptive growth law for one bifurcation parameter.The results indicate that the dual memristive map has rich dynamical behaviors,and the dynamics can be adjusted in an adaptive way under energy flow.The memristive map has a smaller average Hamilton energy value in the chaotic state,while it prefers to keep a higher mean Hamilton energy value in the periodic state.In addition,the mean Hamilton energy value of the memristive map decreases with the increase of the period number.The results confirm the reliability of discrete maps from nonlinear circuits.The modeling method of the discrete map proposed in this paper can be applied to other high-dimensional discrete maps including discrete memristive maps and neurons.The Hamilton energy calculation and adaptive control method can be applied to the energy calculation and the adaptive control of other discrete scatter maps.In addition,the simplest map proposed in this paper can be used for pseudo-random sequence generators and image encryption fields.

    Acknowledgments

    This study is strongly supported by the National Science Foundation of China under Grant No.12072139.

    CRediT authorship contribution statement

    FYMethodology,software,numerical calculation,PZandJMMethodology,supervision,formal analysis,writing-final version.

    Declaration of competing interest

    We declare that all of the authors have no competing financial interests or personal relationships for the work reported in this study.

    国产成人av激情在线播放| 欧美乱码精品一区二区三区| 久久人人97超碰香蕉20202| 侵犯人妻中文字幕一二三四区| 精品少妇久久久久久888优播| 精品熟女少妇八av免费久了| 又大又爽又粗| 国产成人精品久久二区二区91| 高清黄色对白视频在线免费看| 久久国产精品大桥未久av| 男女免费视频国产| 高清毛片免费观看视频网站 | 三级毛片av免费| 免费观看a级毛片全部| 1024视频免费在线观看| 亚洲人成电影免费在线| 三级毛片av免费| 如日韩欧美国产精品一区二区三区| 18禁黄网站禁片午夜丰满| e午夜精品久久久久久久| 国产单亲对白刺激| 91老司机精品| 91九色精品人成在线观看| 国产亚洲精品一区二区www | 久久ye,这里只有精品| 9191精品国产免费久久| 超碰成人久久| 亚洲专区中文字幕在线| 精品国产一区二区三区四区第35| 日韩欧美一区二区三区在线观看 | 欧美在线黄色| 天堂8中文在线网| e午夜精品久久久久久久| 黄色丝袜av网址大全| 亚洲 欧美一区二区三区| 免费在线观看日本一区| 日本av手机在线免费观看| 亚洲成人手机| 欧美日韩精品网址| 999久久久国产精品视频| 欧美在线黄色| 久久久水蜜桃国产精品网| 国产伦人伦偷精品视频| 91国产中文字幕| 精品一区二区三区四区五区乱码| 成年女人毛片免费观看观看9 | 久热爱精品视频在线9| 欧美 日韩 精品 国产| 国产成人系列免费观看| 美女高潮喷水抽搐中文字幕| 国产精品av久久久久免费| 免费看十八禁软件| 性少妇av在线| 正在播放国产对白刺激| 亚洲午夜理论影院| 精品少妇一区二区三区视频日本电影| 亚洲全国av大片| 久久精品aⅴ一区二区三区四区| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 一区二区av电影网| 一级毛片女人18水好多| 亚洲欧美激情在线| 丁香六月天网| 99国产精品免费福利视频| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 国产精品欧美亚洲77777| 色视频在线一区二区三区| 色婷婷久久久亚洲欧美| 日韩中文字幕欧美一区二区| 欧美 日韩 精品 国产| 日本欧美视频一区| 亚洲国产看品久久| 深夜精品福利| 一级片免费观看大全| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品av麻豆狂野| 欧美国产精品va在线观看不卡| 国产精品98久久久久久宅男小说| 9191精品国产免费久久| 无人区码免费观看不卡 | 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 操出白浆在线播放| 精品福利观看| 少妇猛男粗大的猛烈进出视频| 动漫黄色视频在线观看| 无遮挡黄片免费观看| 国产精品久久久人人做人人爽| 久久国产精品大桥未久av| 男女边摸边吃奶| 久久这里只有精品19| 午夜福利在线观看吧| av视频免费观看在线观看| 亚洲人成77777在线视频| 亚洲人成电影观看| 十分钟在线观看高清视频www| 我的亚洲天堂| 老熟妇乱子伦视频在线观看| 老熟女久久久| 蜜桃在线观看..| 69av精品久久久久久 | 免费在线观看影片大全网站| videos熟女内射| 91成人精品电影| av线在线观看网站| 在线观看一区二区三区激情| 久久精品国产亚洲av香蕉五月 | 一级片免费观看大全| 午夜老司机福利片| 我的亚洲天堂| 欧美精品啪啪一区二区三区| 久久婷婷成人综合色麻豆| 天天影视国产精品| 91精品三级在线观看| 成人亚洲精品一区在线观看| 麻豆av在线久日| 这个男人来自地球电影免费观看| 一级,二级,三级黄色视频| 啦啦啦免费观看视频1| 啦啦啦免费观看视频1| a级片在线免费高清观看视频| 老汉色av国产亚洲站长工具| 纵有疾风起免费观看全集完整版| 久久这里只有精品19| 制服人妻中文乱码| 99国产精品一区二区三区| 悠悠久久av| 午夜福利,免费看| 国产男女超爽视频在线观看| 狠狠精品人妻久久久久久综合| videos熟女内射| 久久狼人影院| 黄色视频不卡| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| 中文字幕高清在线视频| 久久久久久免费高清国产稀缺| av欧美777| 天堂中文最新版在线下载| 99久久精品国产亚洲精品| 久久 成人 亚洲| 国产视频一区二区在线看| 99re在线观看精品视频| 国产有黄有色有爽视频| 亚洲男人天堂网一区| 老熟女久久久| 国产不卡av网站在线观看| 免费观看人在逋| 亚洲人成电影免费在线| 国产精品一区二区免费欧美| 成年版毛片免费区| 日韩成人在线观看一区二区三区| 亚洲精品美女久久av网站| 汤姆久久久久久久影院中文字幕| 熟女少妇亚洲综合色aaa.| 日韩免费高清中文字幕av| 男人舔女人的私密视频| 久久久久精品人妻al黑| 中文欧美无线码| 我的亚洲天堂| 午夜福利欧美成人| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 热99国产精品久久久久久7| 亚洲av成人不卡在线观看播放网| a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 欧美乱妇无乱码| 一本—道久久a久久精品蜜桃钙片| 国产精品电影一区二区三区 | 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 国产欧美日韩一区二区三| 国产有黄有色有爽视频| 精品久久久久久电影网| 久久精品国产综合久久久| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 黄色视频,在线免费观看| 日本一区二区免费在线视频| 日日夜夜操网爽| 飞空精品影院首页| 国产精品二区激情视频| 青草久久国产| 国产高清国产精品国产三级| 在线观看66精品国产| 欧美亚洲 丝袜 人妻 在线| 热99re8久久精品国产| 国产精品熟女久久久久浪| 午夜福利,免费看| 国产成人免费观看mmmm| 欧美成人午夜精品| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 亚洲伊人久久精品综合| 超碰97精品在线观看| 免费女性裸体啪啪无遮挡网站| 91大片在线观看| 一边摸一边抽搐一进一出视频| h视频一区二区三区| 亚洲黑人精品在线| 国产精品亚洲av一区麻豆| 中文字幕av电影在线播放| 免费在线观看影片大全网站| 亚洲成av片中文字幕在线观看| 99精品久久久久人妻精品| 少妇猛男粗大的猛烈进出视频| 啦啦啦免费观看视频1| 欧美人与性动交α欧美精品济南到| 色婷婷久久久亚洲欧美| 91成年电影在线观看| av一本久久久久| 999久久久国产精品视频| 日韩欧美免费精品| 国产真人三级小视频在线观看| 国产午夜精品久久久久久| 一边摸一边抽搐一进一小说 | 亚洲熟女精品中文字幕| 国产在线精品亚洲第一网站| 777久久人妻少妇嫩草av网站| 日韩视频在线欧美| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| 欧美性长视频在线观看| 国产淫语在线视频| cao死你这个sao货| 免费av中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 国产成人精品在线电影| 99久久国产精品久久久| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 脱女人内裤的视频| 91字幕亚洲| 国产在线免费精品| 夜夜夜夜夜久久久久| 色综合婷婷激情| 国产深夜福利视频在线观看| 日韩视频一区二区在线观看| 老司机午夜十八禁免费视频| 欧美日韩国产mv在线观看视频| 亚洲专区中文字幕在线| 91成年电影在线观看| 亚洲人成电影免费在线| 天天躁日日躁夜夜躁夜夜| 久久精品熟女亚洲av麻豆精品| 汤姆久久久久久久影院中文字幕| 成人影院久久| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看| 欧美日韩一级在线毛片| 9191精品国产免费久久| 天天影视国产精品| 人成视频在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看 | h视频一区二区三区| 久久免费观看电影| 国产在线精品亚洲第一网站| 丝袜在线中文字幕| 国产亚洲欧美在线一区二区| 国产麻豆69| 久久精品亚洲熟妇少妇任你| 国产精品久久久人人做人人爽| 最近最新免费中文字幕在线| 国产日韩一区二区三区精品不卡| 超碰97精品在线观看| 亚洲中文av在线| 国产区一区二久久| 女性被躁到高潮视频| 一区福利在线观看| 这个男人来自地球电影免费观看| 色视频在线一区二区三区| 好男人电影高清在线观看| 久久国产精品大桥未久av| 欧美成人免费av一区二区三区 | 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 亚洲九九香蕉| 久久久国产一区二区| 国产日韩欧美视频二区| 在线天堂中文资源库| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 热re99久久国产66热| 波多野结衣av一区二区av| 精品福利永久在线观看| 亚洲情色 制服丝袜| 悠悠久久av| 国产av精品麻豆| 免费av中文字幕在线| 婷婷成人精品国产| 久久精品人人爽人人爽视色| 少妇的丰满在线观看| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 18禁裸乳无遮挡动漫免费视频| 变态另类成人亚洲欧美熟女 | 欧美日韩福利视频一区二区| 在线观看免费高清a一片| tube8黄色片| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 青草久久国产| 曰老女人黄片| 99国产综合亚洲精品| 怎么达到女性高潮| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| 狠狠精品人妻久久久久久综合| 高清毛片免费观看视频网站 | 国产无遮挡羞羞视频在线观看| 一个人免费在线观看的高清视频| 亚洲国产欧美在线一区| 变态另类成人亚洲欧美熟女 | 国产福利在线免费观看视频| 91大片在线观看| 91字幕亚洲| 啪啪无遮挡十八禁网站| 中文字幕av电影在线播放| 亚洲成av片中文字幕在线观看| 在线播放国产精品三级| 宅男免费午夜| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 亚洲情色 制服丝袜| 久久中文看片网| 中文字幕最新亚洲高清| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 岛国毛片在线播放| 色播在线永久视频| 亚洲性夜色夜夜综合| 美女福利国产在线| 国产在线视频一区二区| 国产男女内射视频| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| 美女视频免费永久观看网站| 国产精品久久久久久人妻精品电影 | 十八禁网站免费在线| 91老司机精品| 岛国毛片在线播放| 欧美大码av| 欧美精品高潮呻吟av久久| 又大又爽又粗| 国精品久久久久久国模美| 亚洲美女黄片视频| 色精品久久人妻99蜜桃| 国产一区二区 视频在线| 91成人精品电影| 后天国语完整版免费观看| 中文字幕精品免费在线观看视频| 国产精品国产av在线观看| 麻豆国产av国片精品| www日本在线高清视频| 在线天堂中文资源库| 色综合欧美亚洲国产小说| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| 国产区一区二久久| 亚洲五月色婷婷综合| 国产精品.久久久| 成人三级做爰电影| 欧美成人午夜精品| 人人妻人人澡人人爽人人夜夜| 美女扒开内裤让男人捅视频| 中文亚洲av片在线观看爽 | 亚洲精品国产精品久久久不卡| 亚洲综合色网址| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 欧美成人免费av一区二区三区 | 午夜成年电影在线免费观看| 999精品在线视频| 久久人妻福利社区极品人妻图片| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 日韩人妻精品一区2区三区| 少妇猛男粗大的猛烈进出视频| 午夜福利一区二区在线看| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 亚洲国产精品一区二区三区在线| 国精品久久久久久国模美| 91麻豆精品激情在线观看国产 | 狠狠狠狠99中文字幕| 岛国在线观看网站| 汤姆久久久久久久影院中文字幕| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| av国产精品久久久久影院| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 国产高清激情床上av| 精品国产一区二区久久| 女同久久另类99精品国产91| 美女高潮到喷水免费观看| www.熟女人妻精品国产| tube8黄色片| 精品国产一区二区久久| 热re99久久精品国产66热6| 国产成人精品无人区| 成人永久免费在线观看视频 | 一级毛片精品| 国产淫语在线视频| 日本一区二区免费在线视频| 久久国产精品影院| 日韩欧美免费精品| 真人做人爱边吃奶动态| a级片在线免费高清观看视频| 亚洲国产欧美在线一区| 亚洲伊人色综图| 两人在一起打扑克的视频| 狠狠精品人妻久久久久久综合| 如日韩欧美国产精品一区二区三区| 亚洲专区国产一区二区| av网站免费在线观看视频| 欧美精品啪啪一区二区三区| 久久人妻福利社区极品人妻图片| 大片免费播放器 马上看| av有码第一页| 精品少妇久久久久久888优播| 日韩欧美三级三区| 最近最新中文字幕大全电影3 | 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 一本一本久久a久久精品综合妖精| 大片电影免费在线观看免费| 日本欧美视频一区| 国产区一区二久久| 麻豆av在线久日| 老司机在亚洲福利影院| 久久人妻福利社区极品人妻图片| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 日本wwww免费看| 悠悠久久av| 国产黄频视频在线观看| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 高清av免费在线| 日本五十路高清| 亚洲黑人精品在线| 少妇 在线观看| 一区二区三区精品91| 在线观看www视频免费| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲真实| 热99国产精品久久久久久7| 亚洲七黄色美女视频| 久久久久网色| 精品免费久久久久久久清纯 | 亚洲成人手机| 视频区欧美日本亚洲| 亚洲欧美日韩高清在线视频 | 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 亚洲免费av在线视频| 国产男靠女视频免费网站| 亚洲国产av影院在线观看| 国产深夜福利视频在线观看| e午夜精品久久久久久久| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕 | 亚洲专区国产一区二区| av网站免费在线观看视频| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| tube8黄色片| 最新美女视频免费是黄的| 色94色欧美一区二区| 激情在线观看视频在线高清 | 啦啦啦在线免费观看视频4| 精品国产乱码久久久久久男人| 黑人巨大精品欧美一区二区mp4| 99热国产这里只有精品6| 亚洲第一av免费看| 黄片播放在线免费| 免费女性裸体啪啪无遮挡网站| 亚洲成人免费电影在线观看| 夜夜夜夜夜久久久久| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 中文字幕制服av| 国产亚洲欧美精品永久| 捣出白浆h1v1| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 国产精品久久久av美女十八| 黑人猛操日本美女一级片| 精品乱码久久久久久99久播| 午夜免费鲁丝| videosex国产| 男男h啪啪无遮挡| 五月开心婷婷网| 精品高清国产在线一区| 久久久国产精品麻豆| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 在线观看66精品国产| 久久性视频一级片| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 99香蕉大伊视频| 亚洲全国av大片| 国产一区二区在线观看av| 亚洲少妇的诱惑av| 国产区一区二久久| 波多野结衣av一区二区av| 大码成人一级视频| av在线播放免费不卡| 黄色丝袜av网址大全| 深夜精品福利| 成在线人永久免费视频| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 天天躁日日躁夜夜躁夜夜| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频| 18禁美女被吸乳视频| 亚洲色图av天堂| 亚洲av国产av综合av卡| 在线观看www视频免费| 免费观看a级毛片全部| 亚洲av成人不卡在线观看播放网| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 国产免费视频播放在线视频| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 十八禁网站网址无遮挡| 久久青草综合色| 亚洲精品粉嫩美女一区| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 国产老妇伦熟女老妇高清| 最黄视频免费看| 午夜福利一区二区在线看| 咕卡用的链子| 后天国语完整版免费观看| 国产又爽黄色视频| 91精品国产国语对白视频| 久久精品成人免费网站| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生| 欧美精品人与动牲交sv欧美| 日本五十路高清| 国产成人av激情在线播放| 欧美在线一区亚洲| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 99国产精品一区二区蜜桃av | 一区二区日韩欧美中文字幕| 黑人操中国人逼视频| 欧美成狂野欧美在线观看| 亚洲国产看品久久| 午夜日韩欧美国产| 91国产中文字幕| 国产淫语在线视频| 9191精品国产免费久久| tocl精华| 亚洲精品久久成人aⅴ小说| 午夜91福利影院| tocl精华| 80岁老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 欧美日韩一级在线毛片| 国产一卡二卡三卡精品| 我要看黄色一级片免费的| 中文字幕人妻熟女乱码| 一进一出好大好爽视频| av不卡在线播放| 欧美日韩福利视频一区二区| 1024香蕉在线观看| 欧美激情久久久久久爽电影 | 国产av一区二区精品久久| 午夜福利影视在线免费观看| av福利片在线| 亚洲第一青青草原| 亚洲一区中文字幕在线| 精品国产一区二区久久| 国产精品二区激情视频| 国产精品久久久久久精品电影小说| 免费不卡黄色视频|