• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An adaptive energy regulation in a memristive map linearized from a circuit with two memristive channels

    2024-04-02 07:47:14FeifeiYangPingZhouandJunMa
    Communications in Theoretical Physics 2024年3期

    Feifei Yang ,Ping Zhou and Jun Ma,3,*

    1 School of Science,Chongqing University of Posts and Telecommunications,Chongqing 430065,China

    2College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China

    3 Department of Physics,Lanzhou University of Technology,Lanzhou 730050,China

    Abstract Nonlinear circuits can show multistability when a magnetic flux-dependent memristor(MFDM)or a charge-sensitive memristor (CSM) is incorporated into a one branch circuit,which helps estimate magnetic or electric field effects.In this paper,two different kinds of memristors are incorporated into two branch circuits composed of a capacitor and a nonlinear resistor,thus a memristive circuit with double memristive channels is designed.The circuit equations are presented,and the dynamics in this oscillator with two memristive terms are discussed.Then,the memristive oscillator is converted into a memristive map by applying linear transformation on the sampled time series for the memristive oscillator.The Hamilton energy function for the memristive oscillator is obtained by using the Helmholtz theorem,and it can be mapped from the field energy of the memristive circuit.An energy function for the dual memristive map is suggested by imposing suitable weights on the discrete energy function.The dynamical behaviors of the new memristive map are investigated,and an adaptive law is proposed to regulate the firing mode in the memristive map.This work will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map energy calculation.

    Keywords: Hamilton energy,dual memristive map,adaptive energy regulation

    1.Introduction

    The conceptional proposal of a memristor[1],the fabrication of a memristor[2] and its potential application have been widely explored in the control of a nonlinear circuit [3–5],neuromorphic computing [6–8],chaotic systems [9–11],and artificial neural networks [12–15].In fact,a memristor can be embedded into a nonlinear circuit to develop a memristive circuit for presenting rich complex dynamical characteristics.For example,Yangetal[16]designed a simple chaotic circuit by coupling a magnetic flux-controlled memristor (MFCM)with two capacitors and an inductor.The memristive circuit has a complex hyperchaotic phenomenon and the parameter range for the chaotic region is large.Douetal[17]proposed an RC bridge oscillatory circuit based on a memristor,and this memristive circuit can result in symmetric coexistence such as single-scroll,asymmetrical single-scroll,symmetric doublescroll and asymmetrical limit–cycle behaviors.Zhouetal[18]developed a new memristive chaotic system for inducing multistability.In addition,memristive functional neuron models [19–21] are obtained by connecting memristors into a simple neural circuit.

    Figure 1.Schematic diagram for a dual memristive circuit.M(φ)denotes mem-conductance for a MFCM and M(q) represents memresistance for a CCM,respectively.C and NR means a capacitor and a nonlinear resistor,respectively.

    Recently,discrete memristors (DM) have become a research hotspot.DM's have some advantages such as low power consumption,programmability and anti-interference.Therefore,they have potential applications in the design of DM chaotic/hyperchaotic maps [22–24],neural networks[25–27] and embedded system development [28] fields.Furthermore,a variety of DM maps have been proposed for a dynamical approach and application in signal processing.For instance,Zhangetal[29,30] proposed dual memristor hyperchaotic maps from mathematical assumption.Baoetal[31] designed a parallel bi-memristor hyperchaotic map.The discrete memristive Rulkov neuron map [32,33] was developed by introducing a DM into a Rulkov neuron model.A fractional memristive map is proposed in [34].In addition,DM chaotic maps are hardware implemented by applying DSP platform [35–37] and an analog circuit [38].One important application is that DM chaotic maps are used in image encryption algorithms [39–41].

    Most of the previous works about the approach of DM maps suggested that a DM map can be defined by introducing a DM into an existing discrete map.In fact,this kind of description is artificial and is a mathematical assumption without clarifying its inner physical property.The physical modeling of a DM map is not perfect,and the energy of a DM map is also an open problem.Inspired by the suggestion in[42],biophysical and memristive maps can be converted from memristive circuits,in which the energy function for its equivalent memristive oscillator is defined in a theoretical way.In this work,a dual memristive circuit is constructed by using two different memristor elements,a nonlinear resistor and a capacitor.The dual memristive oscillator is derived and its Hamilton energy function is obtained from physical approach.According to the transformation relationship between the oscillator and the map described in [43],the dual memristive map and the corresponding Hamilton energy function are obtained.The results provide further possible guidance for designing discrete maps and calculating their energy.

    This study is organized as follows: in section 2,the dual DM map is obtained.The numerical investigations are given in section 3.In section 4,the results are summarised.

    2.Model and scheme

    Due to the nonlinear properties of the memristor,the dynamics of a nonlinear circuit coupled by the memristor and the memristive circuit become more controllable.In this paper,a memristive circuit is constructed by including a MFCM and a CCM in two additive branch circuits,a nonlinear resistor and a capacitor are coupled in parallel in figure 1.

    In figure 1,the current of the nonlinear resistance (NR)can be estimated by

    where ρ is the resistance within the linear region,V0denotes a cut-off voltage andrmeans a dimensionless gain.Vis the across voltage of the nonlinear resistor,and the dependence of voltage on the memristive channels current for the MFCM and CCM is defined by

    As shown in equation (2),theM(φ) andM(q) have simple forms with low order,and their internal state equations are only composed of linear terms.Compared with higher-order memristors,the memristors in this paper are easier to implement physically.Sinusoidal stimulusAsin(2πωt) is imposed on the memristor,whereAmeans the amplitude of stimulus,and ω denotes the frequency of the stimulus.Thev–icurve for the MFCM with different frequencies ω underA=3 is shown in figure 2(a),thev–icurve for the MFCM with different amplitudesAat ω=0.8 is shown in figure 2(b).

    Figure 2 shows that thev–icurve for the MFCM is 8-shaped.The 8-shaped area decreases when the frequency of the stimulus is increased.While the 8-shaped area increases when the amplitude of the stimulus is increased.By applying the same sinusoidal stimulusAsin(2πωt),thei–vcurve for the CCM with different stimuli are displayed in figure 3.

    Figure 2.The v–i curve for the MFCM with different stimuli.For (a) A=3;(b) ω=0.8.

    Figure 3.The i–v curve for the MFCM with different stimuli.For (a) A=3;(b) ω=0.8.

    Figure 4.(a) Bifurcation diagram and (b) the distribution of the LEs for the memristive map by changing parameter a.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is (0.1,0.1,0).

    Figure 5.Phase portraits of the memristive map by changing parameter a.For(a)a=2;(b)a=1.5;(c)a=1.4;(d)a=0.5.The parameters are λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is (0.1,0.1,0).

    Figure 6.Evolution of energy function and its average value in the memristive map by changing parameter a.For(a)a=2;(b)a=1.5;(c)a=1.4;(d)a=0.5.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The initial value is(0.1,0.1,0).<Hn>denotes the average value of the Hamilton energy.

    Figure 7.Phase portraits of the memristive map by changing initial value v(0).For(a)initial value is(0.1,0.1,0-hπ),(h=0,1,2,3,4);(b)initial value is (0.1,0.1,0+hπ),(h=0,1,2,3,4).The parameters are λ=3.9,a=0.5,b=0.2,c=0.3,d=1,β=0.1,δ=1.

    Figure 8.Growth of parameter a,Hamilton energy and phase diagram for gain k.For(a)k=0.005;(b)k=0.007.Setting λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.Setting initial values for variables (0.1,0.1,0).

    The results in figure 3 confirm that thei–vcurve for the CCM exhibits a similar 8-shaped characteristic.The 8-shaped area becomes larger with the increase of amplitude and frequency of the stimulus.According to Kirchhoff’s laws,the circuit equations for the memristive circuit in figure 1 are described by

    To facilitate the analysis,dimensionless parameters and variables in equation (3) are defined as follows

    The dynamic equations in equation (3) can be rewritten by

    The memristive ciruit in figure 1 has three energy storage elements,the field energyWand its dimensionless Hamilton energyHare given in equation (6).

    The Hamilton energy functionHin equation (6) for the memristive oscillator in equation (5) can be proven by applying the Helmholtz’s theorem,when the memristive oscillator in equation (5) is rewritten in a vector form

    According to the Helmholtz’s theorem,the Hamilton energy functionHmeets the following criterion

    Indeed,the energy functionHin equation (6) satisfies the criterion in equations (8) and (9) completely.Furthermore,linear transformation is imposed on the sampled time series for variables from equation (5) with time step Δτ during a numerical approach.

    These renewed discrete variables accompanied with updated parameters can be used to define a new memristive map as follows

    Under the same weights for two terms in the discrete energy function for equation(6),the Hamilton energy for the map in equation (11) is described by

    As suggested in the recent works [44,45],membrane parameters or memristive parameters can be controlled by the energy flow to induce a mode transition when the inner energy level is beyond a threshold.To investigate the selfadaption in the dual memristive map,it requires that parameterafor the dual memristive map can be controlled by the energy flux in an adaptive way as follows

    Where the energy threshold 0 <p<1 determines the energy level of a memristive map in thenth iteration.andenotes value for the map parameter in thenth iteration,parameterkmeans growth step,and the Heaviside function θ(*)is used to control parameter growth to a saturation value.

    3.Results and discussion

    Similar to most of the memristive oscillators[20,21,46–50],numerical solutions for equation (5) can be obtained and additive noise can be applied to induce nonlinear resonance and mode control in neural activities.Numerical results are mainly explored in the memristive map under the control of adaptive law in equation (13).To investigate the complex dynamic characteristics of the dual memristive map presented in equation (11),the initial values of the memristive map are selected as (0.1,0.1,0).The parameters of the memristive map are fixed as λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1.The bifurcation diagram and the Lyapunov exponents (LEs) spectrum are calculated by changing the parameteracarefully,and the results are plotted in figure 4.

    The results in figure 4 show that the dual memristive map triggers a mode transition with the increase of the parametera,such as period-1,period-2,period-4,period-8 and chaotic behaviors are generated.The positive Lyapunov exponent becomes negative and the inverse double period bifurcation occurs by increasing parameterain a continuous way,and chaos is suppressed effectively.Furthermore,phase portraits of the memristive map with different values for parameteraare shown in figure 5.

    In figure 5,the profile of the attractors shows period-2,period-4,period-8 and chaotic characteristics.According to the Hamilton energy function presented in equation (12),the relation between the Hamilton energy and the oscillatory states in the memristive map is calculated,and the results are shown in figure 6.

    The results in figure 6 illustrate that the dual memristive map has a higher mean value of Hamilton energy with period state,while it has a lower mean value of Hamilton energy with a chaotic pattern.In addition,the mean value of Hamilton energy decreases with the increase of a period number.

    When the parameters in equation (11) are fixed atd=1 and δ=1,the memristive map exits the fixed point (0,0,0±hπ) (h=0,±1,±2,±3…),and indicates that the memristive map can be initially boosted to give extreme multistability.The parameters are λ=3.9,a=0.5,b=0.2,c=0.3,d=1,β=0.1,δ=1,by changing the initial valuev(0),the phase portraits are shown in figure 7.

    The results in figure 7 confirm that the memristive map will produce an extreme multistable phenomenon by changing the initial value for the variablev.According to the criterion of the growth for parameterain equation(13),it sets the thresholdp=0.35,parameters are fixed at λ=3.9,b=0.2,c=0.3,d=0.4,β=0.1,δ=0.1,and initial values are selected as (0.1,0.1,0).The initial value for parametera=0.5,gainsk=0.005 andk=0.007,the memristive map in equation (11) is iterated 1200 times,respectively.The growth of parametera,changes of Hamilton energy and phase diagram are shown in figure 8.

    It is confirmed that parameteraof the memristive map relative to when the MFCM reaches a stable value of 2.39 after 800 iterations.The Hamilton energy shows a distinct transition when the memristive maps change the chaotic patterns to periodic states,and a similar shift occurs in the phase diagram.By comparing figures 8(a) and (b),it is found that with the increased value of gaink,parameteraneeds fewer iterations to reach a saturation value.The result indicates that the dynamics for the memristive map can be controlled by the energy flow in an adaptive way.Considering that the chaotic systems are extremely sensitive to the parameters and initial values,the map attractor basins ony(0)-v(0) andz(0)-v(0) are shown in figure 9.

    It is found that the initial values affect the chaotic region(blue region) and the periodic region (red region) at different initial values.As a result,the stochastic and continuous switch of the initial values for the memristive variables will induce a distinct mode transition and energy shift.

    From the memristive oscillator in equation (5) to the memristive map in equation (11),perfect covariance in the formulas is confirmed.The continuous energy function in equation (6) is relative to the state variables and bifurcation parameteradirectly,while the discrete energy function for the map in equation (12) is dependent on the discrete variables and parameterbcompletely.From a dynamical viewpoint,the energy level for both the memristive oscillator and the memristive map can be calculated by adjusting one bifurcation parameter carefully.In fact,the two curves for the energy function in the oscillator and the map seldom intersect,keeping the same energy value due to the involvement of the time step when the memristive oscillator is obtained with numerical solutions.In an experimental approach,analog signals from the nonlinear circuit can be filtered and adjusted to present discrete signals,and the memristive map provides fast computing without further estimating the time step.Our scheme provides a reference to verify the reliability of the mathematical maps.As a result,these physical maps can be connected to build an artificial array for signal processing in parallel.

    4.Conclusion

    In this paper,a dual memristive circuit is built to develop a memristive oscillator for discerning the effect of the magnetic field and the electric field synchronously.The energy function for the dual memristive oscillator is obtained in a theoretical way.By applying a linear transformation on the sampled variables for the memristive oscillator,a dual memristive map is designed with a clear definition of the energy function and adaptive growth law for one bifurcation parameter.The results indicate that the dual memristive map has rich dynamical behaviors,and the dynamics can be adjusted in an adaptive way under energy flow.The memristive map has a smaller average Hamilton energy value in the chaotic state,while it prefers to keep a higher mean Hamilton energy value in the periodic state.In addition,the mean Hamilton energy value of the memristive map decreases with the increase of the period number.The results confirm the reliability of discrete maps from nonlinear circuits.The modeling method of the discrete map proposed in this paper can be applied to other high-dimensional discrete maps including discrete memristive maps and neurons.The Hamilton energy calculation and adaptive control method can be applied to the energy calculation and the adaptive control of other discrete scatter maps.In addition,the simplest map proposed in this paper can be used for pseudo-random sequence generators and image encryption fields.

    Acknowledgments

    This study is strongly supported by the National Science Foundation of China under Grant No.12072139.

    CRediT authorship contribution statement

    FYMethodology,software,numerical calculation,PZandJMMethodology,supervision,formal analysis,writing-final version.

    Declaration of competing interest

    We declare that all of the authors have no competing financial interests or personal relationships for the work reported in this study.

    一区二区三区高清视频在线| 国产精品爽爽va在线观看网站| 宅男免费午夜| 欧美在线一区亚洲| 成年免费大片在线观看| 在线观看舔阴道视频| 亚洲国产高清在线一区二区三| 热99在线观看视频| 啪啪无遮挡十八禁网站| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 国产乱人视频| 国产一区二区激情短视频| 青草久久国产| 久久国产精品人妻蜜桃| 久久国产精品影院| 一区福利在线观看| 男女视频在线观看网站免费| 成年女人毛片免费观看观看9| 欧美乱码精品一区二区三区| www.自偷自拍.com| 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 日本免费a在线| 亚洲欧美激情综合另类| 中文资源天堂在线| 国产精品久久久av美女十八| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 国产精品一区二区三区四区久久| 最近在线观看免费完整版| 国产高清三级在线| av在线蜜桃| 99热只有精品国产| 免费观看的影片在线观看| 高清在线国产一区| 动漫黄色视频在线观看| 深夜精品福利| 美女cb高潮喷水在线观看 | 欧美午夜高清在线| 日本一二三区视频观看| 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 国产不卡一卡二| 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 床上黄色一级片| 久久九九热精品免费| 欧美大码av| av福利片在线观看| 一进一出好大好爽视频| 一本一本综合久久| 高潮久久久久久久久久久不卡| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 男插女下体视频免费在线播放| 精品久久久久久久久久久久久| 精品福利观看| 草草在线视频免费看| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 成人三级黄色视频| 男女视频在线观看网站免费| 久久久精品大字幕| 此物有八面人人有两片| 亚洲无线在线观看| 亚洲成人久久爱视频| 精品久久久久久久末码| 国内精品久久久久久久电影| 99国产精品99久久久久| 丁香欧美五月| 麻豆av在线久日| 最新美女视频免费是黄的| 久久香蕉精品热| 国产91精品成人一区二区三区| 99riav亚洲国产免费| 亚洲av成人精品一区久久| 三级国产精品欧美在线观看 | 亚洲成av人片在线播放无| 女人被狂操c到高潮| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 国产精品 国内视频| 欧美大码av| 日本黄大片高清| 亚洲av成人av| av片东京热男人的天堂| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 草草在线视频免费看| 日韩高清综合在线| 99国产精品99久久久久| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 无遮挡黄片免费观看| cao死你这个sao货| 亚洲av成人精品一区久久| ponron亚洲| 90打野战视频偷拍视频| 午夜福利成人在线免费观看| 久久精品91蜜桃| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 女警被强在线播放| 少妇熟女aⅴ在线视频| 国产主播在线观看一区二区| 最近在线观看免费完整版| 午夜日韩欧美国产| 精品国产三级普通话版| 免费观看的影片在线观看| 丁香六月欧美| 啦啦啦免费观看视频1| 免费搜索国产男女视频| 国产成人av激情在线播放| 国内少妇人妻偷人精品xxx网站 | 黄色日韩在线| 亚洲精品粉嫩美女一区| 亚洲欧美精品综合久久99| 国产黄片美女视频| 美女高潮喷水抽搐中文字幕| 亚洲欧美激情综合另类| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看 | 麻豆国产97在线/欧美| 精品一区二区三区四区五区乱码| 老司机在亚洲福利影院| 欧美黄色片欧美黄色片| 美女高潮的动态| 国内精品一区二区在线观看| 国产高清视频在线观看网站| 欧美中文日本在线观看视频| 999精品在线视频| 九九热线精品视视频播放| 最新在线观看一区二区三区| 国产99白浆流出| 久久久久久大精品| 亚洲精品乱码久久久v下载方式 | 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| 精品福利观看| 国产精品爽爽va在线观看网站| 老汉色av国产亚洲站长工具| 欧美日韩乱码在线| 男女那种视频在线观看| 亚洲自拍偷在线| 天天躁日日操中文字幕| 国产1区2区3区精品| 日韩欧美精品v在线| 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| av中文乱码字幕在线| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| 欧美日本亚洲视频在线播放| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 久久久国产成人精品二区| av天堂中文字幕网| 国产午夜精品久久久久久| 又爽又黄无遮挡网站| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 日韩人妻高清精品专区| 精品久久久久久久末码| 怎么达到女性高潮| 美女免费视频网站| bbb黄色大片| 亚洲av五月六月丁香网| 精品久久久久久久毛片微露脸| 老司机福利观看| 999精品在线视频| 国产伦人伦偷精品视频| 日日夜夜操网爽| 国产一区在线观看成人免费| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲国产一区二区在线观看| 日韩精品青青久久久久久| 国产成人精品久久二区二区91| 婷婷丁香在线五月| 又黄又粗又硬又大视频| 亚洲精品粉嫩美女一区| 级片在线观看| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 亚洲专区字幕在线| 99在线人妻在线中文字幕| 免费看日本二区| 亚洲精品在线美女| 亚洲aⅴ乱码一区二区在线播放| 国产成人av激情在线播放| 在线视频色国产色| 欧美色视频一区免费| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 老司机福利观看| 欧美一区二区精品小视频在线| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| 免费av毛片视频| 美女 人体艺术 gogo| 国产黄片美女视频| 黄频高清免费视频| 人人妻人人看人人澡| 久久精品国产清高在天天线| 久久久国产成人精品二区| 欧美日韩黄片免| 波多野结衣高清作品| av女优亚洲男人天堂 | cao死你这个sao货| 真人做人爱边吃奶动态| 国产精品免费一区二区三区在线| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 一边摸一边抽搐一进一小说| 757午夜福利合集在线观看| 国产97色在线日韩免费| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 中文字幕av在线有码专区| 黄色女人牲交| 狂野欧美激情性xxxx| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 国产激情偷乱视频一区二区| 97超视频在线观看视频| 国产久久久一区二区三区| www.自偷自拍.com| 在线观看日韩欧美| 动漫黄色视频在线观看| 麻豆av在线久日| 欧美日韩国产亚洲二区| 床上黄色一级片| 在线播放国产精品三级| 国产不卡一卡二| 在线免费观看不下载黄p国产 | 国产美女午夜福利| 亚洲精品在线美女| 俺也久久电影网| 特级一级黄色大片| 国产精品精品国产色婷婷| 两个人看的免费小视频| 久久婷婷人人爽人人干人人爱| 日本黄色片子视频| 日本五十路高清| 久久性视频一级片| 99视频精品全部免费 在线 | 大型黄色视频在线免费观看| 午夜福利在线观看吧| 欧美日韩国产亚洲二区| 成在线人永久免费视频| 色综合婷婷激情| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 无遮挡黄片免费观看| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 国产精品一区二区免费欧美| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 999精品在线视频| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 黄频高清免费视频| 91在线观看av| 国产一区二区三区在线臀色熟女| 亚洲 欧美一区二区三区| 九九久久精品国产亚洲av麻豆 | 国产三级中文精品| 久久久国产成人免费| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 亚洲精品美女久久av网站| www.熟女人妻精品国产| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 午夜福利欧美成人| 精品日产1卡2卡| 神马国产精品三级电影在线观看| 在线观看免费午夜福利视频| 久久久久久九九精品二区国产| 久久久久国内视频| 在线观看66精品国产| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 精品国产乱子伦一区二区三区| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片 | 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 日日摸夜夜添夜夜添小说| 五月玫瑰六月丁香| 啦啦啦观看免费观看视频高清| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| x7x7x7水蜜桃| 亚洲精品一区av在线观看| 久久久国产成人免费| 动漫黄色视频在线观看| 久久午夜亚洲精品久久| 久久精品91蜜桃| 丝袜人妻中文字幕| 久久香蕉精品热| 国产精品久久视频播放| 小说图片视频综合网站| 一本久久中文字幕| 国产一区二区三区视频了| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 特级一级黄色大片| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 成人特级av手机在线观看| 欧美最黄视频在线播放免费| 国产av不卡久久| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 国产又黄又爽又无遮挡在线| 色吧在线观看| 国产 一区 欧美 日韩| 午夜免费观看网址| 亚洲av成人精品一区久久| 日韩欧美三级三区| 中文字幕久久专区| 波多野结衣高清作品| 国产成人av激情在线播放| 岛国视频午夜一区免费看| 国产高清videossex| 久久亚洲精品不卡| 欧美国产日韩亚洲一区| 久久这里只有精品中国| 午夜久久久久精精品| av国产免费在线观看| 老司机午夜福利在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费看日本二区| 91av网一区二区| 精品久久蜜臀av无| 美女午夜性视频免费| 中出人妻视频一区二区| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av在线| 国产美女午夜福利| 最好的美女福利视频网| 婷婷丁香在线五月| 99久久精品热视频| 久久久久久久久免费视频了| 麻豆国产97在线/欧美| 国产1区2区3区精品| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 我要搜黄色片| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区91| 国产毛片a区久久久久| 欧美zozozo另类| 色老头精品视频在线观看| 噜噜噜噜噜久久久久久91| 国产综合懂色| 变态另类成人亚洲欧美熟女| 波多野结衣巨乳人妻| 亚洲专区中文字幕在线| 亚洲av免费在线观看| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 搡老岳熟女国产| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 哪里可以看免费的av片| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 成人精品一区二区免费| 一区福利在线观看| 99热6这里只有精品| 一二三四在线观看免费中文在| 舔av片在线| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 亚洲人成电影免费在线| 变态另类成人亚洲欧美熟女| 中文字幕熟女人妻在线| 高潮久久久久久久久久久不卡| 午夜福利欧美成人| 国产麻豆成人av免费视频| 欧美又色又爽又黄视频| 老司机午夜福利在线观看视频| 一区福利在线观看| 亚洲人成网站高清观看| 久久久久久大精品| 欧美精品啪啪一区二区三区| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区视频在线观看免费| 操出白浆在线播放| 亚洲国产精品999在线| 精品久久久久久成人av| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 亚洲国产精品合色在线| 又大又爽又粗| 日韩免费av在线播放| 色视频www国产| 国产不卡一卡二| 一本精品99久久精品77| 国产黄a三级三级三级人| 成人精品一区二区免费| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 噜噜噜噜噜久久久久久91| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 999精品在线视频| 99热6这里只有精品| 一级a爱片免费观看的视频| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 天堂av国产一区二区熟女人妻| 精品久久久久久久毛片微露脸| 国产精品乱码一区二三区的特点| 高清毛片免费观看视频网站| 成人国产一区最新在线观看| 久久久久国产一级毛片高清牌| 久久久成人免费电影| 国产在线精品亚洲第一网站| 舔av片在线| 少妇熟女aⅴ在线视频| 这个男人来自地球电影免费观看| 老汉色∧v一级毛片| 国产麻豆成人av免费视频| 国产成人系列免费观看| 国产又黄又爽又无遮挡在线| 露出奶头的视频| 亚洲自偷自拍图片 自拍| 久久精品91无色码中文字幕| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 高清在线国产一区| 亚洲中文av在线| 国产精品亚洲美女久久久| 色精品久久人妻99蜜桃| 国内少妇人妻偷人精品xxx网站 | 2021天堂中文幕一二区在线观| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 中文字幕久久专区| 在线观看美女被高潮喷水网站 | 国产精品久久视频播放| 免费av不卡在线播放| 欧美成人性av电影在线观看| 国产精品1区2区在线观看.| 毛片女人毛片| 99国产极品粉嫩在线观看| 日韩欧美在线二视频| 十八禁网站免费在线| 国产亚洲精品综合一区在线观看| 亚洲五月天丁香| 我的老师免费观看完整版| 99久久精品国产亚洲精品| 色噜噜av男人的天堂激情| 夜夜躁狠狠躁天天躁| 国产精品女同一区二区软件 | 国产精品美女特级片免费视频播放器 | 国产亚洲av嫩草精品影院| 成人国产一区最新在线观看| 国产精品久久电影中文字幕| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品综合一区在线观看| 精品久久久久久久末码| 嫩草影视91久久| 法律面前人人平等表现在哪些方面| www.999成人在线观看| 中文资源天堂在线| 高清毛片免费观看视频网站| av中文乱码字幕在线| 丰满人妻熟妇乱又伦精品不卡| 国产三级黄色录像| 又黄又爽又免费观看的视频| 午夜精品久久久久久毛片777| 午夜影院日韩av| 一本精品99久久精品77| 黄色视频,在线免费观看| 一个人看的www免费观看视频| 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 成人一区二区视频在线观看| 精品免费久久久久久久清纯| av在线蜜桃| 99久国产av精品| 国产精品一区二区三区四区久久| 日本熟妇午夜| 久久久久九九精品影院| av天堂在线播放| 国产精品 欧美亚洲| 日韩三级视频一区二区三区| 欧美不卡视频在线免费观看| 精品一区二区三区视频在线 | 最近视频中文字幕2019在线8| 成人国产综合亚洲| 亚洲人成电影免费在线| 国产主播在线观看一区二区| 一区二区三区国产精品乱码| 男女视频在线观看网站免费| 男人舔奶头视频| 黄色丝袜av网址大全| 久久久久久久午夜电影| 亚洲专区国产一区二区| 国产日本99.免费观看| 国产私拍福利视频在线观看| 国产伦在线观看视频一区| 免费观看的影片在线观看| 日韩欧美精品v在线| 精品久久久久久久久久免费视频| 亚洲av第一区精品v没综合| 麻豆久久精品国产亚洲av| 久久草成人影院| 国产蜜桃级精品一区二区三区| 久久久久久久久中文| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 91老司机精品| 99国产精品一区二区蜜桃av| 亚洲 国产 在线| 国产高清videossex| 99国产综合亚洲精品| 在线观看免费视频日本深夜| 好看av亚洲va欧美ⅴa在| 桃红色精品国产亚洲av| 亚洲国产精品sss在线观看| 看免费av毛片| 69av精品久久久久久| 亚洲 国产 在线| av黄色大香蕉| 露出奶头的视频| 夜夜看夜夜爽夜夜摸| 国产亚洲欧美98| 色综合亚洲欧美另类图片| 亚洲无线观看免费| 香蕉国产在线看| 一a级毛片在线观看| 一区二区三区国产精品乱码| 久久久久九九精品影院| 一级a爱片免费观看的视频| 美女被艹到高潮喷水动态| 午夜福利在线观看吧| 村上凉子中文字幕在线| 啦啦啦观看免费观看视频高清| 啪啪无遮挡十八禁网站| 国产av在哪里看| 天堂网av新在线| 99国产精品一区二区蜜桃av| 国产三级中文精品| 日本一本二区三区精品| 亚洲精品中文字幕一二三四区| 午夜福利高清视频| 日韩欧美国产在线观看| 51午夜福利影视在线观看| 久久久久久人人人人人| 欧洲精品卡2卡3卡4卡5卡区| 俄罗斯特黄特色一大片| 12—13女人毛片做爰片一| 丰满人妻熟妇乱又伦精品不卡| 免费看美女性在线毛片视频| 日韩欧美 国产精品| 亚洲国产精品久久男人天堂| 国产精品精品国产色婷婷| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 亚洲成人中文字幕在线播放| 中文在线观看免费www的网站| 免费电影在线观看免费观看| 丁香六月欧美| 在线观看美女被高潮喷水网站 | 舔av片在线| 国内精品一区二区在线观看| 男插女下体视频免费在线播放| 男人舔女人的私密视频| 亚洲精品456在线播放app | 国产精品久久视频播放| 国产高清视频在线播放一区| 国产视频内射| 久久99热这里只有精品18| 午夜精品一区二区三区免费看|