• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling the dynamical behavior of the interaction of T-cells and human immunodeficiency virus with saturated incidence

    2024-04-02 07:47:02SalahBoulaarasRashidJanAminKhanAliAllahemImtiazAhmadandSalmaBahramand
    Communications in Theoretical Physics 2024年3期

    Salah Boulaaras ,Rashid Jan ,Amin Khan ,Ali Allahem ,Imtiaz Ahmad and Salma Bahramand

    1 Department of Mathematics,College of Science,Qassim University,Buraydah,51452,Saudi Arabia

    2 Institute of Energy Infrastructure (IEI),Department of Civil Engineering,College of Engineering,Universiti Tenaga Nasional (UNITEN),Putrajaya Campus,Jalan IKRAM-UNITEN,43000 Kajang,Selangor,Malaysia

    3 Department of Mathematics,University of Swabi,Swabi 23561,Pakistan

    4 Department of Mathematics,College of Sciences,Qassim University,Saudi Arabia

    5 Institute of Informatics and Computing in Energy (IICE),Universiti Tenaga Nasional,Kajang,Selangor,Malaysia

    6 Department of Political Science,Bacha Khan University Charsadda,Charsadda 24420,KPK Pakistan

    Abstract In the last forty years,the rise of HIV has undoubtedly become a major concern in the field of public health,imposing significant economic burdens on affected regions.Consequently,it becomes imperative to undertake comprehensive investigations into the mechanisms governing the dissemination of HIV within the human body.In this work,we have devised a mathematical model that elucidates the intricate interplay between CD4+ T-cells and viruses of HIV,employing the principles of fractional calculus.The production rate of CD4+T-cells,like other immune cells depends on certain factors such as age,health status,and the presence of infections or diseases.Therefore,we incorporate a variable source term in the dynamics of HIV infection with a saturated incidence rate to enhance the precision of our findings.We introduce the fundamental concepts of fractional operators as a means of scrutinizing the proposed HIV model.To facilitate a deeper understanding of our system,we present an iterative scheme that elucidates the trajectories of the solution pathways of the system.We show the time series analysis of our model through numerical findings to conceptualize and understand the key factors of the system.In addition to this,we present the phase portrait and the oscillatory behavior of the system with the variation of different input parameters.This information can be utilized to predict the longterm behavior of the system,including whether it will converge to a steady state or exhibit periodic or chaotic oscillations.

    Keywords: HIV infection,fractional-calculus,dynamics of HIV,iterative scheme,dynamical behaviour,mathematical model,fractional derivatives

    1.Introduction

    In accordance with available reports,HIV infections inflict damage upon the immune system of afflicted individuals,leading to deleterious effects on vital internal organs such as the kidneys,brain,and heart,ultimately culminating in mortality.Although a definitive cure for this infectious disease remains elusive,there exist efficacious antiretroviral treatments that can substantially ameliorate a patient’s health.However,it is worth noting that excessive utilization of these medications may exert adverse effects on the host.Empirical evidence from studies underscores HIV infection as the most pernicious viral threat on a global scale,exerting profound impacts across various sectors.In 2017,an estimated 1.8 million individuals were living with HIV,and tragically,940,000 of them succumbed to the disease.Nevertheless,there exists a firm belief that the AIDS pandemic can be curtailed through a combination of preventative measures and therapeutic interventions.The utilization of therapy has expanded considerably,with individuals occasionally manifesting symptoms resembling sore throats,rashes,headaches,fevers,and influenza-like manifestations.It is crucial to underscore that when treatment is not administered promptly and effectively,HIV infections progress into severe and lifethreatening conditions.The burden of HIV on society encompasses not only the physical and emotional toll on individuals,but also places strains on health-care systems and resources.It fosters a need for comprehensive support structures,education,and public health initiatives to address the multifaceted challenges posed by the virus.

    It is acknowledged that mathematical models play a crucial role in exploring the dynamics of infectious diseases and biological processes [1–3].These models serve as invaluable tools for elucidating the intricacies of complex biological phenomena and furnishing comprehensive insights into the key factors governing biological systems [4–6].Noteworthy contributions to the field include the establishment of an HIV model and the subsequent identification of statistically optimal control measures in 1999 by researchers,as well as the development of various models in subsequent studies to explore dynamic aspects,including viral mutation,intracellular delays,and other relevant factors [7].These endeavors collectively contribute to our understanding of HIV and its associated dynamics [8,9].The researchers in [10]included two transmission methods,including direct cell-tocell transfer and infection by free virions,while HIV-positive CD4+T-cell populations were examined in[11].In the article[12],Perilson and Nelson describe how they used a mathematical model and determined some significant characteristics of the system.The model originally described by the authors in [12] was further modified by the authors in [13].Through study and fractional calculus,Samiaetal[14] examined the phenomenon of the HIV-1 infection.The researchers in [15]used the homotopy analysis methodology to analyze the HIV model,while authors in [16,17] utilized different concepts and approaches to study the dynamics of HIV.The chaotic dynamics of HIV have been looked at and analyzed in [18].The incorporation of the drug into the model and its subsequent influence on the overall dynamics has been investigated in the literature [19–21].In this work,our primary objective is to understand the dynamics of HIV infection by incorporating a saturated incidence rate alongside a variable source term.

    Fractional derivatives provide a more versatile way to model and describe the behavior of complex systems,especially those with non-local and memory-dependent characteristics[22–24].They offer advantages in modeling biological phenomena by providing a more nuanced representation of complex processes,particularly in cases where memory and nonlocal effects play a crucial role [25–27].This enhanced modeling capability allows for a more accurate portrayal of disease dynamics,contributing to improved understanding,diagnosis,and treatment strategies[28,29].Fractional operators provide a more nuanced and realistic approach to modeling biological systems,offering more accurate predictions and insights for infectious diseases[30,31].It is evident that fractional calculus is used in a variety of fields,including chemistry,economics,biology and physics [32,33].Many numerical schemes have been developed to visualize the dynamics of a fractional system[34,35].Fractional calculus has been used in both older studies and modern research to create more precise information on the dynamics of a system.Specifically,fractional calculus has found application in highlighting the dynamic aspects of infectious diseases.The recently developed Caputo–Fabrizio(CF)operator utilizes an exponential decay law kernel,a choice that yields more precise and accurate outcomes when modeling natural phenomena.The CF operator is a special case of the new generalized Hattaf fractional(GHF)operator introduced in[33].In this study,our goal is to visualize the dynamical behavior of HIV infection within a fractional framework,aiming to attain results that are more accurate and precise.By incorporating fractional calculus into disease modeling,we aim to better understand the underlying mechanisms,improve prediction accuracy,and potentially enhance the design of control strategies.

    The subsequent sections of this paper are organized as follows: in section 2,we delineate the dynamics of HIV,incorporating a saturated incidence rate and a variable source term.To enhance the precision of our findings,we employ the CF fractional operator to illustrate the hypothesized HIV infection system.Section 3 provides an overview of the fundamental principles of fractional theory,essential for the analysis of the recommended HIV infection model.Section 4 introduces a numerical approach to underscore solution pathways,while also presenting the dynamical behavior and phase portrait of the proposed model.Finally,in section 5,we present the concluding remarks summarizing the entirety of our work.

    2.Formulation of the model

    In this section,we have organized the dynamics of HIV infection in order to elucidate the interactions between the HIV virus and the immune system.A number of researchers developed and tested the reaction of CD4+T-cells and HIV inthe past to explore this intricate phenomena [36–38].The researchers[39]introduced the HIV transmission phenomena as:

    Table 1.Interpretation of the system’s state variables and input parameters [46].

    where s represents the rate at which the body produces new T-cells,μTrepresents the rate at which T-cells expire,and μVand μIindicate the rate at which the particles V and the cells of I expire.The number of cells generated by infected T-cell reproduction is indicated by N while the rate at which healthy T-cells become infected is taken to bek.The HIV model with saturation incidence that Perelson and Nelson [40] is expressed as

    In the next step,we propose a saturation incidence rate for the propagation of HIV viruses and infected T-cells to healthy CD4+T-cells.The rate of production of CD4+T-cells,like other immune cells,can vary depending on factors such as age,health status,and the presence of infections or diseases.Generally,the production of CD4+T-cells occurs in the bone marrow,where hematopoietic stem cells differentiate into various blood cell types,including T-cells.In healthy individuals,the body continuously produces T-cells to maintain a functional immune system.The exact rate of production can be influenced by factors such as thymic activity,which tends to decline with age.Therefore,we assumed variable source term s(V) given byThen,we have

    where α indicates the effectiveness of a protease inhibitor andsdenotes the rate of cellular infection.In this formulation,the concentration of healthy CD4+T-cells is denoted byTand the latent stage of T-cells is indicated byL.Furthermore,the concentration of infected T-cells is represented byIwhile the strength of HIV viruses is symbolized byVin this formulation.

    The advantage of fractional order models is that they can capture more complex dynamics and long-range dependencies that may be present in certain biological systems.In the context of diseases like HIV,which exhibit intricate and evolving patterns,these models can provide a more accurate representation of the dynamics.We use fractional calculus to show the aforementioned dynamics in order to provide a more realistic portrayal.

    Figure 1.Performing a time series analysis of the prescribed system(4)of HIV infection,with the fractional order ξ=0.96,and values of s and r established as 1.0 and 0.5,respectively.

    3.Theory of fractional calculus

    Here,we present the basic concepts and results of the fractional CF derivative which will be used for further analysis.The following is a list of the basic fundamental ideas:

    Figure 2.Performing a time series analysis of the model(4)of HIV,employing a fractional order ξ=0.92,a cellular infection rate of s=1.0 and parameter r=0.5.

    Definition 1.If f∈ G1(a,b) is true and in the case that b exceeds a,then the fractional operator in [41] is given by

    whereξ∈ [0,1]is the order of the operator and U(τ) stands for normalcy with U(0) =U(1) =1[41].Furthermore,the fractional derivative is as follows whenf?G1(a,b):

    Remark 1.Consider the following:andequation (6) can thus be expressed as follows:

    Figure 3.Illustration of the dynamical behavior of the model (4) of HIV by taking the input parameter k2=1.4×10-1 instead of k2=2.4×10-1 with ξ=1.0.

    whereβ∈[0,∞] andN(β) is the normalization of U.Furthermore,as

    We now proceed to the explanation of the fractional integral,originally presented in [42].

    Figure 4.Analyzing the solution trajectories of the system (4) representing HIV infection through a graphical perspective,wherein we consider the input parameter as α=0.4×10-3,instead of the previously used value of α=5.4×10-3 while maintaining ξ=1.0.

    Definition 2.The fractional integral of CF for a given function f is given as:

    where ξ is the order of the integral such that0<ξ<1 andCFDξf (t) =v(t).

    Remark 2.More examination of the above-mentioned definition 2 reveals that

    4.Numerical scheme for the model

    The key objective of the current section is to numerically illustrate how the recommended fractional model (4) of HIV infection behaves dynamically.In order to demonstrate the dynamics of the CF fractional systems,the literature [43–45]has offered multiple numerical methods.To illustrate the dynamics of our fractional system(4),which is more reliable,practical,and stable,we shall employ the[45]technique.Our suggested fractional model of HIV infection is first expressed using the Volterra type,and it is then further simplified using the fundamental theorem of integration.Our proposed model of HIV infection’s first equation states that in order to obtain the numerical scheme,

    Figure 6.Analyzing the phase portrait of the recommended system (4) of HIV with the input parameter s=1.0,r=0.5 and ξ=0.98.

    Then,using the timet=tv+1,v=0,1,...,;Consequently,the below mentioned results are obtained

    and

    The following formula is used to determine how the system’s consecutive terms differ:

    Figure 7.Plotting the phase portrait of the recommended system(4)of HIV infection with the input parameter s=0.50,r=1.5 and ξ=0.98.

    We also use an interpolation polynomial to the above-mentioned approximation functionK1(t,w1) in the time interval[tr,tr+1] and obtain

    The equationHr(t)is applied in order to calculate the value of the subsequent integral,wheregis the time spent andg=tv-tv-1.

    Figure 8.Illustration of the phase portrait of the recommended system (4) of HIV infection with the input parameter s=5.0,r=0.5 and ξ=0.98.

    By changing the value of(17)in equation(15),we obtain the following.

    The above is the approximation of the first equation of our fractional system (4) of HIV infection.For the 2nd and 3rd equations of system 4,we obtained the following using the same technique:

    For the CF operator,this method uses a two-step Adams–Bashforth technique that takes into consideration both the exponential decay rule and the nonlinearity of the kernel.In[45],the stability and convergence of the method have been discussed.In this work,we mainly focus on the dynamical behavior of the system to conceptualize the impact of different parameters on the system.The analytic aspects of the recommended system will be investigated in our future work.Also,we will perform comparative analysis of the numerical method with existing methods [34,35].

    5.Numerical results

    HIV/AIDS still has a serious detrimental impact on affected families despite major global efforts to control it.Reduced income from employment,greater health-care costs,and a loss of capital required to close the gap between income and expenses all add to this burden.In order to prevent these losses,it is imperative to do research into the fundamental causes of HIV infection.The main goal of this research is to visualize the dynamical behavior of the system in order to understand how various factors affect it.We examine the effects of the input variables on the dynamics of HIV using a variety of numerical scenarios.For numerical purposes,we take the values of input parameters from table 1 while the values of state-variables are assumed to beT(0)=30,L(0)=40,I(0)=15 andV(0)=50.

    We run many simulations to see how input elements affect the system and to illustrate how these parameters affect the system,how HIV spreads and how it is controlled inside the body of the host.Figures 1–2 show the system’s oscillatory behavior selecting fractional-order values.The system’s solution pathways have been discovered to be significantly impacted by the fractional parameter.It has been highlighted that the parameter ξ exerts a favorable influence on the dynamics of HIV and could potentially serve as a preventive measure.In figures 3–5,we have presented the alterations in the input parametersk2,α,andk,demonstrating their respective impacts on the solution trajectories of the system.Additionally,in figures 6–8,we have depicted the phase portraits of the recommended HIV infection model under varying values of r and s,providing insights into the long-term behavior of the system.In figure 7,we assumed the values of s=0.50,r=1.5 and ξ=98 to comprehend the dynamical behavior of the HIV model which provides a deeper understanding of the system for effective control strategies.The presence of chaos and oscillations in the recommended model can be attributed to the system’s inherent nonlinearity.Notably,our observations underscore the substantial influence wielded by the input parameters,with a reduction in ξ holding the potential to mitigate the incidence of HIV infections.Consequently,it is advisable for policymakers to consider the manipulation of these input factors as a potential strategy.

    Our numerical findings investigated the oscillatory behavior and phase portrait of the system with different input values of the parameters.This information can be used to predict the long-term behavior of the system,including whether it will converge to a steady state or exhibit periodic or chaotic oscillations.These phenomena are highly sensitive to the input parameters of the system.The presence of chaos in the system is reflected in its phase portrait,with the trajectories exhibiting a complex and irregular pattern.Also,we predict that these phenomena are due to the strong nonlinearity of the system and are dependable on each other.These issues are important because of the essential knowledge they provide about the HIV infection process.

    Delays are important in biological modeling because they reflect the temporal intricacies of biological phenomena,allowing for a more accurate representation of the dynamic and time-dependent nature of living systems [47,48].Incorporating delays in mathematical models enhances their realism and predictive power in understanding and simulating complex biological dynamics[49].Delays in the dynamics of HIV are motivated by the biological processes inherent to the infection,including the time it takes for infection and replication,immune response activation,treatment initiation,viral load dynamics,latency in reservoirs,development of immune memory,and the evolution of drug resistance.In future work,we will incorporate a delay in our model to enhance their accuracy and provide a more realistic representation of HIV dynamics in the human body.

    6.Conclusion

    HIV is unequivocally acknowledged as a pathogenic agent that preferentially targets the immune system,precipitating a diminution in T-cell populations and concomitantly compromising the host organism’s immune competence,thereby impeding its ability to mount effective defenses against additional pathogenic agents.Presently,the global public health community confronts a substantial challenge posed by the intricate interplay between HIV and T-cells.In our pursuit to comprehend this complex phenomenon,we have devised a mathematical model.Our model intricately captures the interactions involving HIV viruses,infected T-cells,and healthy T-cells.To characterize this HIV system,we have harnessed the fractional operator of Caputo–Fabrizio.By employing numerical techniques,we have unveiled the dynamic behavior of the HIV system under various scenarios.Our investigations have demonstrated the profound influence of fractional-order on the solution pathways of HIV infection,as we systematically varied crucial input parameters associated with infection management and prevention.Additionally,by scrutinizing the phase portrait,we have gleaned pivotal insights into system behavior,revealing the presence of periodic orbits,limit cycles,and various types of attractors.In future work,we intend to investigate our model of HIV infection to assess the impact of medical advancements on the virus’ progression and explore innovative treatment modalities.Moreover,we will improve our model to incorporate the effects of vaccinations and medications,enabling a comprehensive analysis of their influence on the system.

    免费看美女性在线毛片视频| 国内毛片毛片毛片毛片毛片| 国产精品福利在线免费观看| 日韩一本色道免费dvd| 亚洲av中文字字幕乱码综合| 久9热在线精品视频| 夜夜爽天天搞| 欧美在线一区亚洲| 长腿黑丝高跟| 日本 av在线| 97人妻精品一区二区三区麻豆| 精华霜和精华液先用哪个| 亚洲成人中文字幕在线播放| 黄片wwwwww| 久久久成人免费电影| 日韩欧美免费精品| 国产v大片淫在线免费观看| 午夜免费男女啪啪视频观看 | 婷婷精品国产亚洲av在线| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 在线看三级毛片| 99精品在免费线老司机午夜| 国产高潮美女av| 黄色女人牲交| 亚洲欧美清纯卡通| 亚洲在线自拍视频| 亚洲 国产 在线| 久久久久久久久久黄片| 日本一二三区视频观看| 天堂网av新在线| 日本黄色视频三级网站网址| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 国产成人a区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻视频免费看| 俄罗斯特黄特色一大片| 成人二区视频| 少妇熟女aⅴ在线视频| av在线观看视频网站免费| 国产精品日韩av在线免费观看| 精品欧美国产一区二区三| 国产高清三级在线| 国产一区二区三区视频了| 久久久久久伊人网av| 欧美黑人巨大hd| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 亚洲美女黄片视频| 日韩强制内射视频| 欧美丝袜亚洲另类 | 免费看美女性在线毛片视频| 亚洲人成网站在线播| 国内精品一区二区在线观看| 国产免费av片在线观看野外av| 毛片一级片免费看久久久久 | 最好的美女福利视频网| 日韩欧美免费精品| 欧美国产日韩亚洲一区| 国产视频一区二区在线看| 免费av毛片视频| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 国产一级毛片七仙女欲春2| 亚洲av免费在线观看| 国产成人影院久久av| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 变态另类丝袜制服| 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 欧美日本亚洲视频在线播放| 免费人成视频x8x8入口观看| 日本一本二区三区精品| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 国产精品不卡视频一区二区| 国产三级在线视频| 亚洲av一区综合| 如何舔出高潮| 国产视频一区二区在线看| 免费电影在线观看免费观看| 搡老岳熟女国产| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩一区二区精品| 日日夜夜操网爽| 午夜福利高清视频| 国内毛片毛片毛片毛片毛片| av黄色大香蕉| 亚洲人成网站在线播放欧美日韩| 国产一区二区激情短视频| 日韩 亚洲 欧美在线| 成人精品一区二区免费| 精品人妻1区二区| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| av天堂中文字幕网| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 色5月婷婷丁香| 精品久久久久久久久亚洲 | 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 看十八女毛片水多多多| АⅤ资源中文在线天堂| 男人狂女人下面高潮的视频| 国产精品亚洲一级av第二区| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩高清专用| 搞女人的毛片| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 亚洲av二区三区四区| 91麻豆精品激情在线观看国产| 在现免费观看毛片| 欧美激情国产日韩精品一区| 麻豆精品久久久久久蜜桃| 午夜视频国产福利| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 最好的美女福利视频网| 亚洲欧美清纯卡通| 久久久久久久久久成人| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 国产亚洲精品av在线| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看 | 亚洲精品色激情综合| av女优亚洲男人天堂| 国产激情偷乱视频一区二区| 日本与韩国留学比较| av视频在线观看入口| 国产精品永久免费网站| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 国内精品久久久久精免费| 国内少妇人妻偷人精品xxx网站| 欧美一区二区亚洲| 最近最新中文字幕大全电影3| 1000部很黄的大片| 日韩强制内射视频| 成年女人毛片免费观看观看9| 黄色配什么色好看| 国产av不卡久久| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 久久午夜福利片| 国产av麻豆久久久久久久| 2021天堂中文幕一二区在线观| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 成人国产一区最新在线观看| 欧美成人性av电影在线观看| 国产色婷婷99| 午夜福利18| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添av毛片 | 国产高清三级在线| 美女免费视频网站| 成人性生交大片免费视频hd| 成年版毛片免费区| 亚洲狠狠婷婷综合久久图片| 乱码一卡2卡4卡精品| 97碰自拍视频| 99riav亚洲国产免费| 免费一级毛片在线播放高清视频| 搡女人真爽免费视频火全软件 | 性欧美人与动物交配| .国产精品久久| 亚洲av成人av| 成熟少妇高潮喷水视频| 日本黄大片高清| 亚洲av一区综合| 国产综合懂色| 97人妻精品一区二区三区麻豆| 午夜免费激情av| 在线观看舔阴道视频| 精品国产三级普通话版| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| a级毛片a级免费在线| 欧美另类亚洲清纯唯美| 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩精品一区二区| 香蕉av资源在线| 国产中年淑女户外野战色| 老熟妇乱子伦视频在线观看| 国产男人的电影天堂91| 亚洲国产精品久久男人天堂| 亚洲专区中文字幕在线| 欧美xxxx黑人xx丫x性爽| 午夜视频国产福利| 亚洲av免费在线观看| 欧美丝袜亚洲另类 | 日韩 亚洲 欧美在线| 色综合色国产| 99九九线精品视频在线观看视频| 99热精品在线国产| 国产精品久久久久久精品电影| 51国产日韩欧美| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 国产精品一区二区性色av| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 变态另类丝袜制服| 高清在线国产一区| 一级a爱片免费观看的视频| 日本欧美国产在线视频| 婷婷精品国产亚洲av| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区精品| 免费无遮挡裸体视频| 国产av在哪里看| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 嫩草影视91久久| 97热精品久久久久久| 伦精品一区二区三区| 久久久久久伊人网av| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 变态另类丝袜制服| 久久久久久久亚洲中文字幕| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | av黄色大香蕉| 午夜a级毛片| 很黄的视频免费| 欧美三级亚洲精品| 中国美女看黄片| 久久久久免费精品人妻一区二区| 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 精品一区二区三区人妻视频| 一边摸一边抽搐一进一小说| 黄色一级大片看看| 免费观看人在逋| 窝窝影院91人妻| 香蕉av资源在线| 成年女人毛片免费观看观看9| 老熟妇仑乱视频hdxx| av视频在线观看入口| 中文字幕高清在线视频| 亚洲自偷自拍三级| 久久久久精品国产欧美久久久| 国产精品无大码| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 91久久精品国产一区二区成人| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 亚洲欧美精品综合久久99| 99久久久亚洲精品蜜臀av| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区 | 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 国产人妻一区二区三区在| 麻豆成人av在线观看| 校园人妻丝袜中文字幕| 国产精品亚洲美女久久久| 精品久久国产蜜桃| 成人一区二区视频在线观看| 亚洲av美国av| 国产又黄又爽又无遮挡在线| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久| 国产乱人伦免费视频| 深爱激情五月婷婷| 中文资源天堂在线| 亚洲精品国产成人久久av| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 久久99热6这里只有精品| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 女同久久另类99精品国产91| 亚洲精品影视一区二区三区av| 搞女人的毛片| 午夜亚洲福利在线播放| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 亚洲精华国产精华液的使用体验 | 黄片wwwwww| 美女高潮的动态| 日韩一本色道免费dvd| 久久久色成人| 两个人的视频大全免费| 在线免费十八禁| 日韩中文字幕欧美一区二区| 精品久久久久久久末码| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 尾随美女入室| 偷拍熟女少妇极品色| 中文字幕高清在线视频| 亚洲最大成人av| a级一级毛片免费在线观看| 欧美精品国产亚洲| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 99热这里只有精品一区| 国内揄拍国产精品人妻在线| 欧美极品一区二区三区四区| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 啦啦啦啦在线视频资源| av在线蜜桃| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| www.www免费av| 婷婷精品国产亚洲av| 在线观看美女被高潮喷水网站| 午夜视频国产福利| 九九热线精品视视频播放| 国产大屁股一区二区在线视频| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 婷婷色综合大香蕉| 成人亚洲精品av一区二区| 色在线成人网| 国产单亲对白刺激| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 男女做爰动态图高潮gif福利片| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 日韩精品青青久久久久久| 欧美成人a在线观看| 少妇的逼水好多| 国产一区二区亚洲精品在线观看| 在线国产一区二区在线| 欧美一区二区亚洲| 欧美精品啪啪一区二区三区| 男女视频在线观看网站免费| 欧美区成人在线视频| 性色avwww在线观看| 欧美日韩综合久久久久久 | 欧美精品啪啪一区二区三区| 夜夜爽天天搞| 中文亚洲av片在线观看爽| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 在现免费观看毛片| 亚洲 国产 在线| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 日韩精品有码人妻一区| 中文在线观看免费www的网站| 国产精品久久久久久精品电影| 中文字幕人妻熟人妻熟丝袜美| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 日日撸夜夜添| 国产色婷婷99| 日韩强制内射视频| 亚洲va日本ⅴa欧美va伊人久久| 两个人视频免费观看高清| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久 | 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 97热精品久久久久久| 国产精品久久久久久久电影| 久久久国产成人免费| 国产精品综合久久久久久久免费| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 免费看av在线观看网站| av国产免费在线观看| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 搞女人的毛片| 免费搜索国产男女视频| 成人特级黄色片久久久久久久| 午夜免费激情av| 亚洲专区国产一区二区| 日本免费a在线| 内射极品少妇av片p| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| 成人无遮挡网站| 动漫黄色视频在线观看| 久久久久国内视频| 12—13女人毛片做爰片一| 能在线免费观看的黄片| 国产精品无大码| 国产精品久久电影中文字幕| 国产成年人精品一区二区| 天堂影院成人在线观看| 精品久久久久久久久av| 国产精品99久久久久久久久| 国产精品久久视频播放| 人妻夜夜爽99麻豆av| 99热6这里只有精品| 亚洲成人精品中文字幕电影| 欧洲精品卡2卡3卡4卡5卡区| 日本色播在线视频| 久9热在线精品视频| 大型黄色视频在线免费观看| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 我的女老师完整版在线观看| 中文字幕久久专区| 久久久精品欧美日韩精品| 成人高潮视频无遮挡免费网站| 久久午夜福利片| av在线蜜桃| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 人妻丰满熟妇av一区二区三区| a级毛片a级免费在线| 日本熟妇午夜| 午夜福利视频1000在线观看| 中文字幕av成人在线电影| 国产单亲对白刺激| 日日撸夜夜添| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放| av天堂中文字幕网| 熟女人妻精品中文字幕| 久久国产乱子免费精品| 真实男女啪啪啪动态图| 我要看日韩黄色一级片| 波野结衣二区三区在线| 欧美色视频一区免费| 日韩一本色道免费dvd| 国产美女午夜福利| 人人妻,人人澡人人爽秒播| 又爽又黄无遮挡网站| 搡女人真爽免费视频火全软件 | 久久国产精品人妻蜜桃| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 一本一本综合久久| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 97人妻精品一区二区三区麻豆| 成人二区视频| 在线免费观看的www视频| av专区在线播放| 超碰av人人做人人爽久久| 国产黄片美女视频| 亚洲国产色片| 五月伊人婷婷丁香| 亚洲人成网站高清观看| 免费看美女性在线毛片视频| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 成人高潮视频无遮挡免费网站| 国产精华一区二区三区| 婷婷精品国产亚洲av在线| 亚洲男人的天堂狠狠| 久久人人爽人人爽人人片va| 国产精品99久久久久久久久| 国产精华一区二区三区| 22中文网久久字幕| 精品久久久久久成人av| 变态另类丝袜制服| 人妻制服诱惑在线中文字幕| 日本欧美国产在线视频| 国产 一区精品| 国产高清三级在线| 一级毛片久久久久久久久女| 国产亚洲精品久久久久久毛片| 非洲黑人性xxxx精品又粗又长| 国内揄拍国产精品人妻在线| av专区在线播放| 女人十人毛片免费观看3o分钟| 身体一侧抽搐| 91麻豆av在线| 九色成人免费人妻av| 亚洲欧美日韩东京热| 成年人黄色毛片网站| 亚洲成人精品中文字幕电影| 国产高清三级在线| 在线观看美女被高潮喷水网站| 国产精品久久久久久久电影| 麻豆av噜噜一区二区三区| 久久久久久伊人网av| 亚洲精华国产精华液的使用体验 | 一个人免费在线观看电影| 黄色一级大片看看| 能在线免费观看的黄片| 精品国产三级普通话版| 中文在线观看免费www的网站| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 国产视频内射| 在线免费观看的www视频| 国产成人一区二区在线| 俺也久久电影网| 2021天堂中文幕一二区在线观| 中文在线观看免费www的网站| 国产精品自产拍在线观看55亚洲| 精品不卡国产一区二区三区| 国产视频内射| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 天天躁日日操中文字幕| 又粗又爽又猛毛片免费看| 色尼玛亚洲综合影院| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 久久午夜亚洲精品久久| 久久国产乱子免费精品| 欧美最黄视频在线播放免费| 国产高清有码在线观看视频| ponron亚洲| 免费黄网站久久成人精品| 男女边吃奶边做爰视频| 免费av不卡在线播放| 久久久久性生活片| 99热只有精品国产| 久久精品国产亚洲av涩爱 | 俺也久久电影网| 色在线成人网| 国产探花在线观看一区二区| 亚洲aⅴ乱码一区二区在线播放| 午夜福利高清视频| 日本在线视频免费播放| 亚洲精品国产成人久久av| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 亚洲综合色惰| 特级一级黄色大片| 春色校园在线视频观看| 精华霜和精华液先用哪个| 日韩一区二区视频免费看| 国产精品久久视频播放| 亚洲乱码一区二区免费版| 精品一区二区三区av网在线观看| 99国产精品一区二区蜜桃av| 此物有八面人人有两片| 十八禁国产超污无遮挡网站| 一个人免费在线观看电影| 国产高清视频在线播放一区| 久久久久久久久久久丰满 | 亚洲av中文字字幕乱码综合| 亚洲精品久久国产高清桃花| 精品久久久久久,| 欧美潮喷喷水| 日韩欧美精品免费久久| 日本色播在线视频| 麻豆一二三区av精品| 国产精品久久视频播放| 国产精品无大码| 欧美潮喷喷水| 日韩欧美精品免费久久| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 一本久久中文字幕| 少妇被粗大猛烈的视频| 国产亚洲精品综合一区在线观看| 亚洲精品久久国产高清桃花| 色在线成人网| 窝窝影院91人妻| 最后的刺客免费高清国语| 亚洲成人中文字幕在线播放| 赤兔流量卡办理| 国产亚洲av嫩草精品影院| 最新中文字幕久久久久| 尾随美女入室| 一本一本综合久久| 婷婷六月久久综合丁香| 亚洲国产日韩欧美精品在线观看| 欧美色视频一区免费| www.色视频.com| 看黄色毛片网站| 精品久久久久久久末码| 日本色播在线视频| 在线国产一区二区在线|