• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling the dynamical behavior of the interaction of T-cells and human immunodeficiency virus with saturated incidence

    2024-04-02 07:47:02SalahBoulaarasRashidJanAminKhanAliAllahemImtiazAhmadandSalmaBahramand
    Communications in Theoretical Physics 2024年3期

    Salah Boulaaras ,Rashid Jan ,Amin Khan ,Ali Allahem ,Imtiaz Ahmad and Salma Bahramand

    1 Department of Mathematics,College of Science,Qassim University,Buraydah,51452,Saudi Arabia

    2 Institute of Energy Infrastructure (IEI),Department of Civil Engineering,College of Engineering,Universiti Tenaga Nasional (UNITEN),Putrajaya Campus,Jalan IKRAM-UNITEN,43000 Kajang,Selangor,Malaysia

    3 Department of Mathematics,University of Swabi,Swabi 23561,Pakistan

    4 Department of Mathematics,College of Sciences,Qassim University,Saudi Arabia

    5 Institute of Informatics and Computing in Energy (IICE),Universiti Tenaga Nasional,Kajang,Selangor,Malaysia

    6 Department of Political Science,Bacha Khan University Charsadda,Charsadda 24420,KPK Pakistan

    Abstract In the last forty years,the rise of HIV has undoubtedly become a major concern in the field of public health,imposing significant economic burdens on affected regions.Consequently,it becomes imperative to undertake comprehensive investigations into the mechanisms governing the dissemination of HIV within the human body.In this work,we have devised a mathematical model that elucidates the intricate interplay between CD4+ T-cells and viruses of HIV,employing the principles of fractional calculus.The production rate of CD4+T-cells,like other immune cells depends on certain factors such as age,health status,and the presence of infections or diseases.Therefore,we incorporate a variable source term in the dynamics of HIV infection with a saturated incidence rate to enhance the precision of our findings.We introduce the fundamental concepts of fractional operators as a means of scrutinizing the proposed HIV model.To facilitate a deeper understanding of our system,we present an iterative scheme that elucidates the trajectories of the solution pathways of the system.We show the time series analysis of our model through numerical findings to conceptualize and understand the key factors of the system.In addition to this,we present the phase portrait and the oscillatory behavior of the system with the variation of different input parameters.This information can be utilized to predict the longterm behavior of the system,including whether it will converge to a steady state or exhibit periodic or chaotic oscillations.

    Keywords: HIV infection,fractional-calculus,dynamics of HIV,iterative scheme,dynamical behaviour,mathematical model,fractional derivatives

    1.Introduction

    In accordance with available reports,HIV infections inflict damage upon the immune system of afflicted individuals,leading to deleterious effects on vital internal organs such as the kidneys,brain,and heart,ultimately culminating in mortality.Although a definitive cure for this infectious disease remains elusive,there exist efficacious antiretroviral treatments that can substantially ameliorate a patient’s health.However,it is worth noting that excessive utilization of these medications may exert adverse effects on the host.Empirical evidence from studies underscores HIV infection as the most pernicious viral threat on a global scale,exerting profound impacts across various sectors.In 2017,an estimated 1.8 million individuals were living with HIV,and tragically,940,000 of them succumbed to the disease.Nevertheless,there exists a firm belief that the AIDS pandemic can be curtailed through a combination of preventative measures and therapeutic interventions.The utilization of therapy has expanded considerably,with individuals occasionally manifesting symptoms resembling sore throats,rashes,headaches,fevers,and influenza-like manifestations.It is crucial to underscore that when treatment is not administered promptly and effectively,HIV infections progress into severe and lifethreatening conditions.The burden of HIV on society encompasses not only the physical and emotional toll on individuals,but also places strains on health-care systems and resources.It fosters a need for comprehensive support structures,education,and public health initiatives to address the multifaceted challenges posed by the virus.

    It is acknowledged that mathematical models play a crucial role in exploring the dynamics of infectious diseases and biological processes [1–3].These models serve as invaluable tools for elucidating the intricacies of complex biological phenomena and furnishing comprehensive insights into the key factors governing biological systems [4–6].Noteworthy contributions to the field include the establishment of an HIV model and the subsequent identification of statistically optimal control measures in 1999 by researchers,as well as the development of various models in subsequent studies to explore dynamic aspects,including viral mutation,intracellular delays,and other relevant factors [7].These endeavors collectively contribute to our understanding of HIV and its associated dynamics [8,9].The researchers in [10]included two transmission methods,including direct cell-tocell transfer and infection by free virions,while HIV-positive CD4+T-cell populations were examined in[11].In the article[12],Perilson and Nelson describe how they used a mathematical model and determined some significant characteristics of the system.The model originally described by the authors in [12] was further modified by the authors in [13].Through study and fractional calculus,Samiaetal[14] examined the phenomenon of the HIV-1 infection.The researchers in [15]used the homotopy analysis methodology to analyze the HIV model,while authors in [16,17] utilized different concepts and approaches to study the dynamics of HIV.The chaotic dynamics of HIV have been looked at and analyzed in [18].The incorporation of the drug into the model and its subsequent influence on the overall dynamics has been investigated in the literature [19–21].In this work,our primary objective is to understand the dynamics of HIV infection by incorporating a saturated incidence rate alongside a variable source term.

    Fractional derivatives provide a more versatile way to model and describe the behavior of complex systems,especially those with non-local and memory-dependent characteristics[22–24].They offer advantages in modeling biological phenomena by providing a more nuanced representation of complex processes,particularly in cases where memory and nonlocal effects play a crucial role [25–27].This enhanced modeling capability allows for a more accurate portrayal of disease dynamics,contributing to improved understanding,diagnosis,and treatment strategies[28,29].Fractional operators provide a more nuanced and realistic approach to modeling biological systems,offering more accurate predictions and insights for infectious diseases[30,31].It is evident that fractional calculus is used in a variety of fields,including chemistry,economics,biology and physics [32,33].Many numerical schemes have been developed to visualize the dynamics of a fractional system[34,35].Fractional calculus has been used in both older studies and modern research to create more precise information on the dynamics of a system.Specifically,fractional calculus has found application in highlighting the dynamic aspects of infectious diseases.The recently developed Caputo–Fabrizio(CF)operator utilizes an exponential decay law kernel,a choice that yields more precise and accurate outcomes when modeling natural phenomena.The CF operator is a special case of the new generalized Hattaf fractional(GHF)operator introduced in[33].In this study,our goal is to visualize the dynamical behavior of HIV infection within a fractional framework,aiming to attain results that are more accurate and precise.By incorporating fractional calculus into disease modeling,we aim to better understand the underlying mechanisms,improve prediction accuracy,and potentially enhance the design of control strategies.

    The subsequent sections of this paper are organized as follows: in section 2,we delineate the dynamics of HIV,incorporating a saturated incidence rate and a variable source term.To enhance the precision of our findings,we employ the CF fractional operator to illustrate the hypothesized HIV infection system.Section 3 provides an overview of the fundamental principles of fractional theory,essential for the analysis of the recommended HIV infection model.Section 4 introduces a numerical approach to underscore solution pathways,while also presenting the dynamical behavior and phase portrait of the proposed model.Finally,in section 5,we present the concluding remarks summarizing the entirety of our work.

    2.Formulation of the model

    In this section,we have organized the dynamics of HIV infection in order to elucidate the interactions between the HIV virus and the immune system.A number of researchers developed and tested the reaction of CD4+T-cells and HIV inthe past to explore this intricate phenomena [36–38].The researchers[39]introduced the HIV transmission phenomena as:

    Table 1.Interpretation of the system’s state variables and input parameters [46].

    where s represents the rate at which the body produces new T-cells,μTrepresents the rate at which T-cells expire,and μVand μIindicate the rate at which the particles V and the cells of I expire.The number of cells generated by infected T-cell reproduction is indicated by N while the rate at which healthy T-cells become infected is taken to bek.The HIV model with saturation incidence that Perelson and Nelson [40] is expressed as

    In the next step,we propose a saturation incidence rate for the propagation of HIV viruses and infected T-cells to healthy CD4+T-cells.The rate of production of CD4+T-cells,like other immune cells,can vary depending on factors such as age,health status,and the presence of infections or diseases.Generally,the production of CD4+T-cells occurs in the bone marrow,where hematopoietic stem cells differentiate into various blood cell types,including T-cells.In healthy individuals,the body continuously produces T-cells to maintain a functional immune system.The exact rate of production can be influenced by factors such as thymic activity,which tends to decline with age.Therefore,we assumed variable source term s(V) given byThen,we have

    where α indicates the effectiveness of a protease inhibitor andsdenotes the rate of cellular infection.In this formulation,the concentration of healthy CD4+T-cells is denoted byTand the latent stage of T-cells is indicated byL.Furthermore,the concentration of infected T-cells is represented byIwhile the strength of HIV viruses is symbolized byVin this formulation.

    The advantage of fractional order models is that they can capture more complex dynamics and long-range dependencies that may be present in certain biological systems.In the context of diseases like HIV,which exhibit intricate and evolving patterns,these models can provide a more accurate representation of the dynamics.We use fractional calculus to show the aforementioned dynamics in order to provide a more realistic portrayal.

    Figure 1.Performing a time series analysis of the prescribed system(4)of HIV infection,with the fractional order ξ=0.96,and values of s and r established as 1.0 and 0.5,respectively.

    3.Theory of fractional calculus

    Here,we present the basic concepts and results of the fractional CF derivative which will be used for further analysis.The following is a list of the basic fundamental ideas:

    Figure 2.Performing a time series analysis of the model(4)of HIV,employing a fractional order ξ=0.92,a cellular infection rate of s=1.0 and parameter r=0.5.

    Definition 1.If f∈ G1(a,b) is true and in the case that b exceeds a,then the fractional operator in [41] is given by

    whereξ∈ [0,1]is the order of the operator and U(τ) stands for normalcy with U(0) =U(1) =1[41].Furthermore,the fractional derivative is as follows whenf?G1(a,b):

    Remark 1.Consider the following:andequation (6) can thus be expressed as follows:

    Figure 3.Illustration of the dynamical behavior of the model (4) of HIV by taking the input parameter k2=1.4×10-1 instead of k2=2.4×10-1 with ξ=1.0.

    whereβ∈[0,∞] andN(β) is the normalization of U.Furthermore,as

    We now proceed to the explanation of the fractional integral,originally presented in [42].

    Figure 4.Analyzing the solution trajectories of the system (4) representing HIV infection through a graphical perspective,wherein we consider the input parameter as α=0.4×10-3,instead of the previously used value of α=5.4×10-3 while maintaining ξ=1.0.

    Definition 2.The fractional integral of CF for a given function f is given as:

    where ξ is the order of the integral such that0<ξ<1 andCFDξf (t) =v(t).

    Remark 2.More examination of the above-mentioned definition 2 reveals that

    4.Numerical scheme for the model

    The key objective of the current section is to numerically illustrate how the recommended fractional model (4) of HIV infection behaves dynamically.In order to demonstrate the dynamics of the CF fractional systems,the literature [43–45]has offered multiple numerical methods.To illustrate the dynamics of our fractional system(4),which is more reliable,practical,and stable,we shall employ the[45]technique.Our suggested fractional model of HIV infection is first expressed using the Volterra type,and it is then further simplified using the fundamental theorem of integration.Our proposed model of HIV infection’s first equation states that in order to obtain the numerical scheme,

    Figure 6.Analyzing the phase portrait of the recommended system (4) of HIV with the input parameter s=1.0,r=0.5 and ξ=0.98.

    Then,using the timet=tv+1,v=0,1,...,;Consequently,the below mentioned results are obtained

    and

    The following formula is used to determine how the system’s consecutive terms differ:

    Figure 7.Plotting the phase portrait of the recommended system(4)of HIV infection with the input parameter s=0.50,r=1.5 and ξ=0.98.

    We also use an interpolation polynomial to the above-mentioned approximation functionK1(t,w1) in the time interval[tr,tr+1] and obtain

    The equationHr(t)is applied in order to calculate the value of the subsequent integral,wheregis the time spent andg=tv-tv-1.

    Figure 8.Illustration of the phase portrait of the recommended system (4) of HIV infection with the input parameter s=5.0,r=0.5 and ξ=0.98.

    By changing the value of(17)in equation(15),we obtain the following.

    The above is the approximation of the first equation of our fractional system (4) of HIV infection.For the 2nd and 3rd equations of system 4,we obtained the following using the same technique:

    For the CF operator,this method uses a two-step Adams–Bashforth technique that takes into consideration both the exponential decay rule and the nonlinearity of the kernel.In[45],the stability and convergence of the method have been discussed.In this work,we mainly focus on the dynamical behavior of the system to conceptualize the impact of different parameters on the system.The analytic aspects of the recommended system will be investigated in our future work.Also,we will perform comparative analysis of the numerical method with existing methods [34,35].

    5.Numerical results

    HIV/AIDS still has a serious detrimental impact on affected families despite major global efforts to control it.Reduced income from employment,greater health-care costs,and a loss of capital required to close the gap between income and expenses all add to this burden.In order to prevent these losses,it is imperative to do research into the fundamental causes of HIV infection.The main goal of this research is to visualize the dynamical behavior of the system in order to understand how various factors affect it.We examine the effects of the input variables on the dynamics of HIV using a variety of numerical scenarios.For numerical purposes,we take the values of input parameters from table 1 while the values of state-variables are assumed to beT(0)=30,L(0)=40,I(0)=15 andV(0)=50.

    We run many simulations to see how input elements affect the system and to illustrate how these parameters affect the system,how HIV spreads and how it is controlled inside the body of the host.Figures 1–2 show the system’s oscillatory behavior selecting fractional-order values.The system’s solution pathways have been discovered to be significantly impacted by the fractional parameter.It has been highlighted that the parameter ξ exerts a favorable influence on the dynamics of HIV and could potentially serve as a preventive measure.In figures 3–5,we have presented the alterations in the input parametersk2,α,andk,demonstrating their respective impacts on the solution trajectories of the system.Additionally,in figures 6–8,we have depicted the phase portraits of the recommended HIV infection model under varying values of r and s,providing insights into the long-term behavior of the system.In figure 7,we assumed the values of s=0.50,r=1.5 and ξ=98 to comprehend the dynamical behavior of the HIV model which provides a deeper understanding of the system for effective control strategies.The presence of chaos and oscillations in the recommended model can be attributed to the system’s inherent nonlinearity.Notably,our observations underscore the substantial influence wielded by the input parameters,with a reduction in ξ holding the potential to mitigate the incidence of HIV infections.Consequently,it is advisable for policymakers to consider the manipulation of these input factors as a potential strategy.

    Our numerical findings investigated the oscillatory behavior and phase portrait of the system with different input values of the parameters.This information can be used to predict the long-term behavior of the system,including whether it will converge to a steady state or exhibit periodic or chaotic oscillations.These phenomena are highly sensitive to the input parameters of the system.The presence of chaos in the system is reflected in its phase portrait,with the trajectories exhibiting a complex and irregular pattern.Also,we predict that these phenomena are due to the strong nonlinearity of the system and are dependable on each other.These issues are important because of the essential knowledge they provide about the HIV infection process.

    Delays are important in biological modeling because they reflect the temporal intricacies of biological phenomena,allowing for a more accurate representation of the dynamic and time-dependent nature of living systems [47,48].Incorporating delays in mathematical models enhances their realism and predictive power in understanding and simulating complex biological dynamics[49].Delays in the dynamics of HIV are motivated by the biological processes inherent to the infection,including the time it takes for infection and replication,immune response activation,treatment initiation,viral load dynamics,latency in reservoirs,development of immune memory,and the evolution of drug resistance.In future work,we will incorporate a delay in our model to enhance their accuracy and provide a more realistic representation of HIV dynamics in the human body.

    6.Conclusion

    HIV is unequivocally acknowledged as a pathogenic agent that preferentially targets the immune system,precipitating a diminution in T-cell populations and concomitantly compromising the host organism’s immune competence,thereby impeding its ability to mount effective defenses against additional pathogenic agents.Presently,the global public health community confronts a substantial challenge posed by the intricate interplay between HIV and T-cells.In our pursuit to comprehend this complex phenomenon,we have devised a mathematical model.Our model intricately captures the interactions involving HIV viruses,infected T-cells,and healthy T-cells.To characterize this HIV system,we have harnessed the fractional operator of Caputo–Fabrizio.By employing numerical techniques,we have unveiled the dynamic behavior of the HIV system under various scenarios.Our investigations have demonstrated the profound influence of fractional-order on the solution pathways of HIV infection,as we systematically varied crucial input parameters associated with infection management and prevention.Additionally,by scrutinizing the phase portrait,we have gleaned pivotal insights into system behavior,revealing the presence of periodic orbits,limit cycles,and various types of attractors.In future work,we intend to investigate our model of HIV infection to assess the impact of medical advancements on the virus’ progression and explore innovative treatment modalities.Moreover,we will improve our model to incorporate the effects of vaccinations and medications,enabling a comprehensive analysis of their influence on the system.

    久久女婷五月综合色啪小说| 日韩一区二区视频免费看| 欧美老熟妇乱子伦牲交| a级毛片在线看网站| 国产伦精品一区二区三区视频9| 精品久久久久久久久av| 简卡轻食公司| 老女人水多毛片| 五月开心婷婷网| 成人手机av| 久久久精品94久久精品| 日韩亚洲欧美综合| 亚洲国产精品国产精品| 99国产综合亚洲精品| 蜜臀久久99精品久久宅男| 精品久久久久久电影网| 午夜91福利影院| 亚洲国产成人一精品久久久| av有码第一页| 日韩中字成人| 大码成人一级视频| 一级片'在线观看视频| 欧美另类一区| 中国三级夫妇交换| 亚洲精品色激情综合| 国产成人精品婷婷| 国产国拍精品亚洲av在线观看| 久久精品久久久久久噜噜老黄| 国产国语露脸激情在线看| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 熟妇人妻不卡中文字幕| 亚洲中文av在线| 男人操女人黄网站| √禁漫天堂资源中文www| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 色网站视频免费| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| av黄色大香蕉| 亚洲欧美一区二区三区黑人 | 国产亚洲av片在线观看秒播厂| 久久久久久久久久成人| 一区在线观看完整版| xxx大片免费视频| 国产在视频线精品| 99热这里只有精品一区| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 中国国产av一级| 99热这里只有是精品在线观看| 国产午夜精品一二区理论片| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 亚洲欧美中文字幕日韩二区| av专区在线播放| 亚洲人成77777在线视频| www.色视频.com| 18禁在线无遮挡免费观看视频| 纯流量卡能插随身wifi吗| 亚洲精品美女久久av网站| 男人操女人黄网站| 久久韩国三级中文字幕| 十八禁高潮呻吟视频| 夫妻性生交免费视频一级片| av免费在线看不卡| 国产在视频线精品| 另类亚洲欧美激情| 两个人的视频大全免费| 黑人猛操日本美女一级片| av国产久精品久网站免费入址| 99热这里只有是精品在线观看| 一区二区三区免费毛片| 亚洲精品aⅴ在线观看| av播播在线观看一区| 观看av在线不卡| xxx大片免费视频| av一本久久久久| 国产精品久久久久成人av| 999精品在线视频| 新久久久久国产一级毛片| 中国美白少妇内射xxxbb| 国产一区二区三区综合在线观看 | 欧美丝袜亚洲另类| 免费黄网站久久成人精品| 一区二区日韩欧美中文字幕 | 黑人巨大精品欧美一区二区蜜桃 | 欧美激情 高清一区二区三区| 国产av精品麻豆| 日韩制服骚丝袜av| 午夜福利影视在线免费观看| 精品亚洲成国产av| 国产成人av激情在线播放 | 91久久精品电影网| 国产精品一区二区在线不卡| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级| 日本黄色片子视频| 伦理电影大哥的女人| 99热国产这里只有精品6| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 国产国拍精品亚洲av在线观看| 丝袜脚勾引网站| 免费人成在线观看视频色| 男的添女的下面高潮视频| 制服人妻中文乱码| 国产69精品久久久久777片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩电影二区| 成人毛片a级毛片在线播放| 只有这里有精品99| 97在线人人人人妻| 自线自在国产av| 亚洲不卡免费看| tube8黄色片| 在线观看免费视频网站a站| 国产av一区二区精品久久| 一个人看视频在线观看www免费| 亚洲精品美女久久av网站| 你懂的网址亚洲精品在线观看| 2022亚洲国产成人精品| 日日撸夜夜添| 日本av手机在线免费观看| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 日韩中字成人| 日韩亚洲欧美综合| 国产在线视频一区二区| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 久久这里有精品视频免费| 久久免费观看电影| 美女xxoo啪啪120秒动态图| 亚洲国产精品成人久久小说| 国产探花极品一区二区| 精品久久久久久电影网| 美女国产高潮福利片在线看| 亚洲国产日韩一区二区| 一级毛片 在线播放| 久久国内精品自在自线图片| 亚洲,欧美,日韩| 精品久久久久久久久亚洲| 丝袜美足系列| 青春草视频在线免费观看| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 国产精品一国产av| 日日摸夜夜添夜夜爱| 嘟嘟电影网在线观看| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 大码成人一级视频| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 精品久久久噜噜| 久久99一区二区三区| 亚洲欧美成人综合另类久久久| 人人澡人人妻人| 久久国内精品自在自线图片| 成年av动漫网址| 十八禁网站网址无遮挡| 亚洲精品日韩在线中文字幕| 国国产精品蜜臀av免费| 午夜91福利影院| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 国产成人一区二区在线| 久久鲁丝午夜福利片| 午夜av观看不卡| 日韩av免费高清视频| 精品少妇内射三级| 欧美3d第一页| 日韩一区二区视频免费看| 精品国产露脸久久av麻豆| 国产 一区精品| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人精品一区二区| av.在线天堂| 亚洲国产精品专区欧美| 黄片播放在线免费| 日本wwww免费看| 男女边摸边吃奶| 午夜av观看不卡| xxxhd国产人妻xxx| 另类精品久久| 亚洲精品美女久久av网站| 少妇丰满av| 久久精品久久精品一区二区三区| 日本欧美国产在线视频| 国产日韩欧美在线精品| 永久免费av网站大全| 爱豆传媒免费全集在线观看| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 午夜免费男女啪啪视频观看| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 国产男人的电影天堂91| 久久97久久精品| 热re99久久精品国产66热6| 久久狼人影院| 久久女婷五月综合色啪小说| 一区二区av电影网| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 97在线人人人人妻| 日本-黄色视频高清免费观看| 精品人妻在线不人妻| 老女人水多毛片| av福利片在线| 亚洲精品久久午夜乱码| 熟女少妇亚洲综合色aaa.| 深夜精品福利| 黄色毛片三级朝国网站| 国产一区二区三区在线臀色熟女 | 色视频在线一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 99精品欧美一区二区三区四区| 精品久久久精品久久久| 免费久久久久久久精品成人欧美视频| 国产成人精品久久二区二区91| 国产不卡一卡二| 欧美亚洲日本最大视频资源| 脱女人内裤的视频| 黑人猛操日本美女一级片| 国产熟女午夜一区二区三区| 国产亚洲欧美在线一区二区| 国产免费av片在线观看野外av| 国产深夜福利视频在线观看| 成年人午夜在线观看视频| 精品国产乱子伦一区二区三区| 操美女的视频在线观看| 亚洲精华国产精华精| 啦啦啦 在线观看视频| 国产一区有黄有色的免费视频| 亚洲欧美精品综合一区二区三区| 亚洲精品久久午夜乱码| √禁漫天堂资源中文www| 后天国语完整版免费观看| 久久av网站| 亚洲三区欧美一区| 我要看黄色一级片免费的| 黄色怎么调成土黄色| av福利片在线| 国产成人精品久久二区二区91| 精品少妇黑人巨大在线播放| av视频免费观看在线观看| 老汉色∧v一级毛片| 又紧又爽又黄一区二区| 中文字幕av电影在线播放| 无人区码免费观看不卡 | 欧美久久黑人一区二区| 桃花免费在线播放| 麻豆av在线久日| 成年人免费黄色播放视频| 午夜福利欧美成人| av线在线观看网站| 欧美成人午夜精品| 黄色成人免费大全| 搡老熟女国产l中国老女人| 9色porny在线观看| 欧美成人免费av一区二区三区 | 侵犯人妻中文字幕一二三四区| 欧美乱码精品一区二区三区| 亚洲精品国产色婷婷电影| 久久久久久亚洲精品国产蜜桃av| 亚洲黑人精品在线| 夜夜爽天天搞| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情极品国产一区二区三区| av欧美777| 日韩制服丝袜自拍偷拍| 亚洲精品国产区一区二| av不卡在线播放| 丁香六月欧美| 窝窝影院91人妻| 少妇的丰满在线观看| 精品一区二区三区四区五区乱码| 久久久国产精品麻豆| 欧美午夜高清在线| 国产亚洲精品第一综合不卡| 久久人人97超碰香蕉20202| 精品国产超薄肉色丝袜足j| 天堂俺去俺来也www色官网| 在线观看www视频免费| 亚洲中文字幕日韩| 国产亚洲av高清不卡| 国产视频一区二区在线看| 一区二区三区激情视频| 九色亚洲精品在线播放| 手机成人av网站| 欧美人与性动交α欧美软件| 9色porny在线观看| 国产高清videossex| 黄片播放在线免费| 中文字幕高清在线视频| 亚洲欧美精品综合一区二区三区| 国产精品亚洲一级av第二区| 亚洲精品国产区一区二| 韩国精品一区二区三区| 乱人伦中国视频| 精品国产超薄肉色丝袜足j| 91老司机精品| av片东京热男人的天堂| www.精华液| 欧美性长视频在线观看| 美女国产高潮福利片在线看| 亚洲伊人色综图| 色94色欧美一区二区| 在线观看免费午夜福利视频| 啦啦啦中文免费视频观看日本| 午夜激情av网站| 国产不卡一卡二| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区 | 免费在线观看影片大全网站| 精品少妇黑人巨大在线播放| 一进一出抽搐动态| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 国产淫语在线视频| 亚洲七黄色美女视频| 成人三级做爰电影| 在线 av 中文字幕| 国产主播在线观看一区二区| 18在线观看网站| 国产人伦9x9x在线观看| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 99riav亚洲国产免费| 一级毛片精品| 精品亚洲成a人片在线观看| 99精国产麻豆久久婷婷| 亚洲国产av影院在线观看| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 成年人午夜在线观看视频| 日韩欧美一区二区三区在线观看 | kizo精华| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 好男人电影高清在线观看| 久久国产精品大桥未久av| 日韩大片免费观看网站| 黑人操中国人逼视频| 亚洲美女黄片视频| 满18在线观看网站| 多毛熟女@视频| 精品国产亚洲在线| 男女床上黄色一级片免费看| 制服诱惑二区| 国产1区2区3区精品| 久久国产精品男人的天堂亚洲| 在线看a的网站| 正在播放国产对白刺激| 欧美日韩黄片免| 啦啦啦 在线观看视频| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人 | 久久久精品94久久精品| 中文亚洲av片在线观看爽 | 日韩欧美三级三区| bbb黄色大片| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 69av精品久久久久久 | 搡老岳熟女国产| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 蜜桃国产av成人99| 老汉色av国产亚洲站长工具| 午夜老司机福利片| 热re99久久国产66热| 精品人妻1区二区| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久小说| 亚洲av成人一区二区三| 欧美精品高潮呻吟av久久| 国产精品.久久久| 黄色片一级片一级黄色片| 在线观看免费高清a一片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 无遮挡黄片免费观看| 一夜夜www| 制服人妻中文乱码| 日韩免费av在线播放| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看 | 国产亚洲欧美在线一区二区| 777米奇影视久久| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 成年女人毛片免费观看观看9 | 精品第一国产精品| 日韩制服丝袜自拍偷拍| 色94色欧美一区二区| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| 精品高清国产在线一区| avwww免费| 视频区图区小说| 久久婷婷成人综合色麻豆| 久久精品91无色码中文字幕| netflix在线观看网站| 国产一卡二卡三卡精品| 色婷婷av一区二区三区视频| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 亚洲第一青青草原| 国产国语露脸激情在线看| e午夜精品久久久久久久| 人成视频在线观看免费观看| 亚洲第一青青草原| 亚洲精品在线观看二区| 飞空精品影院首页| 另类亚洲欧美激情| 日韩熟女老妇一区二区性免费视频| 亚洲精品粉嫩美女一区| 久热这里只有精品99| 国产av国产精品国产| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 国内毛片毛片毛片毛片毛片| 国产高清videossex| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 一级毛片女人18水好多| 精品一区二区三卡| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 美女高潮到喷水免费观看| 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 视频在线观看一区二区三区| 丰满少妇做爰视频| 男女床上黄色一级片免费看| 久久久久国产一级毛片高清牌| 另类精品久久| 亚洲黑人精品在线| 9191精品国产免费久久| 夜夜夜夜夜久久久久| 午夜91福利影院| 99re在线观看精品视频| 制服诱惑二区| 欧美激情久久久久久爽电影 | 亚洲一区二区三区欧美精品| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 老司机福利观看| 成人国产一区最新在线观看| 男女免费视频国产| 亚洲精品久久午夜乱码| 久热这里只有精品99| 国产一区二区在线观看av| 另类精品久久| 亚洲av欧美aⅴ国产| 女人爽到高潮嗷嗷叫在线视频| 久久av网站| 婷婷丁香在线五月| 黄色 视频免费看| 最近最新免费中文字幕在线| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 在线av久久热| 乱人伦中国视频| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩亚洲高清精品| 99国产精品一区二区蜜桃av | 成人18禁高潮啪啪吃奶动态图| 精品一品国产午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 狠狠精品人妻久久久久久综合| 超色免费av| 成年人午夜在线观看视频| 91av网站免费观看| 咕卡用的链子| 午夜福利在线免费观看网站| 欧美久久黑人一区二区| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| av线在线观看网站| 久9热在线精品视频| 在线观看www视频免费| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一二三| 色综合欧美亚洲国产小说| 亚洲欧美色中文字幕在线| 一区二区av电影网| 老司机靠b影院| 亚洲欧美一区二区三区黑人| 制服人妻中文乱码| 国产又爽黄色视频| 国产区一区二久久| 在线观看人妻少妇| 99久久国产精品久久久| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 在线观看www视频免费| 久久精品91无色码中文字幕| www日本在线高清视频| 一个人免费在线观看的高清视频| 国产成人av激情在线播放| 99re在线观看精品视频| av福利片在线| 亚洲国产成人一精品久久久| 久9热在线精品视频| 999久久久精品免费观看国产| 国产成人影院久久av| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区激情短视频| 天堂8中文在线网| 91精品三级在线观看| 最近最新中文字幕大全电影3 | 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 少妇 在线观看| 色精品久久人妻99蜜桃| 一级片免费观看大全| 欧美国产精品va在线观看不卡| 99国产综合亚洲精品| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久小说| 午夜精品国产一区二区电影| 波多野结衣一区麻豆| 久久久精品区二区三区| 精品福利永久在线观看| 久久精品成人免费网站| 亚洲天堂av无毛| 亚洲av成人一区二区三| 久久亚洲精品不卡| 大香蕉久久成人网| 国产在视频线精品| 成年动漫av网址| 别揉我奶头~嗯~啊~动态视频| 五月天丁香电影| 日本黄色日本黄色录像| 国产精品一区二区免费欧美| 亚洲欧美色中文字幕在线| 天天添夜夜摸| 99九九在线精品视频| 久久久国产精品麻豆| 欧美大码av| 色在线成人网| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 亚洲美女黄片视频| 国产成人免费观看mmmm| 午夜精品国产一区二区电影| 视频区图区小说| 美女视频免费永久观看网站| 超色免费av| 香蕉久久夜色| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 老熟妇仑乱视频hdxx| 热99re8久久精品国产| 亚洲三区欧美一区| 中文欧美无线码| 中文字幕高清在线视频| 极品教师在线免费播放| 国产精品电影一区二区三区 | 成人特级黄色片久久久久久久 | 日本av免费视频播放| 欧美日韩亚洲高清精品| 亚洲精华国产精华精| 亚洲中文字幕日韩| 亚洲av国产av综合av卡| 另类精品久久| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 一边摸一边做爽爽视频免费| 亚洲熟女精品中文字幕| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲 | 国产成人av激情在线播放| 久久毛片免费看一区二区三区| 在线播放国产精品三级| 日韩欧美一区视频在线观看| av一本久久久久| 在线永久观看黄色视频| 久久久久精品国产欧美久久久| kizo精华| 麻豆国产av国片精品| 亚洲色图av天堂| 啪啪无遮挡十八禁网站| 亚洲三区欧美一区| 久久国产精品大桥未久av| av不卡在线播放| 国产伦人伦偷精品视频| 看免费av毛片|